Supplementary Information for:

Metal Induced Folding: Synthesis and Conformational Analysis of the Lanthanide Complexes of two 44-membered Hydrazone Macrocycles[†]

Jörg Klein,^{*a*} Jack K. Clegg,^{*a*} Vittorio Saggiomo,^{*b*} Lisa Reck,^{*b*} Ulrich Lüning^{*b*}* and Jeremy K. M. Sanders^{**a*}

^aUniversity Chemical Laboratory, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom Fax: (+)44 (0)1223 336017 Email: jkms@cam.ac.uk

^b Otto-Diels-Institut für Organische Chemie, Olshausenstr. 40, D-24098 Kiel, Germany.
Fax: +49-431-880-1558; Tel: +49-431-880-2450
E-mail: luening@oc.uni-kiel.de

1. X-ray Crystallography	.2
2. HRMS (High Resolution Mass Spectrometry)	.4
3. UV-Vis Spectroscopy	.5
3. NMR	.7

1. X-ray Crystallography

Fig. 1 Solid state structure of unbound ligand **1**. a) tilted view; b) top view; c) side view; d) orientation of hydrazone bonds; e) important hydrogen bonds.

Fig. 2 Solid state structure of Eu³⁺ complex with CN nine. a) tilted view; b) side view.

Fig. 3 Solid state structure of Europium complex with CN ten. a) side view; b) top view; c) arrangement of N_3O_2 binding motif; d) important hydrogen bonds.

2. HRMS (High Resolution Mass Spectrometry)

Fig. 4 (-)ESI-HRMS of a) **[1**][La³⁺]; b) **[1**][Dy³⁺]; c) **[1**][Eu³⁺]; d) **[2**][La³⁺]; e) **[2**][Dy³⁺]; f) **[2**][Eu³⁺]. All spectra were recorded in CDCl₃/MeOD (1:1).

Fig. 5 UV-Vis spectra (left) and binding isotherms (right, ΔA_{320nm}) of titrations of **1** with a) La³⁺, b) Eu³⁺, c) Dy³⁺. Increasing and decreasing bands are indicated by arrows. Binding isotherms are obtained by plotting the change in absorption at 320 nm against the guest concentration (dots) and fitting it with a model (line).

Fig. 6 UV-Vis spectra (left) and binding isotherms (right, ΔA_{320nm}) of titrations of **2** with a) La³⁺, b) Eu³⁺, c) Dy³⁺. Increasing and decreasing bands are indicated by arrows. Binding isotherms are obtained by plotting the change in absorption at 320 nm against the guest concentration (dots) and fitting it with a model (line).

3. NMR

Fig. 7 NMR spectra (500 MHz, 295 K, CDCl₃/MeOD, 1:1) of a 1 and its La³⁺ complex (1 mM).

Fig.8: NOESY spectra of **1**[La³⁺] (1 mM in CDCl₃/MeOD, 1:1, 298 K, 500 MHz, mixing time = 800 ms). The cross-peaks are indicated by dotted lines with corresponding colours in the NOESY spectrum and the structure below.

Fig. 9: NOESY spectra of **2**[La³⁺] (1 mM in CDCl₃/MeOD, 1:1, 298 K, 500 MHz, mixing time = 800 ms). The cross-peaks are indicated by dotted lines with corresponding colours in the NOESY spectrum and the structure below.