Supporting Information

Thermal ellipsoid plot of 1b. Only the *ipso* carbon atoms of the phenyl groups are shown.

Example for Supramolecular Structure: Compound 7.2CHCl₃

	$1a \cdot 2C_4H_8O_2$	1b·CH ₂ Cl ₂	2 •2.5C ₇ H ₈ •CH ₃ OH	$3 \cdot 0.5 H_2 O \cdot 2.25 C_3 H_6 O$
formula	C ₅₁ H ₄₄ Cl ₂ NiP ₄	C102H88Cl6Ni3P8	$C_{51}H_{44}Cl_2P_4Pd$	$C_{51}H_{44}Cl_2P_4Pt \cdot 0.5 H_2O \cdot$
	• 2 C ₄ H ₈ O ₂	• CH ₂ Cl ₂	• 2.5 C ₇ H ₈ •	2.25 C ₃ H ₆ O
			CH ₃ OH	
$M_{ m r}$	1086.56	2035.24	1220.42	1186.42
T (K)	233(2)	233(2)	233(2)	233(2)
cryst syst	Orthorhombic	Trigonal	Triclinic	Triclinic
space group	Iba2 (no.45)	P3 ₁ (no.144)	P-1 (no.2)	P-1 (no.2)
a (Å)	9.6018(2)	17.4335(2)	10.2001(2)	9.7629(2)
b (Å)	23.6046(4)	17.4335(2)	12.4004(2)	23.2214(3)
c (Å)	24.3824(4)	31.0829(4)	24.4161(4)	24.4318(4)
α (deg)	90	90	84.068(1)	96.059(1)
β (deg)	90	90	82.649(1)	94.714(1)
γ (deg)	90	120	89.914(1)	92.421(1)
$V(Å^3)$	5526.19(17)	8181.28(17)	3046.28(9)	5482.07(16)
Ζ	4	3	2	4
$D_{\rm calcd} ({\rm Mg/m^3})$	1.306	1.239	1.331	1.437
$\mu(\text{mm}^{-1})$	0.609	0.867	0.540	2.815
F(000)	2272	3144	1266	2396
indep rflns	4807	13390	12411	19002
data / restraints /	4807 / 1 / 319	13390 / 15 /	12411 / 24 / 702	19002 / 48 / 1202
parameters		1129		
R1 [I>2sigma(I)]	0.0316	0.0630	0.0411	0.0405
wR2 (all data)	0.0727	0.1792	0.1098	0.1034
Largest diff. peak and	0.253 and	1.159 and -	0.619 and -0.726	0.930 and -0.822
hole (e.Å-3)	-0.213	0.955		

Table 3. Summary of X-ray Data and structure refinement for 1a, 1b, 2 and 3

	4 •0.5C ₇ H ₈ •1.5CHCl ₃	5	6 •3H ₂ O	7 •2CHCl ₃
formula	$C_{51}H_{46}C_{12}P_4 \cdot 0.5 C_7H_8 \cdot$	$C_{51}H_{45}ClP_4$	$C_{51}H_{45}Cl_3P_4Pd$	$C_{51}H_{45}Cl_3P_4Pt$
	1.5 CHCl ₃		• 3 H ₂ O	• 2 CHCl ₃
$M_{ m r}$	1078.78	817.20	1048.55	1321.93
T (K)	233(2)	233(2)	233(2)	233(2)
cryst syst	Orthorhombic	Monoclinic	Triclinic	Triclinic
space group	P2 ₁ 2 ₁ 2 (no.18)	$P2_1/c$ (no.14)	P-1 (no.2)	P-1 (no.2)
a (Å)	15.2377(6)	16.9190(4)	9.2897(3)	9.4233(2)
b (Å)	20.5124(7)	27.1997(6)	13.5853(6)	15.0455(3)
c (Å)	8.7621(4)	18.7995(2)	19.9199(7)	19.0383(4)
$\alpha \square (deg)$	90	90	86.390(2)	90.021(2)
$\beta \square (deg)$	90	92.034(2)	89.649(2)	90.644(2)
γ (deg)	90	90	72.822(2)	96.536(2)
$V(Å^3)$	2738.70(19)	8645.9(3)	2396.84(16)	2681.50(10)
Ζ	2	8	2	2
$D_{\text{calcd}} (\text{Mg/m}^3)$	1.308	1.256	1.453	1.637
$\mu(\text{mm}^{-1})$	0.491	0.271	0.730	3.221
F(000)	1116	3424	1076	1312
indep rflns	4284	13577	8354	9424
data / restraints /				
parameters	4284 / 13 / 323	13577 / 0 / 1017	8354 / 4 / 579	9424 / 13 / 636
R1 [I>2sigma(I)]	0.0498	0.0477	0.0420	0.0367
wR2 (all data)	0.1283	0.1082	0.0813	0.0711
Largest diff. peak		0.283 and -0.290	0.587 and -0.593	0.680 and -0.780
and hole	0.594 and -0.267 e.Å ⁻³	e.Å-3	e.Å-3	e.Å-3

Table 4. Summary of X-ray Data and structure refinement for 4, 5, 6 and 7

Detailed description of WIN-DAISY simulation/iteration of NMR spectra

 $\frac{^{31}P-NMR}{^{31}P-NMR}$: Simulation and iteration of the [AX]₂ system for **5** and **4** was performed by keeping the P1-P4 coupling at 0 Hz. The [AX]₂ system of **1a** and **2** was simulated by manual fitting of ²J(P1P4) and ²J(P2P3) to the very weak but detectable outer lines of the respective A and X subspectra (Figure 9), both couplings were kept constant during iteration of ²⁺³J(P1P2) and ³J(P1P3).

Figure 9. ³¹P NMR phosphorane region (A-part of the $[AX]_2$ ³¹P coupling pattern) of $[Ni(Cl)(C(dppm)_2-\kappa 3P,C,P)]Cl$ (**1a**): upper trace experimental spectrum, lower trace simulated spectrum showing the (skipped) signals of the intense inner lines (with ¹³C sattelites at the basis) and the two pairs of weak but detectable outer lines in the very left and right parts of the spectrum, respectively.

The $[AX]_2$ system of **3**, **6** and **7** was only partly accessible to simulation, since only the Nlines (|J(AX) + J(AX')|) and one single central line of the A and X part, respectively, were resolved. In line with the NMR data for **1a** and **2**, ²J(P1P4) was kept constant at 400 Hz (the spectrum is completely insensitive to variation of this coupling constant between 300 – 500 Hz) and ²J(P2P3) was kept constant at 69 Hz (**3**), -3.7 Hz (**6**) or -1.6 Hz (**7**) (this coupling

constant could be determined from the ¹³C NMR spectra). ²⁺³J(P1P2) and ³J(P1P3) were iterated for **3**, **6** and **7** but show a large uncertainty, due to the featureless triplet structure of the A and X signals. The Pt-P coupling constants were easily accessible from the ¹⁹⁵P satellites in the ³¹P NMR spectrum of the Pt compounds **3** and **7**.

The P-C coupling constants extracted from the ¹³C NMR spectrum could be verified in the ¹³C satellites of the ³¹P signals for all compounds and were found appropriate; only peaks due to the coupling constants larger than ca. 30 Hz were sufficiently separated from the main signals for verification.

¹³C-NMR: The P-P coupling constants from the ³¹P spectra were used for simulation of the ¹³C NMR spectra, P-C coupling constants were fitted manually to the [AX]₂Z (central carbon atom, C1) and AA'XX'Z pattern (all other carbon atoms), respectively, of the ¹³C signals. Assignment of aromatic carbon resonances was performed by comparison with the literature data for PPh₃, [MePPh₃]I and phosphine complexes.^{40b,42} Moreover the assignment of the aromatic carbon signals to Ph1 and Ph2 was unambiguously possible due to the different P-C one bond couplings for Ci and in general by the significantly different coupling pattern to P1 and P2, respectively, which is largely dependent on the relative magnitudes of J(PC) – J(P'C) and J(PP') towards the directly phenyl-bound phosphorus (see also Figure 10):⁴⁰ In the free ligands 4 and 5 the Co/Cm signals at P1 show pure doublets, whereas pure triplets are observed for these carbon atoms in all metal complexes. The Co/Cm signals at P2 show pure triplets in 1 - 3 "filled-in doublets" in 6 and 7 and higher order spectra with four to six resolved transitions for 4 and 5. The Ci signals show a pattern related to Co/Cm but with further splitting due to substantial ${}^{3}J(PC)$ coupling along the ligand backbone, the Cp signals are either singlets or show only partially resolved splitting. As already mentioned in the ${}^{31}P$ NMR section the 2 J(P2P3) could be determined unambiguously from the 13 C pattern of Ph2C*i* for 3 (position of the outer lines of the quintett pattern) or all Ph1a-C*i/o/m* and Ph1b-C*i/o/m* signals (intensities of the inner lines of the "filled-in doublets").

Figure 10. ¹³C NMR aromatic region of $[CH(dppm)_2]Cl$ (5): upper trace experimental spectrum, lower trace simulated spectrum showing different ³¹P coupling pattern of C atoms depending of relative magnitudes of |J(PC) - J(P'C)| and J(PP'): Singlet (129.9 ppm), doublet (129.1, 133.0 ppm), filled-in doublet (129.4, 133.3 ppm), doublet of filled-in doublets (136.4 ppm), higher order pattern ≥ 4 lines (126.6, 132.4 ppm).

¹<u>H NMR</u>: The P-P coupling constants from the ³¹P NMR spectra were used for simulation of the ¹H NMR spectra, H-P coupling constants were fitted manually to the pattern of the ¹H signal of H1 and H2. The H2 signals were not accessible for simulation of coupling constants in the free ligands due to an ambiguous pseudo-doublet pattern (**5**) or a featureless, broad appearance ($W_{1/2} = 36$ Hz; **4**). Only the non-aromatic proton signals were simulated.