Supplementary Information

Investigation of Isomer Formation Upon Coordination of Bifunctional Histidine Analogues with ^{99m}Tc/Re(CO)₃

Emily J. Simpson, Jennifer L. Hickey, Daniel Breadner and Leonard G. Luyt

Table of Contents

Figure S1
Figure S2
Figure S34
Figure S44
Figure S55
Figure S66
Figure S77
Figure S87
Figure S9
Figure S10
Figure S119
Figure S129
Figure S1310
Figure S1411
Figure S1512
Figure S1612
Figure S1713
Figure S1813
Figure S1914
Figure S2014
Figure S21

N^{α} -benzyl-L-histidine (6)

Fig. S1: ¹H NMR (400 MHz, CDCl₃) of **6**

Fig. S2: Analytical HPLC trace, UV absorbance detected from 210-800 nm (RP-C18 4.6 x 250 mm, 5 μ m), of 6

Rhenium(I) tricarbonyl-N^α-benzyl-L-histidine (1)

Fig. S3: ¹H NMR (400 MHz, MeOH-d4) of 1

Fig. S4: Analytical HPLC trace, UV absorbance detected from 210-800 nm (RP-C18 4.6 x 250 mm, 5 μ m), of 1

Fig. S5: gCOSY spectrum (400 MHz, MeOH-d4) of 1

Fig. S6: ¹H NMR (400 MHz, CDCl₃) of 8

Chloroform-d -7.25 OC Re OC ĊŌ 2 N(Trt) 20 8 4 683 1.76 27.18 1.00 0.40 2.10 1.04 1.01 3.0 4.5 4.0 Chemical Shift (ppm) 7.0 6.5 2.0 1.5 1.0 8.5 8.0 7.5 6.0 5.5 5.0 4.0 3.5 0.5

Rhenium(I) tricarbonyl-N^α-benzyl-L-histidine(Trt) (2)

Fig. S7: ¹H NMR (400 MHz, MeOH-d4) of **2**

Fig. S8: Analytical HPLC trace, UV absorbance detected from 210-800 nm (RP-C18 4.6 x 250 mm, 5 μ m), of 2

 N^{α} -benzyl(methyl)-L-histidine (10)

Fig. S9: ¹H NMR (400 MHz, MeOH-d4) of 10

Fig. S10: Analytical HPLC trace, UV absorbance detected from 210-800 nm (RP-C18 4.6 x 250 mm, 5 μm), of 10

Fig. S11: ¹H NMR (400 MHz, MeOH-d4) of **3**

Fig. S12: Analytical HPLC trace, UV absorbance detected from 210-800 nm (RP-C18 4.6 x 250 mm, 5 μ m), of 3

Fig. S13: gCOSY spectrum (400 MHz, MeOH-d4) of 3

Fig. S14: NOESY spectrum (400 MHz, MeOH-d4) of 3

N-iodocarbonyl-O-methyl phenylalanine (11)

Fig. S15: ¹H NMR (400 MHz, MeOH-d4) of 11

Fig. S16: Analytical HPLC trace, UV absorbance detected from 210-800 nm (RP-C18 4.6 x 250 mm, 5 μ m), of 11

Fig. S17: ¹H NMR (400 MHz, MeOH-d4) of 12

Fig. S18: Analytical HPLC trace, UV absorbance detected from 210-800 nm (RP-C18 4.6 x 250 mm, 5 μm), of 12

Rhenium(I) tricarbonyl-N^a-histidinyl-acetyl-phenylalanine (4)

Fig. S19: ¹H NMR (600 MHz, DMF-d7) of **4**

Fig. S20: Analytical HPLC trace, UV absorbance detected from 210-800 nm (RP-C18 4.6 x 250 mm, 5 μ m), of 4

Fig. S21: gCOSY spectrum (600 MHz, DMF-d7) of 4