The aza-heterocyclic ligand assisted assembly of new cobalt MOFs with

pcu and graphite related structures

Debajit Sarma, Vishwas Srivastava and Srinivasan Natarajan^{a*}

Framework solids Laboratory, Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore-560012, India.

^a Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH),

San 31, Hyoja-Dong, Pohang 790-784, South Korea

ELECTRONIC SUPPLEMENTARY INFORMATION

^{*} Corresponding author: E-mail: <u>snatarajan@sscu.iisc.ernet.in</u>

Fig. S1. Powder X-rây diffraction pattern of cômpound-I

Fig. S2. Powder X-ray diffraction pattern of compound-II

Fig. S3. Powder X-ray diffraction pattern of compound-III

Fig. S4. Room temperature IR spectra of compound-I, compound-II and compound-III

Fig. S5. Figure shows the ORTEP diagram of compound-I.

Fig. S6. Figure shows the connectivity of NIPA(1) in compound-I.

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is O The Royal Society of Chemistry 2012

Fig. S7. Figure shows the connectivity of NIPA(2) in compound- I.

Fig. S8. Figure shows the connectivity of 1,2,4-triazolate in compound-I.

Fig. S9. Figure shows the connectivity of each Co₅ cluster to six other clusters in compound-I.

Fig. S10. Figure shows the ORTEP diagram of compound-II.

Fig. S11. Figure shows the connectivity of 3-amino-1,2,4-triazolate in compound-II.

Fig. S12. Figure shows the connectivity of NIPA in compound-II.

Fig. S13. Figure shows the connectivity of each Co₄ cluster to six other clusters in compound-II.

Fig. S14. Figure shows the ORTEP diagram of compound-III.

Fig. S15. Figure shows the connectivity of 3,5-diamino-1,2,4-triazolate in compound- III.

Fig. S16. Figure shows the connectivity of NIPA in compound-III.

Fig. S17. Figure shows the connectivity of each Co₄ cluster to eight other clusters in compound-III.

Fig. S18. Thermogravimetric analysis of the compound-II, compound-III.

Fig. S19. Figture shows the the PXRD pattern of v compound-I after the removal of the water

Fig. S20. Figture shows the the PXRD pattern of compound-III after the removal of the water

4000 3500 2000 2500 2000 1500 1000 500 Fig. S21: Room temperature IR spectra of the compound-I and the D2O exchanged sample of compound-I. The inset shows

the enlarged portion of the D₂O stretching region.

Fig. S22: Figure shows the change in colour during dehydration and rehydration in the bulk sample of compound I.

Fig. S23: Figure shows the UV- vis spectra of Na salt of NIPA.

Fig. S24: Figure shows the UV- vis spectra of 1,2,4 - triazole.

Fig. S25: UV-vis spectra of compound I (blue) and the dehydrated phase (red).

Fig. S26: UV-vis spectra of the dehydrated sample (compound-Ia) after exposure to the atmosphere for various times $(0, 2, \dots, 2)$

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is O The Royal Society of Chemistry 2012

Fig. S27. Figure shows the ORTEP diagram of compound-Ia.

Fig. S28. Figure shows the ORTEP diagram of compound-Ib.

Fig. S29. Figure shows field cooled and zero field cooled (H = 1000 Oe) magnetization of compound-I

Fig. S30. Figure shows M vs. H plot at 3.5 K for the compound-I

Fig. S31. Figure shows field cooled and zero field cooled (H = 1000 Oe) magnetization of compound-II

Fig. S32. Figure shows field cooled and zero field cooled (H = 1000 Oe) magnetization of compound-III

Fig. S33. Figure shows M vs. H plot at 3.5 K for the compound-II

Fig. S34. Figure shows M vs. H plot at 3.5 K for the compound- ${\bf III}$

Compound	I	п	Ш
$\gamma_{as}(O-H)$	~ 3580 & 3539	~ 3600	~ 3606 & 3573
$\gamma_{s}(N-H)$	-	~ 3285 & 3252	~ 3359, 3325 & 3272
$\gamma_s(C-H)_{aromatic}$	~ 3104 & 3064	~ 3117 & 3078	~ 3131 & 3078
$\gamma_{s}(C=O)$	~ 1619	~ 1613	~ 1626
δ _s (H ₂ O)	~ 1540	~ 1535	~ 1532
δ _s (COO)	~ 1458	~ 1445	~ 1452
$\gamma_s(N-O)$	~ 1338	~ 1345	~ 1345
$\gamma_s(C-C)_{skeletal}$	~ 1004	~ 1037	~ 997
$\delta (C - N)_{skeletal}$	~ 938	~ 930	~ 910
$\delta~(CH_{aromatic})_{out~of~plane}$	~ 730	~ 727	~ 717

Table S1. List of important IR – bands present in the compound-II, compound-III and compound-III.

D – H···· A	D – H, (Å)	H A, (Å)	D A, (Å)	D – H … A, (°)	
II					
O(1)-H(1a) •••O(8)#a	0.85(2)	2.54(2)	2.944(3)	110	
N(2)-H(2a) •••O(5)#b	0.86	2.28	3.011(2)	143	
	I	I		·	
O(3)-H(3A) ··· O(8)	0.84(5)	2.24(6)	2.914(7)	137	
N(4)-H(4A) ··· O(1)#a	0.86	2.56	3.186(5)	131	
N(4)-H(4A) ··· N(3)#b	0.86	2.56	3.085(6)	121	
N(4)-H(4B) ··· O(4)#c	0.86	2.45	3.249(5)	155	
N(4)-H(4B) ··· O(3)#b	0.86	2.55	3.125(5)	125	
N(5)-H(5A) ··· O(5)#d	0.86	2.40	3.125(6)	143	
N(5)-H(5B) N(1)	0.86	2.55	3.228(6)	136	
N(5)-H(5B) ··· O(1)#e	0.86	2.48	3.067(6)	126	
N(5)-H(5B) ··· N(5)#e	0.86	2.62	3.261(6)	132	
O(5)-H(51) ··· O(100)#f	0.95(6)	1.89(5)	2.745(11)	149	
O(5)-H(52) ··· N(2)#g	0.95(4)	2.29(8)	3.138(6)	149	

Table S2. Important H-bonding interactions observed in compound-III and compound-III.

Symmetry transformations used to generate equivalent atoms:

For **II**: #a -1+x,y,z; #a -1+x, ½-y, -1/2+z

For **III**: #a 2-x,1/2+y,1/2-z; #b 2-x,1-y,-z; #c 1+x,y,z; #d 1+x,1/2-y,1/2+z; #e 2-x,1-y,1-z; #f x,1/2-y,-1/2+z;

#g -1+x,1/2-y,-1/2+z

Angle	Amplitude (°)	Angle	Amplitude (°)	Angle	Amplitude (°)	
$[Co_5(H_2O)_4\{(NO_2)-C_6H_3-(COO)_2\}_4(C_2N_3H_2)_2]$. 2H ₂ O, compound- I						
N(2)#2-Co(1)-N(1)	180.000(1)	O(1)#2-Co(1)- O(1)	180.0	N(1)#2-Co(1)- O(2)#2	85.95(6)	
N(2)#2-Co(1)- O(1)#2	94.13(7)	N(1)#2-Co(1)- O(2)	94.05(6)	N(1)-Co(1)-O(2)#2	94.05(6)	
N(1)-Co(1)-O(1)#2	85.87(7)	N(1)-Co(1)-O(2)	85.95(6)	O(1)#2-Co(1)- O(2)#2	89.16(6)	
N(1)#2-Co(1)-O(1)	85.87(7)	O(1)#2-Co(1)- O(2)	90.84(6)	O(1)-Co(1)-O(2)#2	90.84(6)	
N(1)-Co(1)-O(1)	94.13(7)	O(1)-Co(1)-O(2)	89.16(6)	O(2)-Co(1)-O(2)#2	180.0	
O(3)#1-Co(2)-O(4)	97.38(7)	N(2)-Co(2)-O(2)	89.53(6)	O(3)#1-Co(2)-O(6)	99.62(6)	
O(3)#1-Co(2)-N(2)	96.21(7)	O(3)#1-Co(2)- O(5)	89.03(7)	O(4)-Co(2)-O(6)	159.96(6)	
O(4)-Co(2)-N(2)	96.19(7)	O(4)-Co(2)-O(5)	87.05(7)	N(2)-Co(2)-O(6)	92.45(6)	
O(3)#1-Co(2)-O(2)	157.26(6)	N(2)-Co(2)-O(5)	173.42(7)	O(2)-Co(2)-O(6)	58.05(5)	
O(4)-Co(2)-O(2)	103.87(6)	O(1)-Co(2)-O(5)	84.12(6)	O(5)-Co(2)-O(6)	82.72(6)	
O(7)#1-Co(3)- N(3)#3	92.64(7)	O(8)#4-Co(3)- O(6)	106.15(6)	O(7)#1-Co(3)- O(10)#4	85.50(6)	
O(7)#1-Co(3)- O(8)#4	143.68(6)	O(7)#1-Co(3)- O(9)	84.88(7)	N(3)#3-Co(3)- O(10)#4	88.49(7)	
N(3)#3-Co(3)- O(8)#4	98.19(7)	N(3)#3-Co(3)- O(9)	173.50(7)	O(8)#4-Co(3)- O(10)#4	60.42(6)	
O(7)#1-Co(3)-O(6)	108.45(6)	O(8)#4-Co(3)- O(9)	87.29(7)	O(6)-Co(3)- O(10)#4	166.01(6)	
N(3)#3-Co(3)-O(6)	89.83(6)	O(6)-Co(3)-O(9)	85.28(6)	O(9)-Co(3)- O(10)#4	97.29(6)	
$[Co_5{(NO_2)-C_6H_3-(COO)_2}_4(C_2N_3H_2)_2]$, compound- Ia						
O(2)-Co(1)-O(1)#1	99.7(4)	O(2)-Co(1)-N(1)	99.3(4)	O(1)#1-Co(1)-N(1)	102.3(5)	
O(2)-Co(1)-O(5)	144.0(4)	O(1)#1-Co(1)- O(5)	101.8(3)	N(1)-Co(1)-O(5)	103.8(4)	
O(2)-Co(1)-O(3)	94.7(3)	O(1)#1-Co(1)- O(3)	159.1(4)	N(1)-Co(1)-O(3)	90.1(4)	
O(5)-Co(1)-O(3)	58.5(3)	N(2)#2-Co(2)- N(2)	180.000(2)	N(2)#2-Co(2)- O(6)#2	93.4(4)	

Table S3. Selected bond angles for compound- I compound-II, compound-- III.

N(2)-Co(2)-O(6)#2	86.6(4)	N(2)#2-Co(2)- O(6)	86.6(4)	N(2)-Co(2)-O(6)	93.4(4)
O(6)#2-Co(2)-O(6)	180.000(1)	N(2)#2-Co(2)- O(3)	94.2(4)	N(2)-Co(2)-O(3)	85.8(4)
O(6)#2-Co(2)-O(3)	90.4(3)	O(6)-Co(2)-O(3)	89.6(3)	N(2)#2-Co(2)- O(3)#2	85.8(4)
N(2)-Co(2)-O(3)#2	94.2(4)	O(6)#2-Co(2)- O(3)#2	89.6(3)	O(6)-Co(2)-O(3)#2	90.4(3)
O(3)-Co(2)-O(3)#2	180.000(2)	O(7)#1-Co(3)- O(8)#3	134.8(4)	O(7)#1-Co(3)-O(5)	99.5(4)
O(8)#3-Co(3)-O(5)	113.1(3)	O(7)#1-Co(3)- N(3)#4	97.1(4)	O(8)#3-Co(3)- N(3)#4	109.7(4)
O(5)-Co(3)-N(3)#4	95.1(4)	O(7)#1-Co(3)- O(10)#3	85.0(4)	O(8)#3-Co(3)- O(10)#3	61.4(3)
O(5)-Co(3)- O(10)#3	174.5(4)	N(3)#4-Co(3)- O(10)#3	87.5(5)		
	[Co ₅ (H ₂ C	$D_{2}(NO_{2})-C_{6}H_{3}-(COO_{2})$	$D_{2}_{4}(C_{2}N_{3}H_{2})_{2}], \text{ contraction}$	mpound- Ib	
O(2)-Co(1)-O(1)#1	100.0(4)	O(2)-Co(1)-N(1)	101.0(4)	O(1)#1-Co(1)-N(1)	100.1(4)
O(5)-Co(1)-O(3)	58.3(3)	O(2)-Co(1)-O(5)	140.5(4)	O(1)#1-Co(1)-O(5)	104.7(3)
N(1)-Co(1)-O(5)	104.4(4)	O(2)-Co(1)-O(3)	92.5(3)	O(1)#1-Co(1)-O(3)	162.3(4)
N(1)-Co(1)-O(3)	89.6(4)	N(2)#2-Co(2)- N(2)	180.000(2)	N(2)#2-Co(2)-O(6)	87.4(4)
N(2)-Co(2)-O(6)	92.6(4)	N(2)#2-Co(2)- O(6)#2	92.6(4)	N(2)-Co(2)-O(6)#2	87.4(4)
O(6)-Co(2)-O(6)#2	180.00(10)	N(2)#2-Co(2)- O(3)	93.6(4)	N(2)-Co(2)-O(3)	86.4(4)
O(6)-Co(2)-O(3)	89.8(4)	O(6)#2-Co(2)- O(3)	90.2(4)	N(2)#2-Co(2)- O(3)#2	86.4(4)
N(2)-Co(2)-O(3)#2	93.6(4)	O(6)-Co(2)- O(3)#2	90.2(4)	O(6)#2-Co(2)- O(3)#2	89.8(4)
O(3)-Co(2)-O(3)#2	180.000(1)	O(7)#1-Co(3)- N(3)#3	93.9(4)	O(7)#1-Co(3)- O(8)#4	142.8(4)
N(3)#3-Co(3)- O(8)#4	104.2(4)	O(7)#1-Co(3)- O(5)	99.0(4)	N(3)#3-Co(3)-O(5)	91.9(4)
O(8)#4-Co(3)-O(5)	112.4(3)	O(7)#1-Co(3)- O(10)#4	87.9(4)	N(3)#3-Co(3)- O(10)#4	87.8(5)
O(8)#4-Co(3)- O(10)#4	61.1(3)	O(5)-Co(3)- O(10)#4	173.1(3)	O(7)#1-Co(3)-O(9)	80.1(7)
N(3)#3-Co(3)-O(9)	173.4(6)	O(8)#4-Co(3)- O(9)	82.4(6)	O(5)-Co(3)-O(9)	86.3(8)
O(10)#4-Co(3)- O(9)	94.7(8)				

$[Co_2(\mu_3-OH)(H_2O)\{(NO_2)-C_6H_3-(COO)_2\}(C_2N_4H_3)]$. H ₂ O, compound- II					
O(1)#1-Co(1)-N(1)	170.49(6)	O(1)-Co(1)-O(2)	173.00(9)	O(1)#1-Co(1)- N(2)#2	87.55(5)
O(1)#1-Co(1)-O(1)	81.60(5)	O(1)#1-Co(1)- O(3)	88.69(6)	N(1)-Co(1)-N(2)#2	92.23(6)
N(1)-Co(1)-O(1)	88.90(6)	N(1)-Co(1)-O(3)	91.93(6)	O(1)-Co(1)-N(2)#2	90.26(5)
O(1)#1-Co(1)-O(2)	91.61(9)	O(1)-Co(1)-O(3)	91.92(6)	O(2)-Co(1)-N(2)#2	91.16(7)
N(1)-Co(1)-O(2)	97.90(9)	O(2)-Co(1)-O(3)	86.20(8)	O(3)-Co(1)-N(2)#2	175.34(6)
O(1)-Co(2)-O(4)	113.85(6)	O(5)#3-Co(2)- N(3)#4	95.44(6)	O(1)-Co(2)-O(5)#3	130.58(6)
O(1)-Co(2)-N(4)	84.81(6)	O(4)-Co(2)- O(5)#3	114.16(7)	O(4)-Co(2)-N(4)	82.35(7)
O(1)-Co(2)-N(3)#4	95.22(6)	O(5)#3-Co(2)- N(4)	90.47(6)	O(4)-Co(2)-N(3)#4	90.46(7)
N(3)#4-Co(2)-N(4)	172.12(7)				
	[Co ₂ (µ ₃ -OH)(H	$L_{2}O)\{(NO_{2})-C_{6}H_{3}-(CC)\}$	$(C_2N_5H_5)]. H_2C_2(C_2N_5H_5)]$), compound- III	
O(1)#1-Co(1)-O(2)	151.67(17)	O(2)-Co(1)- N(1)#3	89.84(17)	O(2)-Co(1)-N(2)	86.90(17)
O(1)#1-Co(1)- O(3)#2	106.37(16)	O(3)#2-Co(1)- N(1)#3	91.28(15)	O(3)#2-Co(1)-N(2)	83.07(15)
O(2)-Co(1)-O(3)#2	101.30(15)	O(1)#1-Co(1)- N(2)	90.51(16)	N(1)#3-Co(1)-N(2)	172.79(17)
O(1)#1-Co(1)- N(1)#3	95.40(16)	O(3)#2-Co(2)- O(4)	98.40(15)	O(3)-Co(2)-N(4)#4	84.92(15)
O(3)-Co(2)-N(3)	170.17(17)	O(3)-Co(2)-O(5)	96.13(17)	N(3)-Co(2)-N(4)#4	91.67(17)
O(3)-Co(2)-O(3)#2	83.69(15)	N(3)-Co(2)-O(5)	93.10(18)	O(3)#2-Co(2)- N(4)#4	92.33(15)
N(3)-Co(2)-O(3)#2	87.25(15)	O(3)#2-Co(2)- O(5)	177.39(16)	O(4)-Co(2)-N(4)#4	166.89(16)
O(3)-Co(2)-O(4)	88.78(15)	O(4)-Co(2)-O(5)	78.99(17)	O(5)-Co(2)-N(4)#4	90.24(16)
N(3)-Co(2)-O(4)	96.33(16)				

Symmetry transformations used to generate equivalent atoms:

For compound-I: #1 -x,-y+1,-z+1; #2 -x+1,-y+1,-z+2; #3 -x+1,-y+1,-z+1; #4 -x+1,-y+2,-z+1

For compound-**Ia**: #1 -x,-y,-z+1; #2 -x+1,-y+1,-z+1; #3 -x,-y+1,-z; #4 -x,-y+1,-z+1

For compound-**Ib**: #1 -x,-y,-z+1; #2 -x+1,-y+1,-z+1; #3 -x,-y+1,-z+1; #4 -x,-y+1,-z

For compound-**II**: #1 -x+1,-y,-z; #2 x,-y+1/2,z-1/2; #3 x-1,y,z; #4 -x+1,y-1/2,-z+1/2

For compound-**III**: #1 x-1,y,z; #2 -x,-y,-z+1; #3 -x,y-1/2,-z+3/2; #4 x,-y+1/2,z-1/2