Supporting Information

Iron(III) Tetra(pentafluorophenyl)porpholactone Catalyzes Nitrogen Atom Transfer to C=C and C-H Bonds with Organic Azides

Lei Liang, Hongbin Lv, Yi Yu, Peng Wang, Jun-Long Zhang*

^aBeijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P.R. China email:zhangjunlong@pku.edu.cn

CONTENTS

1. General information	.1
2. Experimental procedure	.2
2.1 Typical procedures of [Fe(F ₂₀ TPPL)Cl] catalytic reactions	.2
2.2 Optimization of reaction condition for aziridination of styrene	.3
2.3 Control experiments and comparison of different catalysts	4
2.4 Calculation of TON by internal standard	6
2.5 Time-course for aziridination of styrene by [Fe(F ₂₀ TPPL)Cl] and [Fe(F ₂₀ TPP)Cl]	.7
3. Stability of [Fe(F ₂₀ TPPL)Cl] and [Fe(F ₂₀ TPP)Cl] toward oxidants	.8
4. Characterization of selected compounds	.9
5. 1H NMR spectra of all products	15
Reference	1

1. General Information

All reactions were performed under oxygen atmosphere in a flame-dried reaction flask. All solvents were distilled prior to use. Dichloromethane (DCM), 1,2-dichloroethane (DCE), acetonitrile, and Chlorobenzene were distilled over calcium hydride, THF and toluene were distilled over sodium. For chromatography, 200-300 mesh silica gel (Qindao, China) was employed. ¹H NMR spectra were recorded at 300 MHz with Varian Mercury 300 spectrometer. Chemical shifts are reported in ppm using tetramethylsilane as internal standard. FTIR spectra were obtained in the range of 4000–600 cm⁻¹ on a Nicolet Magna 750 FT/IR spectra were recorded with Bruker Apex IV FTMS spectrometer. UV-Vis spectra were recorded with Agilent 8453 UV-vis spectrometer. **Caution! Organic azides are potentially explosive and should be handled with great care.** N-Tosyliminophenyliodinane (PhINTs)¹, Organic azides², [Fe(F₂₀TPPL)CI], [Mn(F₂₀TPP)CI]³ were prepared by the literature methods.

Synthesis of [Fe(F₂₀-TPPL)Cl]: Preparation of $H_2F_{20}TPPL$ was according to Gouterman's method⁴ using gold salt to replace AgNO₃. [Fe(F₂₀TPPL)Cl] was obtained by refluxing the metal-free base with ferrous chloride in acetic acid. UV-vis: 412 nm, 558, 592, 603 and 628 nm. HRMS (ESI) m/z for C₄₃H₆F₂₀N₄O₂Fe (M⁺) calcd 1045.9516, found 1045.9525.

Synthesis of [Mn(F_{20} -TPPL)Cl]: [Mn(F_{20} TPPL)Cl] was obtained by refluxing the metal-free base with manganese(II) chloride in DMF. UV-vis: 368, 432, 479, 569 and 613nm. HRMS (ESI) m/z for C₄₃H₆F₂₀N₄O₂Mn (M⁺) calcd 1044.9546, found 1044.9529.

2. Experimental procedure

2.1 Typical procedures of [Fe(F₂₀TPPL)Cl] catalytic reactions

General procedure for aziridination of alkenes: 1,2-Dichloroethane (2 mL) was added to a mixture of alkene (0.60 mmol), azide (0.20 mmol), catalyst (0.001 mmol), and 4Å molecular sieves (120 mg). Then the reaction mixture was heated to 80° C under nitrogen atmosphere. After complete consumption of the azide as monitored by TLC, the mixture was concentrated under reduced pressure and the residue was purified by flash column chromatography (PE: EA = 10:1).

General procedure for aziridination of Fullerene: 1,2-Dichloroethane (2 mL) was added to a mixture of Fullerene (0.20 mmol), azide (0.20 mmol), catalyst (0.001 mmol), and 4Å molecular sieves (120 mg). Then the reaction mixture was heated to 80° C under nitrogen atmosphere. After complete consumption of the azide as monitored by TLC, the mixture was concentrated under reduced pressure and the residue was purified by flash column chromatography (Toluene: Petroleum ether = 1:1) to get *N*-tosyl[1,2]aziridino[60]fullerene.

General procedure for aziridination of alkanes and thioanisole: 1,2-Dichloroethane (2 mL) was added to a mixture of alkane/thioanisole (1.00 mmol), azide (0.20 mmol), catalyst (0.001 mmol), and 4Å molecular sieves (120 mg). Then the reaction mixture was heated to 80° C under nitrogen atmosphere. After complete consumption of the azide as monitored by TLC, the mixture was concentrated under reduced pressure and the residue was purified by flash column chromatography (PE: EA = 10:1).

2.2 Optimization of reaction condition for aziridination of styrene

Entry	Cat	mol(%)	solvent ^b	T (°C)	Time(h)	Yield
						(70)
1	Fe(F ₂₀ -TPPL)Cl	0.5	DCE	80	12	87
2	Fe(F ₂₀ -TPPL)Cl	1	DCE	80	12	88
3	Fe(F ₂₀ -TPPL)Cl	0.5	DCE	80	24	84
4	Fe(F ₂₀ -TPPL)Cl	0.5	DCE	80	6	50
5	Fe(F ₂₀ -TPPL)Cl	0.5	DCM	40	12	23
6	Fe(F ₂₀ -TPPL)Cl	0.5	CH ₃ CN	60	12	33
7	Fe(F ₂₀ -TPPL)Cl	0.5	Toluene	100	12	36
8	Fe(F ₂₀ -TPPL)Cl	0.5	C ₆ H ₅ Cl	100	12	43
9	Fe(F ₂₀ -TPPL)Cl	0.5	DCE	30	12	15
10	Fe(F ₂₀ -TPPL)Cl	0.5	DCE	60	12	50

Table S1. Optimization and typical procedure for aziridination of styrene^a

^a Performed under N_2 in the presence of 4Å molecule sieves: [styrene] =2.0 mmol/2 mL; styrene/azide = 3:1. ^b DCE = 1,2-dichloroethane, DCM = dichloromethane. ^c isolated yields.

2.3 Control experiments and comparison of different catalysts

Entry	Substrate	Azide	Catalyst	Τ/	Light	Yield(%) ^b
1		$ \sim$ \sim \sim \sim \sim \sim \sim \sim \sim \sim	/	80	\checkmark	30
2		- - - - - - - - - -	FeCl ₃	80	\checkmark	56
3		- - - - - - - - - -	Fe(F ₂₀ TPPL)Cl	20	\checkmark	14
4		- - - - - - - - - -	Fe(F ₂₀ TPPL)Cl	80	\checkmark	87
5		- - - - - - - - - -	Fe(F ₂₀ TPPL)Cl	80	In darkness	86

Table S2. Control Experiments of aziridination of styrene^a

^a Performed under N_2 in the presence of 4Å molecule sieves: [styrene] =1.0 mmol/mL; styrene/azide = 3:1 in DCE. ^b isolated yields.

Entry	Substrate	Azide	Catalyst	Τ/	Light	Yield(%) ^b
1		0 ₂ N	/	80	\checkmark	0
2		0 ₂ N	FeCl ₃	80	\checkmark	0
3		O ₂ N	Fe(F ₂₀ TPPL)Cl	20	\checkmark	0
4		0 ₂ N	Fe(F ₂₀ TPPL)Cl	80	\checkmark	88
5		0 ₂ N	Fe(F ₂₀ TPPL)Cl	80	In darkness	85

Table S3. Control experiments of amidation of ethylbenzene^a

^a Performed under N_2 in the presence of 4Å molecule sieves: [styrene] =1.0 mmol/mL; alkane/azide = 5:1 in DCE. ^b isolated yields.

Table S4. Comparison of catalytic activity of $[Fe(F_{20}TPPL)Cl]$, $[Fe(F_{20}TPP)Cl]$ and $[Fe(F_{15}TPC)]$ towards N atom transfer to C=C and C-H bonds.^{*a*}

Entry	Substrate	Azide	Catalyst ^a	Τ/	Time/h	$\text{Yield}(\%)^b$
1 ^c		$ \sim$ $ \stackrel{O}{=}$ $ N_3$ $\stackrel{O}{=}$ N_3	Fe(F ₂₀ -TPPL)Cl	80	12	88
2 ^{<i>c</i>}		$-\!$	Fe(F ₂₀ -TPP)Cl	80	12	76
3 ^c		$-\!$	Fe(F ₁₅ -TPC)	80	12	59
4 ^{<i>c</i>}		- - - - - - - - - -	Mn(F ₂₀ -TPPL)Cl	80	12	53
5 ^{<i>d</i>}	ci-	- - - - - - - - - -	Fe(F ₂₀ -TPPL)Cl	80	12	80
6 ^{<i>d</i>}	ci-	$-\!$	Fe(F ₂₀ -TPP)Cl	80	12	39
7^d	CI	$-\!$	Fe(F ₁₅ -TPC)	80	12	<10
8^d		O ₂ N-V-N ₃	Fe(F ₂₀ -TPPL)Cl	80	12	88
9 ^d		O ₂ N-V-N ₃	Fe(F ₂₀ -TPP)Cl	80	12	46
10^d		O ₂ N	Fe(F ₁₅ -TPC)	80	12	65

^a Performed in DCE (1,2-dichloroethane) under N₂ in the presence of 4Å molecule sieves: [substrate] = 2.0 mmol/2 mL; alkene/azide = 3:1, alkane/azide = 5:1. ^b isolated yields. ^c 1 mol% catalyst based on azide was used. ^d 0.5 mol% catalyst was added.

2.4 Calculation of TON by external standard

Procedure: 1,2-Dichloroethane (2 mL) was added to a mixture of *p*-chlorostyrene (2.34 mmol), azide (0.47 mmol), catalyst (0.0022 mmol), and 4Å molecular sieves (120 mg). The reaction mixture was heated to 80°C under nitrogen atmosphere. After complete consumption of the azide as monitored by TLC, the mixture was concentrated under reduced pressure. 23.8mg 4-cyanopyridine (0.229mmol) as external standard was added. This reaction mixture dissolved in 2 ml CDCl₃ and then filtered MS. The integration (I) of protons of aziridines (a, b, and c) and protons of 4-cyanopyridine in this ¹HNMR of CDCl₃ was used to calculated TON.

TON= $[2 \times (I_{aziridine (3,75 ppm)} / I_{4-cyanopyridine (8.81 ppm)}) \times M_{4-cyanopyridine}]/[cat.]$

 $= [2 \times (1.02/1.00) \times 0.229]/0.0022$

 ≈ 200

shown as following:

n

After 12h, 4-cyanopyridine is added to the filtrate as internal reference. ¹HNMR spectrum is

2.5 Time–course for aziridination of styrene by $[Fe(F_{20}TPPL)Cl]$ and $[Fe(F_{20}TPP)Cl]$

Procedure: 1,2-Dichloroethane (2 mL) was added to a mixture of *p*-chlorostyrene (5 mmol), azide (2 mmol), catalyst (0.005 mmol), and 4Å molecular sieves (120 mg). The reaction mixture was heated to 80° C under nitrogen atmosphere. 0.2 ml of the reaction solution was taken out every 2 hours and then concentrated under reduced pressure. 4-cyanopyridine was used as external standard. The integration (I) of protons of aziridines (a, b, and c) and protons of 4-cyanopyridine in this ¹HNMR of CDCl₃ was used to calculated TON.

Figure S1 Time-course for aziridination of styrene by [Fe(F₂₀TPPL)Cl] and [Fe(F₂₀TPP)Cl]

3. Stability of [Fe(F₂₀TPPL)Cl] and [Fe(F₂₀TPP)Cl] toward oxidants

Procedure:

In 2ml CH₂Cl₂ solution of [Fe(F₂₀TPPL)Cl] or [Fe(F₂₀TPP)Cl] (1~5×10⁻⁵M) was added 100 equiv.

oxidant. After 4h, $Na_2S_2O_6$ was added to quench the excess oxidants or active species. The solution was diluted 5 times for UV-vis spectra and compared with the initial UV-vis spectra.

Entry	Oxidant	Decomposed	Decomposed	
Entry	Oniduite	[Fe(F ₂₀ TPPL)Cl] %	[Fe(F ₂₀ TPP)Cl] %	
1	H_2O_2	46	16	
2	NaClO	80	25	
3	Oxone®	76	24	
4	TBHP	25	15	
5	<i>m</i> -CPBA	100	35	
6	PhIO	90	22	
7	PhINTs	84	20	

4. Characterization of selected compounds

N-methylsulfonyl-2-phenylaziridine (Table 1, entry 2)⁵

¹H NMR (300 MHz, CDCl₃) δ 7.27-7.37 (m, 5H), 3.70 (dd, 1H), 3.07 (s, 3H), 2.94 (d, *J* = 7.2 Hz, 1H), 2.42 (d, *J* = 4.5 Hz, 1H). HRMS (ESI) m/z for C₉H₁₂NO₂S(M+H⁺) calcd 198.0583, found 198.0581.

N-(p-Tolylsulfonyl)-2-phenylaziridine (Table 2, entry 1)⁵

¹H NMR (300 MHz, CDCl₃) δ 7.87 (d, J = 8.4 Hz, 2H), 7.33 (d, J = 8.1 Hz, 2H), 7.27-7.30 (m, 3H), 7.20-7.24 (m, 2H), 3.78 (dd, 1H), 2.99 (d, J = 7.2 Hz, 1H), 2.44 (s, 3H), 2.39 (d, J = 4.5 Hz, 1H). ¹³C NMR (300MHz, CDCl₃) δ 21.71, 36.00, 41.09, 126.62, 127.99, 128.36, 128.62, 129.83, 135.02, 135.09, 144.72. HRMS (ESI) m/z for C₁₅H₁₆NO₂S(M+H⁺) calcd 274.0896, found 274.0895. m.p 90 °C.

N-(p-Tolylsulfonyl)-2-(p-methylphenyl)aziridine (Table 2, entry 2)⁵

¹H NMR (300 MHz, CDCl₃) δ 7.86 (d, J = 8.4 Hz, 2H), 7.33 (d, J = 7.8 Hz, 2H), 7.10 (s, 4H), 3.74 (dd, 1H), 2.97 (d, J = 7.2 Hz, 1H), 2.43 (s, 3H), 2.38 (d, J = 4.5 Hz, 1H), 2.31 (s, 3H). HRMS (ESI) m/z for C₁₆H₁₈NO₂S(M+H⁺) calcd 288.1053, found 288.1050.

N-(p-Tolylsulfonyl)-2-(p-tert-butylphenyl)aziridine (Table 2, entry 3)⁶

¹H NMR (300 MHz, CDCl₃) δ 7.88 (d, J = 8.1 Hz, 2H), 7.31-7.35 (m, 4H), 7.16 (d, J = 8.4 Hz, 2H), 3.78 (dd, 1H), 2.97 (d, J = 7.2 Hz, 1H), 2.43 (s, 3H), 2.39 (d, J = 4.5 Hz, 1H), 1.29 (s, 9H). HRMS (ESI) m/z for C₁₉H₂₄NO₂S(M+H⁺) calcd 330.1522, found 330.1520.

N-(p-Tolylsulfonyl)-2-(p-fluorophenyl)aziridine (Table 2, entry 4)⁷

¹H NMR (300 MHz, CDCl₃) δ 7.86 (d, J = 8.4 Hz, 2H), 7.34 (d, J = 7.8 Hz, 2H), 7.17-7.21 (m, 2H), 6.95-7.01 (m, 2H), 3.76 (dd, 1H), 2.97 (d, J = 7.2 Hz, 1H), 2.44 (s, 3H), 2.35 (d, J = 4.5 Hz,

1H). HRMS (ESI) m/z for C₁₅H₁₅FNO₂S(M+H⁺) calcd 292.0802, found 292.0801. m.p 98 °C.

N-(p-Tolylsulfonyl)-2-(p-chlorophenyl)aziridine (Table 2, entry 5)⁵

¹H NMR (300 MHz, CDCl₃) δ 7.86 (d, J = 8.4 Hz, 2H), 7.34 (d, J = 8.1 Hz, 2H), 7.25-7.28 (m, 2H), 7.14-7.17 (m, 2H), 3.74 (dd, 1H), 2.98 (d, J = 7.2 Hz, 1H), 2.44 (s, 3H), 2.35 (d, J = 4.5 Hz, 1H). ¹³C NMR (300MHz, CDCl₃) δ 21.71, 36.10, 40.30, 127.98, 128.80, 129.88, 133.70, 134.20, 134.81, 144.88. HRMS (ESI) m/z for C₁₅H₁₅ClNO₂S(M+H⁺) calcd 308.0506, found 308.0503. m.p 122 °C.

N-(p-Tolylsulfonyl)-2-(p-bromophenyl)aziridine (Table 2, entry 6)⁸

¹H NMR (300 MHz, CDCl₃) δ 7.86 (d, *J* = 8.4 Hz, 2H), 7.42 (d, *J* = 8.4 Hz, 2H), 7.34 (d, *J* = 7.8 Hz, 2H), 7.09 (d, *J* = 8.4 Hz, 2H), 3.72 (dd, 1H), 2.98 (d, *J* = 6.9 Hz, 1H), 2.44 (s, 3H), 2.34 (d, *J* = 4.2 Hz, 1H). ¹³C NMR (300MHz, CDCl₃) δ 21.70, 36.04, 40.32, 122.30, 127.95, 128.27, 129.86, 131.70, 134.21, 134.75, 144.86. HRMS (ESI) m/z for C₁₅H₁₅BrNO₂S(M+H⁺) calcd 352.0001, found 352.0008. m.p 136 °C.

2,4-bis(4-methoxyphenyl)-1-tosylpyrrolidine (Table 2, entry 7)

¹H NMR (300 MHz, CDCl₃) δ 7.62 (d, *J* = 8.1 Hz, 2H), 7.26-7.29 (m, 4H), 7.04 (d, *J* = 8.4 Hz, 2H), 6.80-6.86 (m, 4H), 4.73 (dd, 1H), 4.10 (m, 1H), 3.81(s, 3H), 3.77 (s, 3H), 3.45 (t, 1H), 2.82-2.92 (m, 1H), 2.56-2.64 (m, 1H), 2.43 (s, 3H), 1.97-2.05 (m, 1H). ¹³C NMR (400MHz, CDCl₃) δ 21.67, 21.70, 40.88, 42.96, 44.68, 55.40, 55.44, 56.10, 62.69, 64.20, 76.84, 77.16, 77.36, 77.48, 113.91, 113.98, 114.14, 114.19, 127.15, 127.39, 127.56, 127.74, 127.82, 128.08, 128.10, 129.54, 129.67, 129.77, 130.79, 131.29, 131.72, 134.69, 134.93, 135.21, 136.01, 143.35, 143.56, 158.71, 158.77, 158.87, 159.02. HRMS (ESI) m/z for C₂₅H₂₈NO₄S(M+H⁺) calcd 438.1734, found 438.1732.

N-(p-Tolylsulfonyl)-2-(3,5-dimethoxyphenyl)aziridine (Table 2, entry 8)

¹H NMR (300 MHz, CDCl₃) δ 7.87 (d, J = 8.4 Hz, 2H), 7.33 (d, J = 7.8 Hz, 2H), 6.35 (s, 3H),

3.72 (s, 6H), 3.67 (dd,1H), 2.96 (d, J = 7.2 Hz, 1H), 2.42 (s, 3H), 2.37 (d, J = 4.5 Hz, 1H). MS (ESI) m/z 334 (M+H⁺); HRMS (ESI) m/z for C₁₇H₂₀NO₄S(M+H⁺) calcd 334.1108, found 334.1102.

N-(*p*-Tolylsulfonyl)-2-(*m*-methoxyphenyl)aziridine (Table 2, entry 9)

¹H NMR (300 MHz, CDCl₃) δ 7.88 (d, J = 8.4 Hz, 2H), 7.34-7.35 (d, J = 8.4 Hz, 2H), 7.20 (t, 1H), 6.81-6.83 (m, 2H), 6.72 (m, 1H), 3.75 (s, 3H), 3.72 (dd, 1H), 2.97(d, J = 6.0 Hz, 1H), 2.43(s, 3H), 2.36-2.40 (d, J = 4.2 Hz, 1H). HRMS (ESI) m/z for C₁₆H₁₈NO₃S(M+H⁺) calcd 304.1002, found 304.0997.

N-(p-Tolylsulfonyl)-2-(naphthalen-2-yl)aziridine (Table 2, entry 10)⁹

¹H NMR (300 MHz, CDCl₃) δ 7.90 (d, J = 8.1 Hz, 2H), 7.73-7.81 (m, 4H), 7.45-7.48 (m, 2H), 7.26-7.34 (m, 3H), 3.93 (dd, 1H), 3.07 (d, J = 7.2 Hz, 1H), 2.50 (d, J = 4.5 Hz, 1H), 2.42 (s, 3H). HRMS (ESI) m/z for C₁₉H₁₈NO₂S(M+H⁺) calcd 324.1053, found 324.1052.

2-benzyl-1-tosylaziridine (Table 2, entry 11)¹⁰

¹H NMR (300 MHz, CDCl₃) δ 7.68 (d, J = 8.1 Hz, 2H), 7.14-7.22 (m, 5H), 7.02-7.05 (m, 2H), 2.90-2.98 (m, 1H), 2.81 (dd, 1H), 2.64-2.72 (m, 2H), 2.42 (s, 3H), 2.16 (d, J = 4.5 Hz, 1H). HRMS (ESI) m/z for C₁₆H₁₈NO₂S(M+H⁺) calcd 288.1053, found 288.1054.

4-methyl-N-(2-phenylallyl)benzenesulfonamide (Table 2, entry 12)¹¹

¹H NMR (300 MHz, CDCl₃) δ 7.71 (d, J = 8.4 Hz, 2H), 7.21-7.29 (m, 7H), 5.36 (s, 1H), 5.20 (s, 1H), 4.71(t, 1H), 3.98 (d, J = 6.3 Hz, 2H), 2.43 (s, 3H). HRMS (ESI) m/z for C₁₆H₁₈NO₂S(M+H⁺) calcd 288.1053, found 288.1050.

1-tosyl-1a,2,3,7b-tetrahydro-1H-naphtho[1,2-b]azirine (Table 2, entry 13)⁶

¹H NMR (300 MHz, CDCl₃) δ 7.80-8.09 (m, 3H), 7.29-7.44 (m, 3H), 7.04-7.24 (m, 2H), 3.41 (m,

2H), 2.90 (t, 2H), 2.45 (s, 3H), 2.07 (m, 2H). HRMS (ESI) m/z for $C_{17}H_{18}NO_2S(M+H^+)$ calcd 300.1053, found 300.1049.

N-tosyl[1,2]aziridino[60]fullerene¹²

¹H NMR (400 MHz, CDCl₃/CS₂) δ 8.22 (d, *J* = 8.4 Hz, 2H), 7.52 (d, *J* = 8.0 Hz, 2H), 2.56 (s, 3H). ¹³C NMR (400MHz, CDCl₃/CS₂) δ 21.91, 79.84, 128.56, 130.18, 135.61, 140.92, 141.39, 141.88, 142.18, 142.80, 143.11, 143.16, 143.26, 143.91, 143.98, 144.18, 144.53, 145.02, 145.08, 145.16, 145.33, 145.66. MS (MALDI) *m/z* 889 (M⁺).

4-nitro-N-(1-phenylethyl)aniline (Table 3, entry 1)¹³

¹H NMR (300 MHz, CDCl₃) δ 8.00 (d, *J* = 9.1 Hz, 2H), 7.31 (m, 4H), 6.46 (d, *J* = 9.1 Hz, 2H), 4.89 (br, 1H), 4.60 (m, 1H), 1.65 (m, 3H). HRMS (ESI) m/z for C₁₄H₁₅N₂O₂(M+H⁺) calcd 243.1128, found 243.1124.

1,2,3,4-tetrahydro-N-(4-nitrophenyl)-1-naphthalenamine (Table 3, entry 2)¹⁴

¹H NMR (300 MHz, CDCl₃) δ 8.10 (d, J = 9.1 Hz, 2H), 7.20 (m, 4H), 6.60 (d, J = 9.1 Hz, 2H), 4.74 (m, 1H), 2.85 (m, 2H), 2.06 (m, 2H), 1.85 (m, 2H). HRMS (ESI) m/z for C₁₆H₁₆N₂NaO₂ (M+Na⁺) calcd 291.1104, found 291.1101.

N-benzhydryl-4-nitrobenzenamine (Table 3, entry 3)¹⁴

¹H NMR (300 MHz, CDCl₃) δ 8.01 (d, J = 8.3 Hz, 2H), 7.32 (m, 10H), 6.50 (d, J = 8.3 Hz, 2H), 5.63 (s, 1H), 5.02 (s, 1H). HRMS (ESI) m/z for C₁₉H₁₆N₂NaO₂(M+Na⁺) calcd 327.1104, found 327.1102.

N-(4-nitrophenyl)-9H-fluoren-9-amine (Table 3, entry 4)¹⁴

¹H NMR (400 MHz, CDCl₃) δ 8.07 (d, *J* = 8.0 Hz, 2H), 7.74 (d, *J* = 7.1 Hz, 2H), 7.54 (d, *J* = 7.1 Hz, 2H), 7.45 (m, 2H), 7.30 (m, 2H), 6.68 (d, *J* = 8.0 Hz, 2H), 5.72 (s, 1H), 4.97 (br s, 1H). MS (ESI) *m/z* 303 (M+ H⁺).

4-nitro-N-(2-phenylcyclohex-2-enyl)aniline (Table 3, entry 5)

¹H NMR (300 MHz, CDCl₃) δ 8.09 (d, J = 9.3 Hz, 2H), 7.29-7.37 (m, 5H), 6.55 (d, J = 9.3 Hz, 2H), 6.41 (m, 1H), 4.59 (m, 2H), 2.32 (m, 2H), 1.75 (m, 3H). HRMS (ESI) m/z for C₁₈H₁₉N₂O₂(M+H⁺) calcd 295.1441, found 295.1436.

4-nitro-N-(3-phenylcyclohex-2-enyl)aniline (Table 3, entry 5)

¹H NMR (300 MHz, CDCl₃) δ 8.10 (d, J = 9.3 Hz, 2H), 7.28-7.42 (m, 5H), 6.58 (d, J = 9.3 Hz, 2H), 6.06 (m, 1H), 4.59 (m, 1H), 4.30 (m, 1H), 2.51 (m, 2H), 1.73-2.04 (m, 3H). HRMS (ESI) m/z for C₁₈H₁₉N₂O₂(M+H⁺) calcd 295.1441, found 295.1436.

N-(4-nitrophenyl)cycloheptanamine (Table 3, entry 6)¹⁴

¹H NMR (400 MHz, CDCl₃) δ 8.07 (d, J = 9.2 Hz, 2H), 6.45 (d, J = 9.2 Hz, 2H), 3.55 (m, 1H), 2.05 (m, 2H), 1.72-1.40 (m, 10H). HRMS (ESI) m/z for C₁₃H₁₉N₂O₂(M+H⁺) calcd 235.1441, found 235.1438.

N-(4-nitrophenyl)cyclooctanamine (Table 3, entry 7)¹⁴

¹H NMR (400 MHz, CDCl₃) δ 8.07 (d, J = 9.2 Hz, 2H), 6.45 (d, J = 9.2 Hz, 2H), 4.45 (br s, 1H), 3.59 (m, 1H), 1.92 (m, 2H), 1.75 (m, 2H), 1.66-1.40 (m, 10H). HRMS (ESI) m/z for C₁₄H₂₁N₂O₂(M+H⁺) calcd 249.1598, found 249.1592.

N-(4-nitrophenyl)-1-Adamantanamine (Table 3, entry 8)¹⁴

NO₂

¹H NMR (300 MHz, CDCl3) δ 8.05 (d, J = 9.2 Hz, 2H), 6.63 (d, J = 9.2 Hz, 2H), 2.17 (br s, 3H), 2.00 (br s, 6H), 1.73 (m, 6H). ¹³C NMR (100 MHz, CDCl3) δ 126.11, 111.45, 42.39, 36.26, 29.54. HRMS (ESI) m/z for C₁₆H₂₀N₂NaO₂(M+Na⁺) calcd 295.1417, found 295.1412.

N-(4-nitrophenyl)decahydronaphthalen-4a-amine (Table 3, entry 9)

¹H NMR (300 MHz, CDCl₃) δ 8.02 (d, *J* = 9.3 Hz, 2H), 6.63 (d, *J* = 9.3 Hz, 2H), 4.50 (s, 1H), 1.32-2.04 (m, 17 H). ¹³C NMR (400MHz, CDCl₃) δ 22.30, 27.66, 40.15, 57.28, 113.27, 126.24, 137.22, 152.43. MS (ESI) *m*/*z* 275 (M+H⁺); HRMS (ESI) m/*z* for C₁₆H₂₃N₂O₂(M+H⁺) calcd 275.1754, found 275.1754.

4-methyl-N-(methylphenyl-λ4-sulfanylidene)-benzenesulfonamide (Table 3, entry 10)¹⁵

¹H NMR (300 MHz, CDCl₃) δ 7.68-7.75 (m, 4H), 7.49-7.55 (m, 3H), 7.17 (d, *J* = 7.8 Hz, 2H), 2.84 (s, 3H), 2.35 (s, 3H). ¹³C NMR (300MHz, CDCl₃) δ 21.44, 39.12, 125.86, 126.29, 129.29, 130.03, 132.48, 136.06, 141.27, 141.78. HRMS (ESI) m/z for C₁₄H₁₆NO₂S₂(M+H⁺) calcd 294.0617, found 294.0616. m.p 124 °C.

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is O The Royal Society of Chemistry 2011

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is C The Royal Society of Chemistry 2011

References

- 1. Y. Yamamada, T. Yamamoto and M. Okawara, Chem. Lett. 1975, 361
- (a) Regitz, M.; Hocker, J.; Liedhegener, A. Org. Synth. 1973, 48, 36. (b) T. Liang, J. Am. Chem. Soc. 1987, 109, 7803.
- (a) S. I. Murahashi, T. Naota, N. Komiya. *Tetrahedron lett.* 1995, *36*, 8059. (b) J. T. Groves, M. Bonchio, T. Carofiglio and K. Shalyaev. *J. Am. Chem. Soc.* 1996, *118*, 8961.
- 4. M. Gouterman, R. J. Hall, G. E. Khalil, P. C. Martin, E. G. Shankland and R. L. Cerny, *J. Am. Chem. Soc.*, **1989**, *111*, 3702
- 5. T. Ando, D. Kano, S. Minakata, I. Ryu and M. Komatsu, Tetrahedron 1998, 54, 13485.
- 6. R. Vyas, G. Y. Gao, J. D. Harden, and X. P. Zhang, Org. Lett. 2004, 6, 1907.
- S. M. Au, J. S. Huang, W. Y. Yu, W. H. Fung, and C. M. Che, J. Am. Chem. Soc. 1999, 121, 9120.
- 8. J. L. Zhang and C. M. Che, Org. Lett. 2002, 4, 1911.
- 9. J. L. Liang, J. S. Huang, X. Q. Yu, N. Y. Zhu and C. M. Che, Chem. Eur. J. 2002, 8, 1563.
- 10. A. A. Cantrill, H. M. I. Osborn, J. Sweeney, Tetrahedron 1998, 54, 2181.
- 11. Kazufumi Omura, Masakazu Murakami, Tatsuya Uchida, Ryo Irie and Tsutomu Katsuki, *Chem. Lett.* 2003, 32, 354.
- 12. M. Nambo, Y. Segawa, and K. Itami, J. Am. Chem. Soc., 2011, 133, 2402.
- 13. F. Ragaini, A. Penoni, E. Gallo, S. Tollari, C. L. Gotti, M. Lapadula, E. Mangioni and S. Cenini, *Chem. Eur. J.* 2003, *9*, 249.
- 14. Y. G Liu and C. M. Che, Chem. Eur. J. 2010, 16, 10494.
- 15. M. L. Kantam, B. Kavita, V. Neeraja, Y. Haritha, M.K. Chaudhuri and S.K. Dehury, *Adv. Synth. Catal.* **2005**, *347*, 641.