Supporting Information

CAU-3: A new family of porous MOFs with a novel Al-based brick: [Al₂(OCH₃)₄(O₂C-X-CO₂)] (X=aryl)

Helge Reinsch, Mark Feyand, Tim Ahnfeldt and Norbert Stock

Institute of Inorganic Chemistry, Christian-Albrechts-Universität, Max-Eyth-Straße 2, 24118 Kiel, Germany

Figure S1: Powder pattern of an "as"-sample of CAU-3-BDC (black), and a sample after activation procedure and sorption measurement (red).

Figure S2: Powder pattern of an "as"-sample of CAU-3-BDC-NH₂ (black), and a sample after activation procedure and sorption measurement (red).

Figure S3: Powder pattern of an "as"-sample of CAU-3-NDC (black), and a sample after activation procedure and sorption measurement (red).

Figure S4: Asymmetric unit of CAU-3-BDC with numbering scheme.

Atom 1	Atom 2	d / Å	C2	C3	1.39(1)
Al1	01	1.96(1)	02	C4	1.23(1)
	O2	1.98(2)	C5	C6	1.37(1)
	03	1.92(1)	03	C7	1.47(3)
	O4	1.83(1)	04	C8	1.46(2)
	05	1.89(2)	05	C9	1.51(3)
01	C1	1.22(2)	C9	05	1.51(3)
C1	C2	1.54(1)			1101(0)

Table S1: Selected bond lengths in CAU-3-BDC [Å].

Figure S5: Final Rietveld plot of the refinement of CAU-3-BDC-NH₂. The observed intensities are shown in black, the calculated intensities are shown in red. The difference curve is shown below in blue, vertical bars mark the Bragg positions. The insert shows a plot enlargement from $35 - 75 \ ^{\circ}2\theta$.

Table S2: Selected bond lengths in CAU-3-BDC-NH ₂ [Å	.],
---	-------------

Atom 1	Atom 2	d / Å
Al1	01	1.99(2)
	O2	1.80(2)
	03	1.74(2)
	O4	1.87(3)
	05	1.99(4)
01	C1	1.23(5)
C1	C2	1.60 (2)
C2	C3	1.38 (6)

C3	C3	1.39(3)
02	C4	1.39(5)
C4	O2	1.39(3)
	C5	1.53(9)
C5	C6	1.33(5)
N1	C3	1.5 (1)
N2	C6	1.5(1)

Symbol	x/a	y/b	z/c	C23	0.34838	0.16804	0.4
Fe1	0.25217	0.05104	0.51501	O24	0.18921	0.08691	0.5
O2	0.27995	0.07593	0.55811	C25	0.15431	0.07905	0.5
O3	0.32005	0.02894	0.51211	C26	0.31919	0.97871	0.4
O4	0.21924	0.01434	0.47145	H27	0.31796	0.05445	
C5	0.26741	0.0306	0.44692	H28	0.26201	0.06152	0.4
C6	0.24497	0.90175	0.2889	H29	0.26215	0.9876	0.4
C7	0.24115	0.91213	0.32179	H30	0.28504	0.94023	0.2
C8	0.19049	0.86321	0.34061	H31	0.27804	0.9583	0.3
C9	0.14677	0.7935	0.29296	H32	0.11043	0.7473	0.2
C10	0.19805	0.84234	0.27414	H33	0.10738	0.20825	0.5
Fe11	0.0794	0.26015	0.48371	H34	0.03412	0.14329	0.5
O12	0.11136	0.28559	0.44055	H35	0.04152	0.18272	0.5
013	0.06741	0.33477	0.4861	H36	0.54135	0.665	0.4
014	0.04232	0.23563	0.52706	H37	0.43518	0.56247	0.4
C15	0.05494	0.18882	0.54084	H38	0.63177	0.55735	0.5
C16	0.5384	0.61932	0.48658	H39	0.31608	0.15723	0.4
C17	0.47766	0.56072	0.48441	H40	0.3848	0.15121	0.4
C18	0.47197	0.50052	0.49396	H41	0.3791	0.22248	0.4
C19	0.58885	0.55858	0.50829	H42	0.1003	0.04938	0.5
C20	0.59464	0.61894	0.49844	H43	0.16228	0.12602	0.5
C21	0.29241	0.12878	0.57297	H44	0.16881	0.05767	0.5
O22	0.31378	0.14379	0.50389				

Table S3: Atomic coordinates of CAU-3-NDC obtained from the force field calculations using Materials Studio 5.0.

Figure S6: Calculated and observed powder pattern obtained from force field calculation.

Figure S7: Final Rietveld plot of CAU-3-NDC. The asterisks correspond to NaCl as a byproduct. The observed intensities are shown in black, the calculated intensities are shown in red. The difference curve is shown below in blue, vertical bars mark the Bragg positions. The insert shows a plot enlargement from 35 -65 $^{\circ}2\theta$.

			_			
Atom 1	Atom 2	d /	-	C3	C4	1.4(3)
Al1	01	1.8(2)	-	C4	C5	1.3(3)
	O4	1.8(2)		C5	C5	1.3(4)
	05	1.9(2)			C6	1.5(6)
	O6	1.9(2)		03	C7	1.2(3)
	O7	1.8(1)		O4	C7	1.2(2)
	08	2.0(3)		C7	C8	1.5(2)
Al2	O2	1.8(2)		C8	C9	1.3(6)
	O3	1.8(1)			C12	1.4(6)
	05	2.0(3)			C7	1.5(2)
	O6	1.9(3)		C9	C10	1.3(4)
	O7	1.9(2)		C10	C11	1.3(7)
	08	2.0(2)		C11	C12	1.3(4)
01	C1	1.2(4)		05	C13	1.4(2)
02	C1	1.2(4)		06	C16	1.3(4)
C1	C2	1.4(3)		O7	C14	1.3(2)
C2	C3	1.4(1)		08	C15	1.4(2)
	C6	1.4(4)				

Table S4: Selected bond lengths of CAU-3-NDC [Å]

Figure S8: Pseudo-fcc-arrangement of the inorganic units. The colours emphasize the ABC-stacking,

Fig. S9: TG-curve for CAU-3-BDC (1).

Figure S10. TG-diagram of the decomposition of CAU-3-BDC-NH₂ (2).

Figure S11. TG-diagram of the decomposition of CAU-3-NDC (3).

	molar	molar	molar	amount	amount	amount	mass	mass		
Reaktor	ratio	ratio	ratio	H ₂ BDC	AlCl ₃ *6H ₂ O	NaOH	H ₂ BDC	AlCl ₃ *6H ₂ O	volume	volume
No.	H ₂ BDC	AlCl ₃ *6H ₂ O	NaOH	[µmol]	[µmol]	[µmol]	[mg]	[mg]	NaOH [µL]	MeOH [µL]
1	0,25	1	0,5	32	128	64	5	31	32	1368
2	0,25	1	0,75	32	128	96	5	31	48	1352
3	0,25	1	1,25	32	128	160	5	31	80	1320
4	0,25	1	1,5	32	128	192	5	31	96	1304
5	0,25	1	1,75	32	128	224	5	31	112	1288
6	0,25	1	2	32	128	256	5	31	128	1272
7	0,25	1	1	32	128	130	5	31	65	935
8	0,25	1	1	32	128	130	5	31	65	1185
9	0,25	1	1	32	128	130	5	31	65	1435
10	0,50	2	2	64	256	260	11	62	130	870
11	0,50	2	2	64	256	260	11	62	130	1120
12	0,50	2	2	64	256	260	11	62	130	1370
13	0,50	2	1	64	256	128	11	62	64	1336
14	0,50	2	1,25	64	256	160	11	62	80	1320
15	0,50	2	1,50	64	256	192	11	62	96	1304
16	0,50	2	1,75	64	256	224	11	62	112	1288
17	0,50	2	2	64	256	256	11	62	128	1272
18	0,50	2	2,5	64	256	320	11	62	160	1240
19	1	4	1,55	128	512	198	21	124	99	1301
20	1	4	2,18	128	512	279	21	124	140	1260
21	1	4	2,81	128	512	360	21	124	180	1220
22	1	4	3,43	128	512	439	21	124	220	1180
23	1	4	4,06	128	512	520	21	124	260	1140
24	1	4	4,68	128	512	599	21	124	300	1100

Table S5: Exact amounts of starting materials used in the discovery of CAU-3-BDC.

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is The Royal Society of Chemistry 2012