SUPPORTING INFORMATION FOR:

Crowded Bis Ligand Complexes of Ttz^{Ph,Me} with First Row Transition Metals Rearrange due to Ligand Field Effects: Structural and Electronic Characterization (Ttz^{Ph,Me} = tris(3-phenyl-5-methyl-1,2,4-triazolyl)borate)

Shannon N. Oseback,^{†,‡} Sarah W. Shim,^{†,‡} Mukesh Kumar,^{†,‡} Samuel M. Greer,[§] Sean R. Gardner,[†] Keisha M. Lemar,[†] Paul DeGregory,[†] Elizabeth T. Papish,^{†*} David L. Tierney,[§] Matthias Zeller[#], Glenn P. A. Yap[∥]

Departments of Chemistry, Drexel University, 3141 Chestnut St., Philadelphia, PA 19104, Miami University, 701 East High Street, Oxford, OH 45056, Youngstown State University, 1 University Plaza, Youngstown OH 44555 University of Delaware, Newark, DE 19716

*Corresponding author. Tel.: 215-895-2666. E-mail: elizabeth.papish@drexel.edu

[‡]The first three authors contributed equally to this work.

[†]Drexel University

[§]Miami University

[#]Youngstown State University

University of Delaware

Table of Contents

Tables SI-1 and SI-2	Crystallographic data
Figure SI-1	Molecular diagram of (Ttz ^{Ph,Me})ZnBr (3) • 0.5CH ₃ OH5
Figure SI-2	Molecular diagram of $(Ttz^{Ph,Me})_2 Zn (1_{Zn})$
Figure SI-3	View down the B-M-B axis of various Ttz complexes7
Figure SI-4	Temperature dependent NMR of (Ttz ^{Ph,Me} *)Ni(Ttz ^{Ph,Me})8
Figure SI-5	Molecular diagram of $(Ttz^{Ph,Me})_2$ Fe (1_{Fe})
Figure SI-6	Molecular diagram of $(Ttz^{Ph,Me})_2Mn$ (1_{Mn})10
Figure SI-7	Coordination environment around the metal in $(Ttz^{Ph,Me})_2M11$
Figures SI-8-10	Comparison of predicted and observed powder patterns

	1 _{Zn}	1 _{Cu}	1 _{Ni}	1 _{Co}	1 _{Fe}	1 _{Mn}
formula	C54H50	C54H50	C54H50	$C_{54}H_{50}$	C ₅₄ H ₅₀	C54H50
	B ₂ N ₁₈ Zn	B ₂ CuN ₁₈	B ₂ N ₁₈ Ni	B ₂ CoN ₁₈	B ₂ FeN ₁₈	B ₂ MnN ₁₈
Fw	1038.11	1036.28	1031.43	1031.67	1028.59	1027.68
color	colorless	red	green	pink	colorless	colorless
/habit	block	block	block	block	block	block
crystal	trigonal	monoclinic	trigonal	trigonal	trigonal	trigonal
system						
space	$R^{3}c$	<i>C</i> 2/c	$R^{3}c$	R ³ c	$R^{3}c$	$R^{\overline{3}}c$
group	-		-	-	-	_
a/Å	13.9305(3)	24.899(3)	13.9385(9)	13.8978(15)	13.9034(4)	13.8711(8)
b/Å	13.9305(3)	13.9223(18)	13.9385(9)	13.8978	13.9034(4)	13.8711(8)
c/Å	43.3326(18)	16.092(2)	43.155(6)	43.178(5)	43.507(3)	43.853(5)
α/deg	90	90	90	90	90	90
β/deg	90	120.3208(19)	90	90	90	90
γ/deg	120	90	120	120	120	120
$V/Å^3$	7282.5(4)	4815.2(11)	7261.0(12)	7222.5(12)	7283.4(5)	7307.2(11)
Z	6	4	6	6	6	6
D _{caled}	1.420	1.429	1.415	1.423	1.407	1.401
/gcm ⁻³						
$\mu (mm^{-1})$	0.567	0.515	0.462	0.418	0.371	0.332
F (000)	3240	2156	3228	3222	3216	3210
crystal	0.45×0.43×	0.37×0.33×	0.55×0.50×	0.55×0.50×	0.55×0.49×	0.45×0.40×
dimens	0.25	0.31	0.33	0.33	0.43	0.10
(mm)						
θ (deg)	1.93-28.27	1.74-28.28	2.53-30.58	2.53-29.20	2.52-31.31	2.52-31.40
Rint	0.0219	0.0510	0.0388	0.0348	0.0248	0.0506
No. of	13581	36501	9297	6495	6475	14357
measd						
reflections						
No. of	2017	6518	2004	1997	2010	2031
obsd						
reflections						
GOF	1.060	1.033	1.034	1.034	1.042	1.069
Final R	2.97, 8.06	3.82, 8.75	3.78, 10.02	3.94, 9.63	3.36, 8.58	3.78, 9.35
indices						
[I>2σI]						
R_1 (%) ^a ,						
$wR_2(\%)^{a}$						

^aQuantity minimized = $R(wF^2) = \{\Sigma[w(F_o^2 - F_c^2)^2]/\Sigma(wF_o^2)^{21/2} : R(F) = \Sigma\Delta/\Sigma(F_o), \Delta = |(F_o - F_c)| : w = [\sigma^2(F_o^2) + (aP)^2 + bP]^{-1} : P = [2F_c^2 + Max(F_o, 0)]/3$

Table SI-2. Crystallographic Data for Cu(Ttz^{Ph,Me}*)₂ (1_{Cu} *), (Ttz^{Ph,Me}*)Ni(Ttz^{Ph,Me})•1.16CH₂Cl₂•0.50C₆H₁₄•0.50H₂O (1_{Ni} *•solvents), (Ttz^{Ph,Me})Ni(OH₂)Cl (**2**), (Ttz^{Ph,Me})ZnBr •0.5CH₃OH ($3_{/2CH3OH}$) and (Ttz^{Me,Me})₂Co•2CH₂Cl₂ (5_{2CH2Cl_2}).

	1 _{Cu} *	1 _{Ni} *•solvents ^a	2	3 ∙ _{%СНЗОН}	5• _{2CH2Cl2}
formula	C ₅₄ H ₅₀	C ₅₄ H ₅₀ B ₂ N ₁₈ Ni,	C ₂₇ H ₂₇ BClN ₉	$2(C_{27}H_{25}B$	$C_{26}H_{42}B_2Cl_4$
	B_2CuN_{18}	CH ₂ Cl ₂	NiO	BrN ₉ Zn),	Co N ₁₈
				CH ₄ O	
Fw	1036.29	1116.38	598.55	1295.34	829.13
color	green	blue	brown	colorless	yellow
/habit	plate	block	plate	plate	block
crystal	triclinic	monoclinic	monoclinic	trigonal	triclinic
system					
space	P^{1}	<i>C</i> 2/c	$P2_1/n$	$P^{\overline{3}}$	P^{1}
group					
a/A	10.177(2)	37.1971(18)	12.1457(10)	10.952(3)	10.5094(16)
b/A	10.959(2)	13.2418(6)	16.6085(13)	10.952(3)	10.5276(17)
c/A	11.986(2)	25.1526(12)	13.3465(10)	13.883(4)	19.314(4)
α/deg	67.639(6)	90	90	90	101.173(3)
β/deg	86.395(5)	107.4116(7)	90.630(2)	90	96.336(3)
γ/deg	77.426(5)	90	90	120	114.198(2)
V/Å ³	1206.3(4)	11821.4(10)	2692.1(4)	1442.1(7)	1868.7(6)
Ζ	1	8	4	1	2
D_{calcd} /gcm ⁻³	1.426	1.255	1.477	1.492	1.474
μ (mm ⁻¹)	0.514	0.471	0.860	2.273	0.793
F (000)	539	4640	1240	658	858
crystal	0.37×0.33×	0.55×0.50×	0.30×0.22×	0.31×0.27×	0.41×0.39×
dimens	0.10	0.45	0.08	0.11	0.27
(mm)					
θ (deg)	2.58-31.33	2.27-31.35	2.25-29.47	2.15-28.31	1.10-31.51
Rint	0.0337	0.0261	0.0465	0.0327	0.0340
No. of	12510	45740	17561	20009	42736
measd					
reflections					
No. of	5928	17863	6615	2421	11342
obsd					
reflections					
GOF	1.049	1.072	1.037	1.058	1.065
Final R	4.75, 10.42	4.09, 10.65	5.43, 12.58	2.74, 6.96	5.93, 16.48
indices					
[I>2σI]					
$R_1(\%)^{\rm b},$					
$wR_{2}(\%)^{b}$					

^aAdditonal disordered solvent is present in the structure of 1_{Ni} *-solvents. The data were corrected using back-Fourier transform methods (Squeeze)

^bQuantity minimized = $R(wF^2) = \{\Sigma[w(F_o^2 - F_c^2)^2]/\Sigma(wF_o^2)^2\}^{1/2} : R(F) = \Sigma\Delta/\Sigma(F_o),$ $\Delta = |(F_o - F_c)| : w = [\sigma^2(F_o^2) + (aP)^2 + bP]^{-1} : P = [2F_c^2 + Max(F_o, 0)]/3$ **Figure SI-1.** Molecular diagram of $(Ttz^{Ph,Me})ZnBr(3) \cdot 0.5CH_3OH$. Ellipsoids are shown at 30% probability. Hydrogen atoms are omitted for clarity. Selected bond lengths (Å) and angles (°): Zn-N1 2.036(2), Zn-Br 2.2713(8), N1-Zn-N1 91.86(6), N1-Zn-Br 123.93(5).

Figure SI-2. Molecular diagram of $(Ttz^{Ph,Me})_2Zn$ (1_{Zn}). Ellipsoids are shown at 30% probability. Hydrogen atoms are omitted for clarity.

Figure SI-3. View down the B-M-B axis of various Ttz complexes. Color code: pink = B, blue = N, black = carbon. The metal atom is hidden by the B atom. In 1Ni* and 1Cu*, the rearranged Ph ring is circled in red.

1Ni* (bottom left is rearr Ph far away).

Figure SI-4. Temperature dependent NMR of the rearranged $(Ttz^{Ph,Me})Ni(Ttz^{Ph,Me})$ complex. Inset: Plot of chemical shift vs. inverse temperature, only showing those that move with temperature. Those not included (C, E, F, H and J) showed no temperature dependence.

Figure SI-5. Molecular diagram of $(Ttz^{Ph,Me})_2$ Fe $(\mathbf{1}_{Fe})$. Ellipsoids are shown at 30% probability. Hydrogen atoms are omitted for clarity.

Figure SI-6. Molecular diagram of $(Ttz^{Ph,Me})_2Mn$ (1_{Mn}). Ellipsoids are shown at 30% probability. Hydrogen atoms are omitted for clarity.

Figure SI-7. Coordination environment around the metal centers in $(Ttz^{Ph,Me})_2M$ (1_M , M = Zn, Co, Fe, Mn).

Figure SI-8. Comparison of observed (top) and predicted (bottom) powder patterns for $Co(Ttz^{Ph,Me})_2$.

Figure SI-9. Comparison of observed (top) and predicted (bottom) powder patterns for $Mn(Ttz^{Ph,Me})_2$.

Figure SI-10. Comparison of observed (bottom) and predicted (top) powder patterns for $Fe(Ttz^{Ph,Me})_2$. Since the experimental powder pattern was obtained in air, some decomposition via oxidation of Fe is possible, and could account for imperfections in the fit.

