Supporting Information

Exploring Hypervalency and Three-Centre, Four-Electron Bonding Interactions: Reactions of Acenaphthene Chalcogen Donors and Dihalogen Acceptors

⁵ Fergus R. Knight, Kasun S. Athukorala Arachchige, Rebecca A. M. Randall, Michael Bühl, Alexandra M. Z. Slawin, and J. Derek Woollins*

1. Experimental Section

All experiments were carried out under an oxygen- and moisture-free nitrogen atmosphere using standard Schlenk ¹⁰ techniques and glassware. Reagents were obtained from commercial sources and used as received. Dry solvents were collected from a MBraun solvent system. Elemental analyses were performed by the University of St. Andrews School of Chemistry Microanalysis Service. Infra-red spectra were recorded as KBr discs in the range 4000-300 cm⁻¹ on a Perkin-Elmer System 2000 Fourier transform spectrometer. ¹H and ¹³C NMR spectra were recorded on a Jeol GSX 270 MHz spectrometer with δ(H) and δ(C) referenced to external tetramethylsilane. ⁷⁷Se and ¹²⁵Te NMR spectra were recorded on a ¹⁵ Jeol GSX 270 MHz spectrometer with δ(Se) and δ(Te) referenced to external dimethylselenide and diphenyl ditelluride respectively. Assignments of ¹³C and ¹H NMR spectra were made with the help of H-H COSY and HSQC experiments. All measurements were performed at 25 °C. All values reported for NMR spectroscopy are in parts per million (ppm). Coupling constants (*J*) are given in Hertz (Hz). Mass spectrometry was performed by the University of St. Andrews Mass Spectrometry Service. Electron impact mass spectrometry (EIMS) and Chemical Ionisation Mass Spectrometry (CIMS) ²⁰ was carried out on a Micromass GCT orthogonal acceleration time of flight mass spectrometer. Electrospray Mass

Spectrometry (ESMS) was carried out on a Micromass LCT orthogonal accelerator time of flight mass spectrometer.

[Acenap(SePhI₂)(Br)] (1): A solution of 5-bromo-6-(phenylselenyl)acenaphthene (0.193 g, 0.497 mmol) in dichloromethane (5 mL) was treated with iodine (0.126 g, 0.497 mmol). The mixture was stirred at room temperature for 2 ²⁵ h, filtered and the solvent removed *in vacuo*. An analytically pure sample was obtained by recrystallization from diffusion of hexane into a dichloromethane solution of the product (0.3 g, 82 %); mp 115-117 °C; elemental analysis (Found C, 34.1; H, 1.6. Calc. for C₁₈H₁₃BrI₂Se: C, 33.7; H, 2.0 %); IR (KBr disk): v_{max} cm⁻¹ 2934w, 1950w, 1860w, 1647w, 1598w, 1573w, 1472s, 1435s, 1419w, 1408w, 1346w, 1323s, 1253w, 1231w, 1210w, 1199w, 1176w, 1116w, 1102w, 1064w, 1019s, 998s, 936w, 854w, 834vs, 809s, 739vs, 702w, 686s, 666w, 600s, 541w, 501w, 472w, 463s, 314w; δ_{H} (270 MHz, ³⁰ CDCl₃, 25 °C, Me₄Si) 7.68 (1 H, d, ³J_{HH} 7.4 Hz, Acenap 4-H), 7.63-7.55 (2 H, m, Se*Ph* 12,16-H), 7.38-7.27 (3 H, m, Se*Ph* 13-15-H), 7.20 (1 H, d, ³J_{HH} 7.5 Hz, Acenap 7-H), 7.07 (1 H, d, ³J_{HH} 7.4 Hz, Acenap 3-H), 6.98 (1 H, d, ³J_{HH} 7.5 Hz, Acenap 8-H), 3.30-3.20 (4 H, m, 2 x CH₂); δ_{C} (67.9 MHz; CDCl₃; 25 °C; Me₄Si) 147.6(q), 147.4(q), 142.4(q), 135.6(s), 135.1(s), 134.1(s), 130.4(s), 130.3(q), 129.4(s), 125.7(q), 121.4(s), 121.3(s), 118.5(q), 115.3(q), 30.5(s, CH₂), 30.4(s, CH₂); δ_{Se} (51.5 MHz; CDCl₃; 25 °C; PhSeSePh) 437.6(s); MS (ES⁺): *m/z* 308.94 (M⁺+H-Br-I₂, 100 %), 387.82 (M⁺+H-I₂, 10).

35

[{Acenap(SePhBr)(SePh)}⁺{Br₃}⁻{Br₂}] (2): A solution of 5,6-bis(phenylselanyl)acenaphthene (0.251 g, 0.541 mmol) in dichloromethane (20 mL) was treated with bromine (0.346 g, 0.11 mL, 2.162 mmol). The mixture was stirred at room temperature for 2 h, filtered and the solvent removed *in vacuo*. An analytically pure sample was obtained by recrystallization from diffusion of hexane into a dichloromethane solution of the product (0.3 g, 62 %); mp 68-70 °C; IR $(KBr disk): v_{max} cm^{-1} 2938w, 2909w, 2857w, 2814w, 2597w, 1959w, 1901w, 1808w, 1751w, 1680w, 1588s, 1573s, 1473s, 1436s, 1410s, 1348s, 1306w, 1264s, 1230w, 1214s, 1176s, 1159w, 1142w, 1103w, 1067w, 1049w, 1021w, 996s, 960w, 948w, 903w, 870w, 848vs, 816s, 727vs, 704s, 677vs, 612s, 594s, 534w, 496w, 454s, 375w, 343s, 304w; <math>\delta_{H}$ (270 MHz; (CD₃)₂CO; 25 °C; Me₄Si) 7.54 (2 H, d, ³*J*_{HH} 7.4 Hz, Acenap 4,7-H), 7.47-7.37 (4 H, m, Se*Ph* 12,16,18,22-H), 7.37-7.26 (6 H, m, Se*Ph* 13-15,19-21-H), 7.21 (2 H, d, ³*J*_{HH} 7.4 Hz, Acenap 3,8-H) 3.37 (4 H, s, 2 x *CH*₂); δ_{C} (67.9 MHz; (CD₃)₂CO; 25 °C; Me₄Si) 198.3(q), 154.4(q), 148.4(q), 137.4(s), 135.2(q) 133.9(s), 130.4(s), 128.3(s), 125.9(q), 121.6(s), 30.5(s, 2 x CH₂); δ_{Se} (51.5 MHz; (CD₃)₂CO; 25 °C; PhSeSePh) 405.2 (s); MS (ES⁺): *m/z* 465.81 (M⁺-Br₆, 100 %), 496.83 (M⁺+OMe-Br₆, 90).

[{Acenap(SePhBr)(SPh)}⁺ {Br₃}] (3): A solution of 5-(phenylselanyl)-6-(phenylsulfanyl)acenaphthene (0.110 g, 0.264 mmol) in dichloromethane (20 mL) was treated with bromine (0.084 g, 0.03 mL, 0.527 mmol). The mixture was stirred at room temperature for 2 h, filtered and the solvent removed *in vacuo*. An analytically pure sample was obtained by recrystallization from diffusion of hexane into a dichloromethane solution of the product (0.1 g, 60 %); mp 80-82 °C; IR (KBr disk): *v*_{max} cm⁻¹ 2921w, 1890w, 1719w, 1655w, 1589s, 1473s, 1440s, 1411w, 1386w, 1351s, 1336s, 1262w, 1233w, 1215w, 1181w, 1161w, 1109w, 1068w, 1051w, 1022w, 1006w, 995s, 918w, 850w, 812w, 734vs, 678s, 619w, 598w, 547w, 20 476w, 459s, 405w, 341w, 319w; δ_H(270 MHz; (CD₃)₂CO; 25 °C; Me₄Si) 7.68 (1 H, d, ³*J*_{HH} 7.3 Hz, Acenap 4-H), 7.47-7.40 (2 H, m, Se*Ph* 12,16-H), 7.33-7.24 (4 H, m, Acenap 3-H, Se*Ph* 13-15-H), 7.15-7.09 (2 H, m, S*Ph* 18,22-H) 7.05-6.94 (5 H, m, Acenap 7,8-H, S*Ph* 19-21-H), 3.35-3.26 (2 H, m, C*H*₂), 3.26-3.17 (2 H, m, C*H*₂); δ_C(67.9 MHz; (CD₃)₂CO; 25 °C; Me₄Si) 154.7(q), 151.2(q), 146.8(q), 141.3(s), 137.4(s), 137.3(q), 133.2(q), 133.0(s), 131.0(s), 130.2(s), 129.8(q), 129.7(s), 128.7(q), 128.4(s), 126.8(s), 125.8(q), 122.1(s), 121.8(s), 31.3(s, CH₂), 30.7(s, CH₂); δ_{Se}(51.5 MHz; (CD₃)₂CO; 25 °C; PhSeSePh) 431.2 (s); MS (ES⁺): *m/z* 417.84 (M⁺+H-Br₄, 100 %), 448.93 (M⁺+OMe-Br₄, 20), 495.82 (M⁺-Br₃, 10).

[Acenap(SePhI₂)(SePh)] (4): A solution of 5,6-bis(phenylselanyl)acenaphthene (0.212 g, 0.457 mmol) in dichloromethane (20 mL) was treated with iodine (0.116 g, 0.457 mmol). The mixture was stirred at room temperature for 2 h, filtered and the solvent removed *in vacuo*. An analytically pure sample was obtained by recrystallization from diffusion of hexane into ³⁰ a dichloromethane solution of the product (0.2 g, 71 %); mp 92-94 °C; elemental analysis (Found: C, 40.4; H, 2.7. Calc. for $C_{24}H_{18}I_2Se_2$: C, 40.1; H, 2.5 %); IR (KBr disk): v_{max} cm⁻¹ 3140w, 3039s, 2987w, 2929s, 2850w, 2810w, 2628w, 2580w, 2532w, 2422w, 2338w, 2237w, 2163w, 2121w, 1958w, 1882s, 1805w, 1754w, 1659w, 1593s, 1572s, 1471s, 1433s, 1406s, 1359w, 1319s, 1301s, 1254w, 1230w, 1205s, 1176s, 1155w, 1114w, 1103s, 1063s, 1018s, 996s, 972w, 919w, 904w, 838vs, 811s, 774s, 739vs, 687s, 663s, 600s, 542w, 499w, 455s, 337w, 313w; $\delta_{H}(270 \text{ MHz}; \text{CDCl}_3; 25 °C; \text{Me}_4\text{Si})$ 7.64 (2 H, d, ³*J*_{HH} 7.4 Hz, Acenap 4,7-H), 7.50-7.41 (4 H, m, Se*Ph* 12,16,18,22-H), 7.35-7.25 (6 H, m, Se*Ph* 13-15,19-21-H), 7.21 (2 H, d, ³*J*_{HH} 7.4 Hz, Acenap 3,8-H) 3.41 (4 H, s, 2 x C*H*₂); $\delta_{C}(67.9 \text{ MHz}; \text{CDCl}_3; 25 °C; \text{Me}_4\text{Si})$ 148.7(q), 141.8(q), 137.9(s), 135.1(q), 134.3(q), 133.5(q), 133.1(s), 131.0(q), 130.0(s), 128.2(s), 127.0(q), 124.5(q), 121.3(s), 30.6(s, 2 x CH₂); $\delta_{Se}(51.5 \text{ MHz}; \text{CDCl}_3; 25 °C; \text{PhSeSePh})$ 421.0 (s); MS (ES⁺): *m/z* 465.84 (M⁺+H-I₂, 100 %), 496.89 (M⁺+OMe-I₂, 40).

[Acenap(SePhI₂)(SPh)] (5): A solution of 5-(phenylselanyl)-6-(phenylsulfanyl)acenaphthene (0.214 g, 0.513 mmol) in dichloromethane (20 mL) was treated with iodine (0.130 g, 0.513 mmol). The mixture was stirred at room temperature for 2 h, filtered and the solvent removed *in vacuo*. An analytically pure sample was obtained by recrystallization from diffusion of hexane into a dichloromethane solution of the product (0.3 g, 82 %); mp 60-62 °C; elemental analysis (Found: C, 43.0; 5 H, 2.7. Calc. for C₂₄H₁₈I₂SSe: C, 42.9; H, 2.7 %); IR (KBr disk): *v*_{max} cm⁻¹ 2919w, 1882w, 1595s, 1576s, 1474s, 1436s, 1409w, 1360w, 1322s, 1300w, 1207w, 1177w, 1156w, 1108w, 1066w, 1022s, 998s, 903w, 866w, 841s, 814w, 773w, 742vs, 689vs, 666w, 625w, 605w, 475w, 460w, 403w; δ_H(270 MHz; CDCl₃; 25 °C; Me₄Si) 7.90 (1 H, d, ³*J*_{HH} 7.2 Hz, Acenap 4-H), 7.72-7.62 (2 H, m, SePh 12,16-H), 7.46-7.36 (4 H, m, Acenap 3-H, SePh 13-15-H), 7.28-7.19 (3 H, m, Acenap 7-H, SPh 19,21-H), 7.18-7.09 (2 H, m, Acenap 8-H, SPh 20-H), 7.09-7.01 (2 H, m, SPh 18,22-H), 3.53-3.43 (4 H, m, 2 x CH₂); δ_C(67.9 MHz; CDCl₃; 25 °C; Me₄Si) 148.1(q), 142.0(q), 141.3(s), 140.6(q), 136.9(q), 135.7(s), 133.5(s), 132.9(q), 131.4(q), 130.4(s), 129.8(s), 129.5(s), 128.1(q), 127.3(s), 126.0(s), 124.2(q), 121.4(s), 121.3(s), 31.0(s, CH₂), 30.5(s, CH₂); δ_{Se}(51.5 MHz; CDCl₃; 25 °C; PhSeSePh) 460.4 (s); MS (ES⁺): *m/z* 417.90 (M⁺+H-I₂, 100 %).

[Acenap(TePhBr₂)(Br)] (6): A solution of 5-bromo-6-(phenyltelluro)acenaphthene (0.124 g, 0.284 mmol) in ¹⁵ dichloromethane (5 mL) was treated with a 0.1 M solution of bromine in dichloromethane (0.284 mmol, 2.84 mL). The mixture was stirred at room temperature for 2 h after which time a yellow precipitate had formed which was collected by filtration and washed with dichloromethane. An analytically pure sample was obtained by recrystallization from diffusion of hexane into a dichloromethane solution of the product (0.1 g, 34 %); mp 250-252°C; elemental analysis (Found: C, 36.4; H, 1.7 Calc. for C₁₈H₁₃Br₃Te: C, 36.2; H, 2.2 %); IR (KBr disk): v_{max} cm⁻¹ 2924w, 2905w, 1654w, 1595s, 1566w, 1472w, ²⁰ 1431s, 1415s, 1346w, 1328s, 1258w, 1228w, 1209w, 1183s, 1102w, 1067w, 1045w, 1015w, 993w, 972w, 944w, 913w, 838vs, 813s, 741vs, 686s, 595w, 536w, 491w, 458w; δ_{H} (270 MHz; CDCl₃; 25 °C; Me₄Si) 8.53-8.42 (2 H, m, Te*Ph* 12,16-H), 7.89 (1 H, d, ³*J*_{HH} 7.6 Hz, Acenap 4-H), 7.84 (1 H, d, ³*J*_{HH} 7.5 Hz, Acenap 7-H), 7.62-7.48 (3 H, m, Te*Ph* 13-15-H), 7.24 (1 H, d, ³*J*_{HH} 7.5 Hz, Acenap 8-H), 7.22-7.18 (1 H, m, Acenap 3-H), 3.44-3.28 (4 H, m, 2 x CH₂); δ_{C} (67.9 MHz; CDCl₃; 25 °C; Me₄Si) 152.8(q), 148.3(q), 142.4(q), 137.9(s), 137.7(s), 135.6(s), 132.2(s), 130.5(s), 130.4(q), 129.5(q), ²⁵ 128.5(q), 122.4(s), 121.8(s), 115.4(q), 31.0(s, CH₂), 30.5(s, CH₂); δ_{Te} (81.2 MHz; CDCl₃; 25 °C; PhTeTePh) 918.8; MS (ES⁺): *m/z* 468.79 (M⁺-I₂+OMe, 100 %).

[Acenap(TePhI₂)(Br)] (7): A solution of 5-bromo-6-(phenyltelluro)acenaphthene (0.128 g, 0.293 mmol) in dichloromethane (10 mL) was treated with iodine (0.074 g, 0.293 mmol). The mixture was stirred at room temperature for ³⁰ 2 h, filtered and the solvent removed *in vacuo*. An analytically pure sample was obtained by recrystallization from diffusion of hexane into a dichloromethane solution of the product (0.2 g, 79 %); mp 208-210°C; elemental analysis (Found C, 31.6; H, 1.5 Calc. for C₁₈H₁₃BrI₂Te: C, 31.3; H, 1.9 %); IR (KBr disk): *v*_{max} cm⁻¹ 2914w, 2819w, 1876w, 1867w, 1704w, 1656w, 1594vs, 1573s, 1483s, 1469s, 1445s, 1433vs, 1415s, 1348w, 1326vs, 1258s, 1232s, 1213s, 1183s, 1159s, 1105s, 1045s, 1015w, 993s, 920w, 837vs, 809vs, 737vs, 702s, 683s, 593s, 534s, 489w, 449s, 309w; δ_H(270 MHz; CDCl₃; 25 °C; Me₄Si) 8.54-8.45 (2 H, m, Te*Ph* 12,16-H), 7.93 (1 H, d, ³*J*_{HH} 7.5 Hz, Acenap 4-H), 7.83 (1 H, d, ³*J*_{HH} 7.5 Hz, Acenap 7-H), 7.62-7.54 (1 H, m, Te*Ph* 14-H), 7.48-7.40 (2 H, m, Te*Ph* 13,15-H), 7.24 (1 H, d, ³*J*_{HH} 7.5 Hz, Acenap 8-H), 7.11 (1 H, d, ³*J*_{HH} 7.5 Hz, Acenap 3-H), 3.40-3.28 (4 H, m, 2 x C*H*₂); δ_C(67.9 MHz; CDCl₃; 25 °C; Me₄Si) 152.6(q), 148.4(q), 146.5(q), 142.7(q), 140.2(s), 138.8(s), 135.6(s), 135.4(q), 132.1(s), 130.7(s), 129.8(q), 122.5(s), 122.1(s), 115.5(q), 31.0(s, CH₂), 30.5(s, CH₂); δ_{Te}(81.2 MHz; CDCl₃; 25 °C; PhTeTePh) 860.6; MS (ES⁺): *m/z* 468.78 (M⁺-Br₂+OMe, 100 %).

[Acenap(TePhBr₂)(SPh)] (8): A solution of 5-(phenyltelluro)-6-(phenylsulfanyl)acenaphthene (0.181 g, 0.3883 mmol) in dichloromethane (5 mL) was treated with a 0.1 M solution of bromine in dichloromethane (0.3883 mmol, 3.9 mL). The mixture was stirred at room temperature for 2 h and the solvent removed *in vacuo*. The crude product was washed with ⁵ diethyl ether and the yellow precipitate which formed was collected by filtration. An analytically pure sample was obtained by recrystallization from diffusion of hexane into a dichloromethane solution of the product (0.1 g, 50 %); mp 188-190°C; elemental analysis (Found C, 46.2; H, 2.2 Calc. for C₂₄H₁₈Br₂STe: C, 46.1; H, 2.9 %); IR (KBr disk): *v*_{max} cm⁻¹ 2986w, 2944w, 2915w, 2820w, 2777w, 2697w, 2643w, 2546w, 2523w, 2429w, 2363w, 2321w, 2206w, 2159w, 2047w, 1947w, 1876w, 1796w, 1638w, 1589s, 1572s, 1472s, 1433vs, 1414w, 1331vs, 1256w, 1230w, 1207w, 1177w, 1157w, 1101w, 1067w, 1050w, 1021w, 995w, 952w, 917w, 846s, 815w, 745vs, 730vs, 697s, 684s, 623w, 602w, 577w, 549w, 510w, 491w, 450w, 411w, 371w, 326w, 305w; *δ*_H(270 MHz; CDCl₃; 25 °C; Me₄Si) 8.48-8.38 (2 H, m, *TePh* 12,16-H), 8.04 (1 H, d, ³*J*_{HH} 7.5 Hz, Acenap 7-H), 7.65-7.52 (3 H, m, *TePh* 13-15-H), 7.50 (1 H, d, ³*J*_{HH} 7.3 Hz, Acenap 3-H), 7.36 (1 H, d, ³*J*_{HH} 7.5 Hz, Acenap 8-H), 7.30-7.12 (5 H, m, Se*Ph* 18-22-H), 3.57-3.46 (4 H, m, 2 x C*H*₂); *δ*_C(67.9 MHz; CDCl₃; 25 °C; Me₄Si) 152.6(q), 151.0(q), 143.4(q), 141.7(s), 139.8(q), 138.5(s), 137.6(q), 137.5(s), 134.2(q), 131.7(s), 130.2(s), 129.7(s), 129.1(q), 128.3(s), 127.2(s), 123.9(q), 122.1(s), 121.9(s), 31.0(s, *CH*₂), 30.9(s, *CH*₂); *δ*_{Te}(81.2 MHz; CDCl₃; 25 °C; PhTeTePh) 930.6; MS (ES⁺): *m/z* 498.93 (M⁺+OMe-Br₂, 100 %).

[Acenap(TePhBr₂)(SePh)] (9): A solution of 5-(phenyltelluro)-6-(phenylselanyl)acenaphthene (0.095 g, 0.1851 mmol) in dichloromethane (5 mL) was treated with a 0.1 M solution of bromine in dichloromethane (0.1851 mmol, 1.85 mL). The ²⁰ mixture was stirred at room temperature for 2 h and the solvent removed *in vacuo*. An analytically pure sample was obtained by recrystallization from diffusion of hexane into a dichloromethane solution of the product (0.1 g, 86 %); mp 188-190°C; elemental analysis (Found: C, 43.3; H, 1.9 Calc. for C₂₄H₁₈Br₂SeTe: C, 42.8; H, 2.7 %); IR (KBr disk): *v*_{max} cm⁻¹ 2919w, 2853w, 1952w, 1888w, 1706w, 1654w, 1640w, 1590s, 1571s, 1472s, 1433s, 1384w, 1328s, 1254w, 1228w, 1178w, 1097w, 1062w, 1048w, 1017w, 996w, 915w, 843s, 811s, 731vs, 684s, 614w, 598w, 534w, 479w, 449s; *δ*_H(270 MHz; CDCl₃; 25 °C; Me₄Si) 8.33-8.22 (2 H, m, *TePh* 12,16-H), 8.06 (1 H, d, ³*J*_{HH} 7.2 Hz, Acenap 4-H), 7.94 (1 H, d, ³*J*_{HH} 7.6 Hz, Acenap 7-H), 7.51-7.40 (3 H, m, Te*Ph* 13,15-H), 7.32 (1 H, d, ³*J*_{HH} 7.2 Hz, Acenap 3-H), 7.28-7.20 (3 H, m, Acenap 8-H, Se*Ph* 18,22-H), 7.14-7.05 (3 H, m, Se*Ph* 19-21-H), 3.39 (4 H, br s, 2 x C*H*₂); *δ*_C(67.9 MHz; CDCl₃; 25 °C; Me₄Si) 152.8(q), 150.8(q), 143.0(s), 141.7(q), 139.4(s), 137.3(s), 135.5(q), 135.0(q), 133.9(q), 132.3(q), 131.9(s), 131.6(s), 130.9(s), 130.2(s), 129.9(s), 127.8(s), 122.6(q), 122.2(s), 121.7(s), 30.9(s, CH₂), 30.8(s, CH₂); *δ*_{Se}(51.5 MHz; CDCl₃; 25 °C; PhSeSePh) 332.9 (s); *δ*_{Te}(81.2 MHz; CDCl₃; 25 °C; PhTeTePh) 921.9; MS (ES⁺): *m/z* 544.79 (M⁺-Br₂+OMe, 100 %).

[Acenap(TePhI₂)(SPh)] (10): A solution of 5-(phenyltelluro)-6-(phenylsulfanyl)acenaphthene (0.208 g, 0.446 mmol) in dichloromethane (20 mL) was treated with iodine (0.113 g, 0.446 mmol). The mixture was stirred at room temperature for 2 h, filtered and the solvent removed *in vacuo*. An analytically pure sample was obtained by recrystallization from diffusion ³⁵ of hexane into a dichloromethane solution of the product (0.253 g, 77 %); mp 177-179 °C; elemental analysis (Found C, 39.7; H, 1.5 Calc. for C₂₄H₁₈TeSI₂: C, 40.0; H, 2.5 %); IR (KBr disk): v_{max} cm⁻¹ 2905w, 2824w, 1592s, 1569s, 1473s, 1434s, 1417s, 1331s, 1258w, 1232w, 1209w, 1177w, 1152w, 1105w, 1067w, 1050w, 1022w, 995s, 944w, 913w, 896w, 846s, 813s, 732vs, 686s, 626w, 603w, 581w, 548w, 484w, 452s, 404w; δ_{H} (270 MHz; CDCl₃; 25 °C; Me₄Si) 8.38 (2 H, m, Te*Ph* 12,16-H), 8.02 (1 H, d, ³J_{HH} 7.5 Hz, Acenap 4-H), 7.95 (1 H, d, ³J_{HH} 7.3 Hz, Acenap 7-H), 7.55-7.45 (1 H, m, Te*Ph*

14-H), 7.45-7.32 (3 H, m, Acenap 8-H, Te*Ph* 13,15-H), 7.28 (1 H, d, ${}^{3}J_{HH}$ 7.5 Hz, Acenap 3-H), 7.17-7.06 (3 H, m, S*Ph* 19-21-H), 7.06-6.97 (2 H, m, S*Ph* 18,22-H), 3.47-3.35 (4 H, s, 2 x C*H*₂); δ_{C} (67.9 MHz; CDCl₃; 25 °C; Me₄Si) 152.6(q), 151.2(q), 141.6(s), 139.8(q), 139.3(q), 131.6(s), 130.3(s), 129.8(s), 129.4(q), 128.3(s), 127.2(s), 126.6(q), 125.1(q), 123.0(q), 122.4(s), 122.3(s), 118.4(q), 114.7(q), 31.1(s, CH₂), 31.0(s, CH₂); δ_{Te} (81.2 MHz; CDCl₃; 25 °C; PhTeTePh) 5 878.9; MS (ES⁺): *m/z* 498.89 (M⁺+OMe-I₂, 100 %).

[Acenap(TePhI₂)(SePh)] (11): A solution of 5-(phenyltelluro)-6-(phenylselanyl)acenaphthene (0.078 g, 0.152 mmol) in dichloromethane (5 mL) was treated with iodine (0.039 g, 0.152 mmol). The mixture was stirred at room temperature for 2 h, filtered and the solvent removed *in vacuo*. An analytically pure sample was obtained by recrystallization from diffusion of hexane into a dichloromethane solution of the product (0.085 g, 73 %); mp 172-174°C; elemental analysis (Found: C, 37.5; H, 2.3 Calc. for C₂₄H₁₈TeSeI₂: C, 37.6; H, 2.4 %); IR (KBr disk): v_{max} cm⁻¹ 2914w, 1879w, 1711s, 1656w, 1640w, 1592s, 1569s, 1473s, 1431s, 1330s, 1299w, 1258w, 1209s, 1178w, 1154w, 1114w, 1097w, 1067w, 1048w, 1019w, 996s, 913w, 841vs, 811s, 733vs, 683s, 664w, 614w, 595w, 527w, 475w, 454s; $\delta_{H}(270 \text{ MHz}; \text{CDCl}_3; 25 °C; Me_4\text{Si})$ 8.36-8.26 (2 H, m, Te*Ph* 12,16-H), 8.07 (1 H, d, $^{3}J_{HH}$ 7.2 Hz, Acenap 4-H), 8.06 (1 H, d, $^{3}J_{HH}$ 7.5 Hz, Acenap 7-H), 7.53-7.44 (1 H, m, 1e *Ph* 12,16-H), 7.41-7.30 (3 H, m, Acenap 3-H, Te*Ph* 13,15-H), 7.23 (1 H, d, $^{3}J_{HH}$ 7.5 Hz, Acenap 8-H), 7.21-7.15 (2 H, m, Se*Ph* 18,22-H), 7.13-7.06 (3 H, m, Se*Ph* 19-21-H), 3.43-3.31 (4 H, m, 2 x CH₂); $\delta_{C}(67.9 \text{ MHz}; \text{CDCl}_3; 25 °C; Me_4\text{Si})$ 207.4(q), 152.6(q), 150.9(q), 144.8(q), 142.9(s), 141.9(q), 140.7(s), 139.5(s), 134.6(q), 132.9(q), 131.5(s), 130.9(s), 130.3(s), 129.9(s), 127.7(s), 122.5(s), 122.4(q), 122.2(s), 31.4(s, CH₂), 30.9(s, CH₂); $\delta_{Se}(51.5 \text{ MHz}; \text{CDCl}_3; 25 °C; PhSeSePh)$ 343.2 (s); $\delta_{Te}(81.2 \text{ MHz}; \text{CDCl}_3; 25 °C; PhTeTePh)$ 871.0(s); MS (ES⁺): *m/z* 542.87 (M⁺-I₂+OMe, 100 %).

20

[Acenap(BrTePh)₂O] (12): A solution of 5,6-bis(phenyltelluro)acenaphthene (0.182 g, 0.324 mmol) in dichloromethane (5 mL) was treated with a 0.1 M solution of bromine in dichloromethane (0.324 mmol, 3.3 mL). The mixture was stirred at room temperature for 2 h and the solvent removed *in vacuo*. The crude product was washed with diethyl ether and the yellow precipitate which formed was collected by filtration. An analytically pure sample was obtained by recrystallization ²⁵ from dimethylformamide (0.230 g, 96 %); mp 213-215 °C; elemental analysis (Found: C, 39.5; H, 2.3 Calc. for C₂₄H₁₈Br₂OTe₂: C, 39.1; H, 2.5 %); IR (KBr disk): *v*_{max} cm⁻¹ 2969w, 2922w, 2870w, 2365w, 2356w, 2331w, 2218w, 2092w, 1880w, 1654w, 1599s, 1592s, 1567s, 1552w, 1483w, 1472s, 1450w, 1433vs, 1413s, 1379w, 1342w, 1329w, 1314vs, 1259w, 1232w, 1218w, 1178w, 1146w, 1105vs, 1048s, 1011w, 994vs, 962w, 932w, 914w, 840vs, 811s, 801s, 731vs, 695w, 681vs, 650w, 610w, 592w, 569w, 535w, 453s; *δ*_H(270 MHz; (CD₃)₂NCOD; 25 °C; Me₄Si) 9.18 (2 H, d, ³*J*_{HH}
³⁰ 7.5 Hz, Acenap 4,7-H), 8.40-8.25 (4 H, m, Te*Ph* 12,16,18,22-H), 7.89-7.75 (8 H, m, Acenap 3,8-H, Te*Ph* 13-15, 19-21-H), 3.81 (4 H, s, 2 x CH₂); *δ*_C(67.9 MHz; (CD₃)₂NCOD; 25 °C; Me₄Si) 152.9(q), 141.7(q), 141.2(s), 137.1(q), 134.6(s), 132.1(s), 130.7(q), 130.2(s), 129.9(q), 127.2(q), 122.2(q), 121.7(s), 30.8(s, 2 x CH₂); *δ*_{Te}(81.2 MHz; (CD₃)₂NCOD; 25 °C; PhTeTePh) 961.3(s); MS (ES⁺): *m/z* 608.73 (M⁺+OMe-Br₂, 100 %).

2. Computational Details

³⁵ Essentially the same methods and basis sets as in our previous study on per-substituted naphthalenes¹ have been employed. Geometries were fully optimised in the gas phase at the B3LYP level² using Curtis and Binning's 962(d) basis³ on Se and Br (augmented with a set of diffuse s and p functions on Br), the Stuttgart-Dresden effective core potentials along with their double zeta valence basis sets for Te⁴ (augmented with a set of d-polarisation functions with exponents of 0.237),⁵ and 631+G(d) basis elsewhere. Wiberg bond indices⁶ were obtained in a natural bond orbital analysis⁷ at the same level. The optimisations were started from the experimental structures available from X-ray crystallography, substituting chalcogens and halogens where necessary, and deleting solvent and excess Br₂ molecules if present.

- Additional single-point energy calculations were performed using the polarisable continuum model (PCM) of Tomasi ⁵ and coworkers,⁸ employing the same basis sets on Te and Br as before, and 6-311+G(d) elsewhere, together with the parameters of CH₂Cl₂ as a typical solvent. The resulting changes in relative energies were added as increments to the gasphase free energies, affording the ΔG_r (CH₂Cl₂) values in Table 5. Empirical dispersion corrections using Grimme's threebody terms⁹ have been evaluated for the B3LYP-optimised geometries and added as increments to the ΔG_r (CH₂Cl₂) values (denoted B3LYP-D3).
- ¹⁰ Results for $(12)_2$ are reported for a structure that was optimised imposing C_2 symmetry. A C_1 -symmetris form was indicated to be more stable by ca. 0.3 kcal/mol, but was difficult to converge. Basis-set superposition error for dimerisation of **12** was found to be 3.4 kcal/mol, according to the Counterpoise method.¹⁰ All computations were performed using the Gaussian 03 suite of programs.¹¹

3. Crystal structure analyses

¹⁵ X-ray crystal structures for **2**, **4**, **6**, **7**, **9** and **11** were determined at -148(1) °C on the St Andrews Robotic Diffractometer¹² a Rigaku ACTOR-SM, Saturn 724 CCD area detector with graphite monochromated Mo-Kα radiation ($\lambda = 0.71073$ Å). The data was corrected for Lorentz, polarisation and absorption. Data for compounds **1**, **5**, **8** and **10** were collected at -148(1) °C by using a Rigaku MM007 High brilliance RA generator (Mo Kα radiation, confocal optic) and Saturn CCD system. At least a full hemisphere of data was collected using ω scans. Intensities were corrected for Lorentz, polarisation and ²⁰ absorption. Data for compound **12** were collected at -180(1) °C by using a Rigaku MM007 High brilliance RA generator (Mo Kα radiation, confocal optic) and Mercury CCD system. At least a full hemisphere of data was collected using ω scans. Data for compound **3** were collected at -148(1) °C on a Rigaku SCXmini CCD area detector with graphite monochromated Mo Kα radiation ($\lambda = 0.71073$ Å). The data were corrected for Lorentz, polarisation and absorption. The data for the complexes was collected and processed using CrystalClear (Rigaku).¹³ The structures were solved by Patterson ²⁵ or direct methods and expanded using Fourier techniques. Non-hydrogen atoms were refined anisotropically, and hydrogen atoms were refined using a riding model. All calculations were performed using the CrystalStructure¹⁴ and SHELXL-97.¹⁵ These X-ray data can be obtained free of charge via www.ccdc.cam.ac.uk/conts/retrieving.html or from the Cambridge Crystallographic Data centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax (+44) 1223-336-033; e-mail: deposit@ccdc.cam.ac.uk CCDC Nos:

30

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is O The Royal Society of Chemistry 2012

5

Fig. S1 Molecular structures of 3 and 5 (H atoms omitted for clarity).

Fig. S2 Molecular structures of 7, 9 and 10 (H atoms omitted for clarity).

Table S1 Selected interatomic distances [Å] and angles [°] for adducts 1-6 [values in parentheses are for independent molecules].

Compound	1	2	3	4	5	6
Peri moieties	Br SePhI ₂	BrSePh SePh	BrSePh SPh	I2SePh SePh	I ₂ SePh SPh	Br TePhBr ₂
Peri-region distances and sub-v	van der Waals con	tacts				
E(1)…X/E	3.1753(19)	2.801(3)	2.740(3)	3.326(3)	3.252(2)	3.2581(19)
Σr _{vdW} - E···X/E; % ΣrvdW ^a	0.5747; 85	0.999; 74	0.9600; 74	0.474; 88	0.448; 88	0.6519; 83
E(1)-C(1)	1.954(12)	1.97(3)	1.949(9)	1.985(15)	1.949(7)	2.141(13)
X/E-C(9)	1.920(13)	1.90(2)	1.788(10)	1.922(14)	1.803(7)	1.915(14)
Acenaphthene bond lengths						
C(1)-C(2)	1.382(18)	1.37(3)	1.418(11)	1.40(2)	1.387(9)	1.40(2)
C(2)-C(3)	1.391(18)	1.43(4)	1.386(14)	1.37(2)	1.398(10)	1.41(2)
C(3)-C(4)	1.346(17)	1.32(4)	1.393(10)	1.35(2)	1.381(11)	1.401(19)
C(4)-C(5)	1.374(18)	1.47(3)	1.433(11)	1.44(2)	1.418(9)	1.41(2)
C(5)-C(10)	1.452(17)	1.47(3)	1.409(13)	1.416(20)	1.431(9)	1.427(19)
C(5)-C(6)	1.394(16)	1.37(3)	1.411(11)	1.44(2)	1.406(10)	1.416(18)
C(6)-C(7)	1.377(19)	1.33(3)	1.389(12)	1.38(2)	1.376(10)	1.40(2)
C(7)-C(8)	1.418(19)	1.46(3)	1.398(15)	1.36(2)	1.410(10)	1.42(2)
C(8)-C(9)	1.359(16)	1.40(3)	1.406(11)	1.42(2)	1.388(11)	1.361(19)
C(9)-C(10)	1.418(17)	1.38(3)	1.425(10)	1.44(2)	1.446(9)	1.452(20)

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is O The Royal Society of Chemistry 2012

C(10)-C(1)	1.419(15)	1.39(3)	1.396(9)	1.42(2)	1.416(10)	1.438(18)
C(4)-C(11)	1.521(17)	1.53(4)	1.504(11)	1.51(2)	1.491(10)	1.506(19)
C(11)-C(12)	1.556(18)	1.57(3)	1.537(11)	1.57(2)	1.551(11)	1.59(2)
C(12)-C(6)	1.518(18)	1.55(3)	1.526(15)	1.50(2)	1.517(9)	1.49(2)
Peri-region bond angles						
E(1)-C(1)-C(10)	122.3(9)	117.2(14)	118.0(6)	122.6(11)	123.4(5)	122.8(10)
C(1)-C(10)-C(9)	133.6(11)	132(2)	129.5(8)	132.6(13)	132.5(6)	132.0(12)
X/E-C(9)-C(10)	120.8(9)	118.1(15)	117.9(6)	125.3(11)	123.1(6)	120.0(9)
Σ of bay angles	376.7(24)	367.3(39)	365.4(16)	380.5(29)	379.0(14)	374.8(25)
Splay angle ^b	16.7	7.3	5.4	20.5	19.0	14.8
C(4)-C(5)-C(6)	111.9(11)	114.3(19)	111.4(8)	110.2(13)	110.6(6)	111.1(12)
Out-of-plane displacemen	nt					
E(1)	0.125(1)	-0.073(1)	0.069(1)	-0.091(1)	0.130(1)	0.531(1)
X/E(1)	-0.101(1)	0.121(1)	-0.163(1)	0.179(1)	-0.133(1)	-0.205(1)
Central acenaphthene rin	g torsion angles					
C:(6)-(5)-(10)-(1)	178.85(1)	179.29(1)	-178.60(1)	-179.55(1)	178.01(1)	174.62(1)
C:(4)-(5)-(10)-(9)	179.14(1)	-176.49(1)	177.79(1)	-178.75(1)	178.30(1)	-179.67(1)
^a van der Waals radii used for	calculations: r _{vdW} (S)	1.80Å, r _{vdW} (Se) 1	.90Å, r _{vdW} (Te) 2.0	6Å, r _{vdW} (Br) 1.85	Å, r _{vdW} (I) 1.98 Å; ¹⁶	^{<i>b</i>} Splay angle: Σ of the three

bay region angles - 360.

Table S2 Selected interatomic distances [Å] and angles [°] for adducts 7-12 [values in parentheses are for independent molecules].

Compound	7	8	9 D. T. N.	10	11	12
Peri moieties	Br TePhI ₂	Br ₂ TePh SPh	Br ₂ TePh SePh	I2TePh SPh	I ₂ TePh SePh	(BrTePh) ₂ O
Peri-region distances and sub-	van der Waals c	contacts				
E(1)…X/E	3.2050(11)	3.218(3)	3.2729(8)	3.141(4)	3.2677(18) [3.2862(18)]	3.335(1) [3.385(1)]
Σr _{vdW} - E····X/E; % ΣrvdW ^a	0.705; 82	0.642; 83	0.6871; 83	0.719; 81	0.6923; 83 [0.6738; 83]	0.785; 81 [0.735; 82]
E(1)-C(1)	2.135(5)	2.161(14)	2.148(7)	2.112(12)	2.117(10) [2.132(12)]	2.137(4) [2.131(5)]
X/E-C(9)	1.900(6)	1.821(15)	1.940(8)	1.800(14)	1.912(11) [1.937(11)]	2.135(4) [2.146(5)]
Acenaphthene bond lengths						
C(1)-C(2)	1.389(9)	1.364(19)	1.392(10)	1.358(16)	1.411(17) [1.363(16)]	1.380(7) [1.383(7)]
C(2)-C(3)	1.424(8)	1.42(3)	1.412(12)	1.379(18)	1.400(16) [1.451(16)]	1.407(6) [1.407(6)]
C(3)-C(4)	1.365(9)	1.402(18)	1.380(9)	1.351(17)	1.380(14) [1.356(19)]	1.362(7) [1.359(7)]
C(4)-C(5)	1.409(9)	1.369(19)	1.414(10)	1.414(17)	1.419(16) [1.413(17)]	1.406(7) [1.411(7)]
C(5)-C(10)	1.431(8)	1.43(3)	1.420(11)	1.380(18)	1.372(14) [1.429(16)]	1.420(6) [1.420(6)]
C(5)-C(6)	1.410(8)	1.382(17)	1.397(9)	1.422(19)	1.408(15) [1.390(17)]	1.416(6) [1.429(6)]
C(6)-C(7)	1.367(10)	1.409(18)	1.386(10)	1.347(19)	1.382(17) [1.390(19)]	1.355(7) [1.361(7)]
C(7)-C(8)	1.403(9)	1.41(3)	1.401(12)	1.42(2)	1.425(17) [1.414(17)]	1.415(6) [1.409(7)]
C(8)-C(9)	1.389(9)	1.389(18)	1.393(9)	1.380(19)	1.387(16) [1.363(17)]	1.379(6) [1.382(6)]
C(9)-C(10)	1.412(9)	1.382(17)	1.425(9)	1.446(16)	1.429(16) [1.438(16)]	1.434(6) [1.451(7)]
C(10)-C(1)	1.436(8)	1.438(16)	1.423(8)	1.465(16)	1.439(15) [1.424(17)]	1.444(6) [1.427(6)]
C(4)-C(11)	1.528(8)	1.54(3)	1.508(12)	1.536(19)	1.486(15) [1.532(18)]	1.516(6) [1.520(7)]
C(11)-C(12)	1.537(10)	1.532(17)	1.544(10)	1.529(19)	1.579(17) [1.54(2)]	1.528(7) [1.556(7)]
C(12)-C(6)	1.510(9)	1.49(2)	1.521(11)	1.53(2)	1.524(16) [1.509(18)]	1.518(6) [1.512(7)]
Peri-region bond angles						
E(1)-C(1)-C(10)	123.2(4)	121.8(10)	123.6(5)	122.8(8)	124.3(9) [122.7(9)]	124.0(3) [123.2(4)]
C(1)-C(10)-C(9)	131.8(5)	132.2(14)	131.1(7)	129.0(11)	128.7(10) [131.4(11)]	132.1(4) [132.3(4)]
X/E-C(9)-C(10)	121.8(4)	121.7(10)	122.6(5)	122.7(10)	122.3(8) [121.5(9)]	122.9(3) [124.6(3)]

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is © The Royal Society of Chemistry 2012

Σ of bay angles	376.8(11)	375.7(27)	377.3(14)	374.5(23)	375.3(19) [375.6(22)]	379.0(8) [380.1(9)]
Splay angle ^b	16.8	15.7	17.3	□4.5	15.3 [15.6]	19.0 [20.1]
C(4)-C(5)-C(6)	111.7(5)	113.1(14)	111.2(7)	112.3(11)	110.0(9) [112.1(11)]	111.1(4) [111.0(4)]
Out-of-plane displacement						
E(1)	-0.055(1)	0.493(1)	-0.447(1)	0.122(1)	-0.463(1) [-0.582(1)]	0.045(1) [0.099(1)]
X/E(1)	0.154(1)	-0.257(1)	0.217(1)	0.162(1)	0.487(1) [0.402(1)]	-0.139(1) [0.115(1)]
Central acenaphthene ring to	orsion angles					
C:(6)-(5)-(10)-(1)	179.52(1)	176.92(1)	-175.53(1)	-179.00(1)	-175.72(1) [-176.60(1)]	179.78(1) [179.01(1)]
C:(4)-(5)-(10)-(9)	-177.77(1)	175.99(1)	-177.49(1)	178.10(1)	175.82(1) [-172.96(1)]	176.60(1) [178.03(1)]
van der Waals radii used for ca	lculations: rvdw(S	S) 1.80Å, r _{vdW} (Se	e) 1.90Å, r _{vdW} (Te)	2.06Å; ¹⁶ b Splay	angle: Σ of the three bay reg	ion angles – 360.

Table S3 Non-bonded (hydrogen bond) intramolecular CH $\cdots\pi$ interactions [Å] and angles [°] for 4-11.

	D-H···A	H····A	D ···· A	D-H···A
4 intra	C(14)-H(14)Cg(20-25)	2.487(1)	3.432(1)	172.27(1)
4 inter	C(11)-H(11A)···Cg(1-5,10)	2.888(1)	3.641(1)	133.55(1)
4 inter	C(12)-H(12B)···C□(13-18)	2.984(1)	3.622(1)	123.19(1)
4 inter	C(16)-H(16)Cg(13-18)	2.998(1)	3.886(1)	156.19(1)
5 intra	C(18)-H(18)····Cg(19-24)	2.510(1)	3.439(1)	177.69(1)
5 inter	C(11)-H(11B)Cg(1-5,10)	2.901(1)	3.638(1)	139.59(1)
5 inter	C(16)-H(16)Cg(13-18)	2.982(1)	3.839(1)	154.09(1)
6 inter	$C(17)-H(17)\cdots Cg(1-10)$	2.755(1)	3.446(1)	130.27(1)
7 inter	C(11)-H(11B)Cg(5-10)	2.798(1)	3.606(1)	139.07(1)
7 inter	$C(12)-H(12A)\cdots Cg(1-5,10)$	2.689(1)	3.532(1)	143.55(1)
8 inter	C(17)-H(17)····Cg(1-5,10)	2.735(1)	3.619(1)	155.04(1)
inter	$C(15)-H(15)\cdots Cg(1-5,10)$	2.749(1)	3.594(1)	148.42(1)
10 inter	$C(15)-H(15)\cdots Cg(1-5,10)$	2.700(1)	3.598(1)	158.19(1)
10 inter	C(20)-H(20)···Cg(13-18)	2.879(1)	3.684(1)	143.23(1)
10 inter	$C(22)-H(22)\cdots Cg(5-10)$	2.958(1)	3.764(1)	143.41(1)
11 inter	$C(15)-H(15)\cdots Cg(5-10)$	2.713(1)	3.391(1)	128.96(1)

5

4. References

1 F. R. Knight, A. L. Fuller, M. Bühl, A. M. Z. Slawin and J. D. Woollins, Inorg. Chem., 2010, 49, 7577.

- 2 A. D. Becke, J. Chem. Phys., 1993, 98, 5648; C. Lee, W. Yang and R. G. Parr, Phys. Rev. B, 1988, 37, 785.
- 3 R. C. Binning and L. A. Curtiss, J. Comput. Chem., 1990, 11, 1206.
- 10 4 P. Schwerdtfeger, M. Dolg, W. H. E. Schwarz, G. A. Bowmaker and P. D. W. Boyd, J. Chem. Phys., 1989, 91, 1762; A. Bergner, M. Dolg, W. Kuechle, H. Stoll and H. Preuss, Mol. Phys., 1993, 80, 1431.
- 5 S. Huzinaga, J. Anzelm, M. Klobukowski, E. Radzio-Andzelm, Y. Sakai and H. Tatewaki, in: *Gaussian Basis Sets for Molecular Calculations*, Elsevier, Amsterdam, 1984.

6

- 15 7 A. E. Reed, F. Curtiss and L. A. F. Weinhold, Chem. Rev., 1988, 88, 899.
- 8 As implemented in G03: V. Barone, M. Cossi and J. Tomasi, J. Comput. Chem., 1998, 19, 404; M. Cossi, G. Scalmani, N. Rega and V. Barone, J. Chem. Phys., 2002, 117, 43; M. Cossi and O. Crescenzi, J. Chem. Phys., 2003, 19, 8863.
- 9 S. Grimme, J. Antony, S. Ehrlich and H. Krieg, J. Chem. Phys., 2010, 132, 154104.
- 10 S. F. Boys and F. Bernardi, Mol. Phys., 1970, 19, 553.
- ²⁰ 11 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J.Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D.
- Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez and J. A. Pople, Gaussian 03, Revision E.01, Gaussian, Inc., Wallingford CT, 2004.
- 12 A. L Fuller, L. A. S. Scott-Hayward, Y. Li, M. Bühl, A. M. Z. Slawin and J. D. Woollins, J. Am. Chem. Soc., 2010, 132, 5799.
- 13 CrystalClear 2.0: Rigaku Corporation, 2010. CrystalClear Software User's Guide, Molecular Structure Corporation, © 2000. J. W. P. Flugrath, *Acta Crystallogr., Sect. D*, 1999, **D55**, 1718.
- 14 CrystalStructure 4.0: Crystal Structure Analysis Package, Rigaku and Rigaku/MSC (2009). 9009 New Trails Dr., The Woodlands, TX 77381, USA.
- 15 SHELX97: G. M. Sheldrick, Acta Crystallogr., Sect. A, 2008, 64, 112.
- 16 A. Bondi, J. Phys. Chem., 1964, 68, 441.