Supporting Information

2D and 3D coordination polymers involving trigonal tritopic linker

Ines Maria Hauptvogel,^a Volodymyr Bon,^a Ronny Grünker,^a Igor A. Baburin,^b Irena Senkovska,^a Uwe Müller,^c Stefan Kaskel^a*

General remarks

Powder X-ray diffraction (PXRD) patterns were obtained in transmission geometry using a STOE StadiP X-ray diffractometer equipped with an IPDS detector and monochromated Cu-K α 1 (λ = 0.15405 nm) radiation (40 kV, 30 mA). Thermogravimetric analyses (TG) were carried out under air atmosphere using a Netzsch STA 409 thermal analyzer. Infrared spectra (IR) were recorded in diffuse reflection geometry using a BIORAD Excalibur FTS3000 (Varian Inc.) infrared spectrometer. Elemental analysis (C, H, N) was performed with a EA 3000 Euro Vector CHNSO analyzer from Hekatech.

Preparation and characterization of 4,4',4''-(benzene-1,3,5-triyl-tris(benzene-4,1-diyl))tribenzoic acid (H₃BBC)

A mixture of 4-acetyl-4'-bromobiphenyl (13.2 g, 48.0 mmol) and trifluoromethanesulfonic acid (2.4 mL) in toluene (100 mL) was heated to reflux under argon atmosphere for 14 h. The formed precipitate was filtered off, washed with methanol and re-crystallized from chloroform. After drying at 80 °C 4.9 g (13.3 %) of the product were obtained.^[1]

¹H-NMR (CDCl₃): δ /ppm = 7.53 (d, 6H), 7.59 (d, 6H), 7.69 (d, 6H), 7.79 (d, 6H), 7.86 (s, 3H). ¹³C-NMR (CDCl₃): δ /ppm = 121.76, 125.10, 127.44, 127.86, 128.65, 131.99, 139.31, 139.49, 140.29, 141.90. Elemental analysis for C₄₂H₂₇Br₃: calc. (%): C 65.40, H 3.53; found (%): C 65.27, H 3.30. IR: v/cm⁻¹ = 3088 (w), 3032 (w), 1598 (m), 1514 (w), 1484 (m), 1445 (m), 1390 (m), 1073 (m), 1001 (s), 854 (m), 844 (m), 802 (s), 740 (m), 700 (m).

To a solution of 1,3,5-tris(4'-bromobiphenyl-4-yl)benzene (2.01 g, 2.61 mmol) in dry THF (120 mL), *n*-butyllithium (6.3 mL, 2.5 mol L⁻¹ solution in hexane) was added slowly at -70 °C under argon atmosphere. After stirring the solution for 6 h at 203K, CO₂ gas was passed through the reaction mixture for 30 min. After the solution was warmed up to room temperature under CO₂ flow, water was added to remove the excess of *n*-BuLi. Acidifying the solution with acetic acid gave a clear solution. The THF

was removed under reduced pressure and the resulting white precipitate was collected by filtration. Drying the substance under vacuum yields 1.66 g (95.4 %) of the product.^[2]

¹H-NMR (DMSO): δ/ppm = 7.90 (d, 12H), 8.06 (m, 15H), 12.98 (s, 3H). ¹³C-NMR (DMSO): δ/ppm = 124.61, 126.85, 127.60, 128.01, 129.78, 130.12, 138.39, 139.94, 141.13, 143.83, 167.23. Elemental analysis for C₄₅H₃₀O₆·1.5 H₂O: calc. (%): C 77.91, H 4.79; found (%): C 78.10, H 4.63. IR: v/cm⁻¹ = 3032 (w), 2966 (w), 1681 (s), 1605 (s), 1574 (w), 1552 (w), 1527 (m), 1495 (m), 1422 (m), 1391 (m), 1281 (s), 1178 (m), 1124 (m), 1004 (m), 937 (w), 866 (m), 822 (s), 771 (s), 733 (m), 697 (m), 664 (w).

X-ray powder diffraction experiments and thermogravimetric analyses

Figure S1. *left:* PXRD patterns of DUT-40: calculated (green), as synthesized (black), activated by supercritical CO₂ drying (red), resolvated with liquid DMF (dark blue), and resolvated with DMF vapor (light blue); *right:* Thermogravimetric analysis of DUT-40 (as synthesized).

Figure S2. a) PXRD patterns of DUT-42: calculated (green), as synthesized (black), activated by supercritical CO₂ drying (red), resolvated with liquid DMF (dark blue), and resolvated with DMF vapor (light blue).

Figure S3. b) *left:* Thermogravimetric analysis of as synthesized DUT-42; *right*: Thermogravimetric analisis of DUT-42 sample after supercritical CO₂ drying).

Figure S4. *left:* PXRD patterns of DUT-43: calculated (green), as synthesized (black), activated by supercritical CO₂ drying (red), resolvated with liquid DMF (dark blue), and resolvated with DMF vapor (pale blue); *right:* Thermogravimetric analysis of DUT-43 (as synthesized).

Figure S5. *left:* PXRD patterns of DUT-44: calculated (green), as synthesized (black), activated by supercritical CO₂ drying (red), and resolvated with DEF (blue); *right:* Thermogravimetric analysis of DUT-44 (as synthesized).

Adsorption of dyes

Table S1. Dye adsorption of DUT-40 and DUT-42 - 44.

	DUT-40	DUT-42	DUT-43	DUT-44
as made compound		ALL CONTRACTOR		
Isatin @MOF				
¢ N N N				~~/~
Brilliant green@MOF				
	3	4		2.
Nile red@MOF	*		*	
Nile blue@MOF			*	
		M.		
Methylene blue@MOF			V.	
		•		
Fluorescein@MOF	*		*	/* A
но соон		1		

Disperse Red 1@MOF

* The picture was taken thought the polarizing filter of the microscope.

Crystallographic study

Compound	1	2	3	4	5
	DUT-40	DUT-41	DUT-42	DUT-43	DUT-44
Empirical formula	$C_{45}H_{27}O_8Zn_2$	$C_{90}H_{54}O_{15}Zn_3$	$C_{51}H_{29}O_{10}SZn_2$	$C_{273}H_{195}N_4O_{52}Zn_{10}$	$C_{55}H_{49}Co_2N_3O_{12}$
Formula weight	826.41	1571.44	964.54	5017.03	1061.83
Crystal system	Monoclinic	Monoclinic	Hexagonal	Monoclinic	Monoclinic
Space group	C2/c	Сс	P6522	C2/c	C2/c
Unit cell	a = 19.834(4)	a = 24.127(5)	a = 24.057(3)	a = 23.934(5)	a = 39.776(8)
dimensions / Å,	b = 42.111(8)	b = 41.811(8)	c = 26.996(5)	b = 41.860(8)	b = 24.693(5)
deg.	c = 12.913(3)	c = 20.186(4)		c = 45.532(9)	c = 21.823(4)
	$\beta = 118.69(3)$	$\beta = 115.27(3)$		$\beta = 90.12(3)$	$\beta = 117.94(3)$
Volume / Å ³	9461(3)	18414(6)	13530(3)	45617(16)	18936(6)
Z, Calc. density /	4, 0.580	4, 0.567	6, 0.710	4, 0.731	8, 0.745
Mg/m ³					
μ / mm^{-1}	0.952	0.747	1.053	0.558	0.386
F(000)	1684	3216	2946	10308	4400
Limiting indices	-24 <u>≤</u> h <u>≤</u> 24	-31≤h≤32	-30≤h≤30	-23≤h≤23	-42≤h≤41
	-53 <u>≤</u> k≤53	-53≤k≤52	-31≤k≤31	-48≤k≤47	-28≤k≤28
	-17≤l≤17	-25≤l≤25	-33≤l≤33	-52≤l≤52	-25≤l≤25
Reflections	47983/10707	96110/40518	155346/11149	132373/32809	57847/13628
collected / unique	R(int)=0.0838	[R(int)=0.0544]	[R(int)=0.0934]	[R(int)=0.0584]	[R(int)=0.0344]
Data / parameters	10707/252	40518/963	11149/293	32809/1534	13628/650
GooF on F ²	0.845	0.912	1.061	1.129	1.086
$R[I>2\sigma(I)]^*$	R ₁ =0.0703	$R_1 = 0.0567$	$R_1 = 0.0428$	R ₁ =0.0911	R ₁ =0.0702
	wR ₂ =0.1866	wR ₂ =0.1484	wR ₂ =0.1086	wR ₂ =0.2671	wR ₂ =0.2145
R (all data) [*]	R ₁ =0.1311	R ₁ =0.0710	$R_1 = 0.0524$	$R_1 = 0.1066$	$R_1 = 0.0787$
	wR ₂ =0.2089	wR ₂ =0.1576	wR ₂ =0.1150	wR ₂ =0.2840	wR ₂ =0.2242
Flack x parameter	-	0.448(4)**	0.041(6)	-	-
Solvent accessible	67.8 (6415)	67.5 (12429)	60.9 (8240)	56.7 (25865)	54.9 (10396)
void / % (Å ³)				62.9 (28687)***	
Number of electron	1296	4248	3200	5490	1417
counted in void (per				7084^{***}	
unit cell)					
Largest diff. peak /	0.871 / -0.410	0.622 / -0.528	0.830 / -0.551	1.236 / -1.797	0.917 / -0.389
hole, e/Å ³					

Table S2. Crystallographic experimental data for compounds 1-5.

* $R1 = \Sigma(F_o - F_c)/\Sigma F_o$; $wR2 = [\Sigma w(F_o^2 - F_c^2)^2/\Sigma w(F_o^2)^2]^{1/2}$. *The value of Flack parameter indicates that absolute configuration cannot be determined for DUT-41 structure. Thus, the structure was refined as racemic twin. ****Solvent accessible void and electrons count after removing all solvent molecules.

Table S3. Selected geometrical parameters for DUT-40.

	Bond		Angle / deg.
	length / Å		
Zn(1)-O(1)	1.931(3)	O(1)-Zn(1)-O(2)#1	123.90(13)
Zn(1)-O(2)#1	1.951(2)	O(1)-Zn(1)-O(3)#2	106.16(13)
Zn(1)-O(3)#2	1.963(2)	O(2)#1-Zn(1)-O(3)#2	104.91(11)
Zn(1)-O(4)	2.164(2)	O(1)-Zn(1)-O(4)	105.19(13)
		O(2)#1-Zn(1)-O(4)	108.18(10)
		O(3)#2-Zn(1)-O(4)	107.68(10)

Symmetry transformations used to generate equivalent atoms: #1 -x+1/2,y-1/2,-z+5/2; #2 x-1/2,y-1/2,z-1.

Table S4. Selected geometrical parameters for DUT-41.

Bond length	Å	Valence angle	deg.	Valence angle	deg.
Zn(1)-O(6)#1	2.249(3)	O(6)#1-Zn(1)-O(13)	168.9(3)	O(3)#2-Zn(2)-O(2)	113.05(9)
Zn(1)-O(13)	2.284(4)	O(6)#1-Zn(1)-O(4)#2	86.59(13)	O(5)#1-Zn(2)-O(2)	116.26(10)
Zn(1)-O(4)#2	2.321(3)	O(13)-Zn(1)-O(4)#2	83.0(3)	O(3)#2-Zn(2)-O(7)	96.66(11)
Zn(1)-O(1)	2.337(2)	O(6)#1-Zn(1)-O(1)	86.61(11)	O(5)#1-Zn(2)-O(7)	94.27(11)
Zn(1)-O(11)	2.354(2)	O(13)-Zn(1)-O(1)	96.59(16)	O(2)-Zn(2)-O(7)	99.77(9)
Zn(1)-O(8)	2.478(5)	O(4)#2-Zn(1)-O(1)	87.12(10)	O(9)-Zn(3)-O(12)	110.17(9)
Zn(2)-O(3)#2	1.9286(19)	O(6)#1-Zn(1)-O(11)	90.43(9)	O(9)-Zn(3)-O(10)	93.91(15)
Zn(2)-O(5)#1	1.932(2)	O(13)-Zn(1)-O(11)	87.17(15)	O(12)-Zn(3)-O(10)	96.69(13)
Zn(2)-O(2)	1.9529(18)	O(4)#2-Zn(1)-O(11)	97.26(9)	O(9)-Zn(3)-O(14)#1	97.5(3)
Zn(2)-O(7)	2.067(2)	O(1)-Zn(1)-O(11)	174.57(9)	O(12)-Zn(3)-O(14)#1	139.6(3)
Zn(3)-O(9)	1.954(2)	O(6)#1-Zn(1)-O(8)	94.93(16)	O(10)-Zn(3)-O(14)#1	110.5(3)
Zn(3)-O(12)	1.9581(18)	O(13)-Zn(1)-O(8)	95.4(3)	O(9)-Zn(3)-O(15)#1	155.4(2)
Zn(3)-O(10)	2.081(5)	O(4)#2-Zn(1)-O(8)	177.63(14)	O(12)-Zn(3)-O(15)#1	91.0(2)
Zn(3)-O(14)#1	2.192(7)	O(1)-Zn(1)-O(8)	94.78(12)	O(10)-Zn(3)-O(15)#1	96.09(18)
Zn(3)-O(15)#1	2.293(7)	O(11)-Zn(1)-O(8)	80.93(12)	O(14)#1-Zn(3)-O(15)#1	57.9(2)
		O(3)#2-Zn(2)-O(5)#1	126.54(11)		

Symmetry transformations used to generate equivalent atoms: #1 x-1/2,y+1/2,z #2 x-1,y,z

Table S5. Selected geometrical parameters for DUT-42.

Bond length	Å	Valence angle	deg.
Zn(1)-O(5)	1.9367(14)	O(5)-Zn(1)-O(4)	121.95(9)
Zn(1)-O(4)	1.9475(16)	O(5)-Zn(1)-O(1)	116.19(7)
Zn(1)-O(1)	1.9528(14)	O(4)-Zn(1)-O(1)	103.31(8)
Zn(1)-O(3)	1.9766(13)	O(5)-Zn(1)-O(3)	104.67(8)
		O(4)-Zn(1)-O(3)	106.29(9)
		O(1)-Zn(1)-O(3)	102.45(7)

Table S6. Selected geometrical parameters for DUT-43.

Bond length	Å	Valence angle	deg.	Valence angle	deg.
Zn(1)-O(8)	1.954(3)	O(8)-Zn(1)-O(13)	124.07(14)	O(21)#1-Zn(4)-O(23)#2	109.85(19)
Zn(1)-O(13)	1.976(3)	O(8)-Zn(1)-O(11)	100.69(13)	O(15)-Zn(4)-O(23)#2	108.0(2)
Zn(1)-O(11)	1.994(3)	O(13)-Zn(1)-O(11)	102.75(14)	O(21)#1-Zn(4)-O(24)	101.6(2)
Zn(1)-O(1)	1.994(3)	O(8)-Zn(1)-O(1)	112.77(13)	O(15)-Zn(4)-O(24)	97.7(2)
Zn(1)-O(2)	2.465(4)	O(13)-Zn(1)-O(1)	111.99(14)	O(23)#2-Zn(4)-O(24)	98.44(17)
Zn(2)-O(6)	1.949(3)	O(11)-Zn(1)-O(1)	100.05(14)	O(18)-Zn(5)-O(19)	70.4(8)
Zn(2)-O(7)	1.950(3)	O(8)-Zn(1)-O(2)	86.01(15)	O(18)-Zn(5)-O(17)	73.2(5)
Zn(2)-O(4)	1.953(3)	O(13)-Zn(1)-O(2)	90.18(15)	O(19)-Zn(5)-O(17)	111.6(4)
Zn(2)-O(5)	1.983(3)	O(11)-Zn(1)-O(2)	158.12(12)	O(18)-Zn(5)-O(20)#1	109.2(5)
Zn(3)-O(10)	1.902(3)	O(1)-Zn(1)-O(2)	58.41(13)	O(19)-Zn(5)-O(20)#1	77.7(4)
Zn(3)-O(12)	1.907(4)	O(6)-Zn(2)-O(7)	122.04(14)	O(17)-Zn(5)-O(20)#1	170.5(2)
Zn(3)-O(9)	1.957(3)	O(6)-Zn(2)-O(4)	111.60(13)	O(18)-Zn(5)-O(16)	117.5(4)
Zn(3)-O(14)	2.033(4)	O(7)-Zn(2)-O(4)	111.04(13)	O(19)-Zn(5)-O(16)	75.4(6)
Zn(4)-O(21)#1	1.903(4)	O(6)-Zn(2)-O(5)	104.64(14)	O(17)-Zn(5)-O(16)	73.3(3)
Zn(4)-O(15)	1.918(4)	O(7)-Zn(2)-O(5)	102.91(13)	O(20)#1-Zn(5)-O(16)	112.3(3)
Zn(4)-O(23)#2	1.966(4)	O(4)-Zn(2)-O(5)	101.94(13)	O(18)-Zn(5)-O(22)#2	104.9(4)
Zn(4)-O(24)	2.022(5)	O(10)-Zn(3)-O(12)	126.29(17)	O(19)-Zn(5)-O(22)#2	175.0(7)
Zn(5)-O(18)	1.634(11)	O(10)-Zn(3)-O(9)	106.54(16)	O(17)-Zn(5)-O(22)#2	64.79(17)
Zn(5)-O(19)	1.728(13)	O(12)-Zn(3)-O(9)	103.75(19)	O(20)#1-Zn(5)-O(22)#2	105.8(2)
Zn(5)-O(17)	1.802(3)	O(10)-Zn(3)-O(14)	107.87(16)	O(16)-Zn(5)-O(22)#2	106.1(3)
Zn(5)-O(20)#1	1.986(5)	O(12)-Zn(3)-O(14)	107.29(17)		
Zn(5)-O(16)	1.992(6)	O(9)-Zn(3)-O(14)	102.68(15)		
Zn(5)-O(22)#2	2.049(4)	O(21)#1-Zn(4)-O(15)	134.0(3)		

Symmetry transformations used to generate equivalent atoms: #1 x-1/2,y+1/2,z #2 x+1/2,y+1/2,z

Table S7. Selected geometrical parameters for DUT-44.

Bond length	Å	Valence angle	deg.	Valence angle	deg.	Valence angle	deg.
Co(1)-O(5)	1.988(2)	O(5)-Co(1)-O(3)	102.76(11)	O(11)-Co(1)-O(10)	57.87(13)	O(8)-Co(2)-O(7)	88.52(15)
Co(1)-O(3)	1.998(2)	O(5)-Co(1)-O(11)	102.90(11)	O(9)-Co(1)-O(10)	85.38(12)	O(4)-Co(2)-O(1)	90.89(9)
Co(1)-O(11)	2.081(3)	O(3)-Co(1)-O(11)	95.13(12)	O(1)-Co(1)-O(10)	98.54(12)	O(2)-Co(2)-O(1)	94.46(11)
Co(1)-O(9)	2.156(2)	O(5)-Co(1)-O(9)	154.94(11)	O(4)-Co(2)-O(2)	95.57(10)	O(6)-Co(2)-O(1)	90.81(11)
Co(1)-O(1)	2.202(3)	O(3)-Co(1)-O(9)	95.21(11)	O(4)-Co(2)-O(6)	176.16(12)	O(8)-Co(2)-O(1)	89.41(13)
Co(1)-O(10)	2.296(3)	O(11)-Co(1)-O(9)	92.61(11)	O(2)-Co(2)-O(6)	87.72(11)	O(7)-Co(2)-O(1)	177.74(11)
Co(2)-O(4)	2.047(2)	O(5)-Co(1)-O(1)	98.45(10)	O(4)-Co(2)-O(8)	90.80(14)	O(8)-Co(2)-O(7)	88.52(15)
Co(2)-O(2)	2.058(3)	O(3)-Co(1)-O(1)	105.06(10)	O(2)-Co(2)-O(8)	172.48(13)		
Co(2)-O(6)	2.087(3)	O(11)-Co(1)-O(1)	146.47(10)	O(6)-Co(2)-O(8)	85.78(15)		
Co(2)-O(8)	2.095(3)	O(9)-Co(1)-O(1)	59.59(9)	O(4)-Co(2)-O(7)	88.24(10)		
Co(2)-O(7)	2.109(3)	O(5)-Co(1)-O(10)	86.39(12)	O(2)-Co(2)-O(7)	87.70(12)		
Co(2)-O(1)	2.122(2)	O(3)-Co(1)-O(10)	152.95(14)	O(6)-Co(2)-O(7)	89.94(12)		

Table S8. Weak interactions in the crystal structure of DUT-40.

CgCg / X-HCg	CgCg, Å	H…Cg, Å	XCg, Å	X-HCg, deg
Cg(1)Cg(3)#1	4.737(2)	-	-	-
Cg(1)Cg(3)#2	4.737(2)	-	-	-
Cg(2)Cg(2)#1	4.868(2)	-	-	-
C(22)-H(22)Cg(1)#1	-	2.87	3.571(4)	133
C(22)-H(22)Cg(1)#3	-	2.87	3.571(4)	133

Symmetry operations: #1 = 1/2-X, 1/2-Y, 2-Z, #2 = -1/2+X, 1/2-Y, -1/2+Z, #3 = 1/2+X, 1/2-Y, 1/2+ZCg1, Cg2 and Cg3 are the centers of gravity of the rings C(10)/C(11)/C(12)/C(26)/C(12)a/C(11)a, C(13)/C(14)/C(15)/C(16)/C(24)/C(25) and C(17)/C(18)/C(19)/C(20)/C(22)/C(23).

Table S9. Weak interactions in the crystal structure of DUT-41.

CgCg / X-HCg	CgCg, Å	HCg, Å	XCg, Å	X-HCg, deg
Cg(1)Cg(2)#1	4.913(2)	-	-	-
Cg(3)Cg(4)	4.7547(19)	-	-	-
Cg(3)Cg(5)#1	4.679(2)	-	-	-
Cg(3)Cg(6)	4.780(2)	2.87	3.571(4)	133
Cg(4)Cg(7)#2	4.794(2)	2.87	3.571(4)	133
Cg(4)Cg(3)	4.7545(19)	-	-	-
Cg(2)Cg(1)#2	4.913(2)	-	-	-
Cg(2)Cg(8)	4.916(2)	-	-	-
Cg(6) Cg(3)	4.780(2)	-	-	-
C(10)-H(10)Cg(4)#1	-	2.81	3.575(4)	140
C(71)-H(71)Cg(3)#2	-	2.88	3.536(4)	129

Symmetry operations: #1 = -1/2+X, 1/2-Y, -1/2+Z; #2 = 1/2+X, 1/2-Y, 1/2+Z

Cgx (x=1-8) are the centers of gravity of the following aromatic rings: Cg1 C(15)/C(16)/ C(17)/ C(18)/ C(19)/C(20);

Cg2 C(62)/C(63)/C(64)/C(65)/C(73)/C(74); Cg3 C(21)/C(22)/C(23)/C(31)/C(32)/C(45); Cg4 C(59)/C(60)/C(61)/C(75)/C(76)/C(77); Cg5 C(66)/C(67)/C(68)/C(69)/C(71)/C(72); Cg6 C(78)/C(79)/C(80)/C(81)/C(82)/C(83); Cg7 C(9)/C(10)/C(11)/C(12)/C(13)/C(14); Cg8 C(24)/C(25)/C(26)/C(27)/C(29)/C(30)

Table S10. Weak interactions in the crystal structure of DUT-42.

CgCg / X-HCg	CgCg, Å	HCg, Å	XCg, Å	X-HCg, deg
Cg(1)Cg(2)#1	4.967(2)	-	-	-
Cg(1)Cg(2)#2	4.967(2)	-	-	-
Cg(3)Cg(4)#1	4.8375(15)	-	-	-
Cg(3Cg(4)#3	4.8376(15)	-	-	-
C(3)-H(3)Cg(1)#4	-	2.96	3.825(3)	155

Symmetry operations: #1 = Y,-X+Y,1/6+Z; #2= X,X-Y,-1/6-Z; #3= X-Y,-Y,-Z; #4= X-Y,X,-1/6+Z.

Cgx (x=1-4) are the centers of gravity of the following aromatic rings: Cg1 C(11)/C(12)/C(13)/C(14)/C(15)/C(16);

 $Cg2 S(1)/C(2)/C(3)/C(3)h/C(2)h; Cg3 C(17)/C(18)/\overline{C}(19)/C(18)d/\overline{C}(17)d/C(27); Cg4 C(5)/C(6)/C(7)/C(8)/C(9)/C(10).$

Table S11	Weak interactions	in the	crystal	structure	of DUT-43
	weak interactions	in uic	CI yotai	Suuciuic	01 D 0 1 - 45.

CgCg / X-HCg	CgCg, Å	HCg, Å	XCg, Å	X-HCg, deg
Cg(1)Cg(2)#1	4.827(3)	-	-	-
Cg(3)Cg(4)#2	4.680(2)	-	-	-
Cg(7)Cg(17)#3	4.680(2)	-	-	-
Cg(5)Cg(6)#3	4.772(3)	-	-	-
Cg(7)Cg(8)#1	4.681(3)	-	-	-
Cg(7)Cg(9)#	4.619(3)	-	-	-
Cg(2)Cg(1)#	4.827(3)	-	-	-
Cg(10)Cg(11)#4	4.736(3)	-	-	-
Cg(10)Cg(12)#5	4.811(3)	-	-	-
Cg(13)Cg(13)#5	4.741(3)	-	-	-
Cg(6)Cg(5)#4	4.772(3)	-	-	-
C(134)-H(13E)Cg(6)#6	-	2.98	3.914(10)	162
C(137)-H(13N)Cg(14)#7	-	2.85	3.709(9)	149
C(139)-H(13P)Cg(11)#4	-	2.95	3.814(9)	149
C(141)-H(14E)Cg(13)	-	2.94	3.875(14)	161
C(19)-H(19)Cg(7)#1	-	2.81	3.517(4)	134
C(44)-H(44)Cg(10)#3	-	2.94	3.598(5)	129
C(85)-H(85)Cg(3)#2	-	2.85	3.531(5)	131
C(85)-H(85)Cg(3)#4	-	2.85	3.531(5)	131
C(112)-H(112)Cg(10)#5	-	2.76	3.557(5)	145
C(126)-H(126)Cg(7)#4	-	2.89	3.514(6)	126
C(127)-H(127)Cg(7)#4	-	3.00	3.578(5)	122

Symmetry operations: #1 = 3/2-X,1/2-Y,2-Z; #2= 5/2-X,1/2-Y,2-Z; #3= 1/2+X,1/2-Y,1/2+Z; #4= -1/2+X,1/2-Y,-1/2+Z; #5= 1/2-X,1/2-Y,1-Z; #6= 1/2+X,1/2-Y,-1/2+Z; #7= 3/2-X,1/2-Y,1-Z

Cgx (x= 1-4) are the centers of gravity of the following aromatic rings: Cg1 C(20)/C(21)/C(22)/C(23)/C(24)/C(25);

Cg2 C(67)/C(68)/C(69)/C(70)/C(71)/C(72); **Cg3** C(26)/C(27)/C(28)/C(27)d/C(26)d/C(37); **Cg4** C(80)/C(81)/C(82)/C(83)/C(84)/C(85); **Cg5** C(49)/C(50)/C(51)/C(52)/C(53)/C(54); **Cg6** C(117)/C(118)/C(119)/C(120)/C(128)/C(129); **Cg7** C(55)/C(56)/C(57)/C(65)/C(66)/C(73); **Cg8** C(14)/C(15)/C(16)/C(17)/C(18)/C(19); **Cg9** C(121)/C(122)/C(123)/C(124)/C(126)/C(127); **Cg10** C(99)/C(100)/C(101)/C(115)/C(116)/C(130); **Cg11** C(43)/C(44)/C(45)/C(46)/C(47)/C(48); **Cg12** C(106)/C(107)/C(108)/C(109)/C(111)/C(112); **Cg13** C(102)/C(103)/C(104)/C(105)/C(113)/C(114); **Cg14**

Cg11 C(43)/C(44)/C(45)/C(46)/C(47)/C(48);Cg12 C(106)/C(107)/C(108)/C(109)/C(111)/C(112); Cg13 C(102)/C(103)/C(104)/C(105)/C(113)/C(114); Cg14 C(2)/C(3)/C(4)/C(5)/C(6)/C(7).

Table S12	. Weak	interactions	in the	crystal	structure	of DUT-44.
-----------	--------	--------------	--------	---------	-----------	------------

D—H…A	D—H	HA	DA	D—H…A
C(3)—H(3)O(12)#1	0.93	2.44	3.2118	140
C(18)—H(18)O(11)#2	0.93	2.47	3.2777	145
C(48)—H(48A)O(10)#3	0.97	2.59	3.5215	162
C(50)—H(50)O(2)#4	0.93	2.55	3.0327	113
C(10)—H(10)Cg(1)#5	0.93	2.86	3.4426	122
C(47)—H(47A)Cg(2)	0.93	2.50	3.4222	160

 $\frac{1}{1}\frac{1}{2+x,-1/2+y,z}, \frac{1}{2}\frac{1}{2+x,1/2+y,-1/2+z}, \frac{1}{3}\frac{1}{2-x,1/2+y,1/2-z}, \frac{1}{4}\frac{1}{x,-y,-1/2+z}, \frac{1}{5}\frac{1}{x,-y,-z}, Cg(1) \text{ and } Cg(2) \text{ are the centers of gravity of the rings} C(14)/C(15)/C(16)/C(29)/C(30)/C(42) \text{ and } C(21)/C(22)/C(23)/C(24)/C(25)/C(26).$

References

[1] Lu, J.; Tao, Y.; D'iorio, M.; Li, Y.; Ding, J.; Day, M. *Macromolecules* 2004, **37**, 2442.
[2] Dienstmaier, J. F.; Mahata, K.; Walch, H.; Heckl, W. M.; Schmittel, M.; Lackinger, M. *Langmuir* 2010, **26**, 10708.