SUPPLEMENTARY MATERIAL to the paper:

Copper perchlorate and tetrafluoridoborate compounds with the ligand 1,4,5triazanaphthalene. Gradual transformation of mononuclear Cu(II) compounds via polynuclear mixed-valence Cu(II)/Cu(I) species to dinuclear Cu(I); syntheses, characterizations and X-ray structures.

Gerard A. van Albada⁽¹⁾, Ilpo Mutikainen⁽²⁾, Mohamed Ghazzali⁽³⁾, Khalid Al-Farhan⁽³⁾ and Jan Reedijk^(1, 3,*).

- ⁽¹⁾ Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands.
- ⁽²⁾ Laboratory of Inorganic Chemistry, Department of Chemistry, P.O. Box 55 (A.I. Virtasen aukio 1), 00014 University of Helsinki, Finland.
- ⁽³⁾ Department of Chemistry, College of Science, King Saud University, P.O. Box 2455 Riyadh 11451, Kingdom of Saudi Arabia

List of Contents of the Supplementary Material

Figure S1: Photo 1, microscope camera snapshots showing the colour change from red to blue crystals or vice versa.

Figure S2: Photo 2. Example of microscope camera snapshot showing the red crystals of **5** and **5**A as a block-like and a needle-like form.

Figure S3: Atomic displacement plot (30% probability level) of the molecular structure of violet compound $[Cu(tan)_4](BF_4)_2(CH_3OH)_{1.5}(H_2O)$ (3).

Figure S4: Packing diagram for compound **2**, as seen along Y axis.

Figure S5: Packing diagram for compound **7**, as seen along Y axis.

Figure S6: IR Spectra in the Range 1800-400 cm⁻¹ for the compounds 2, 4, 5, 6 and 7

Table S1: Relevant parts of the vibrational spectra for compounds 2, 4, 5, 6 and 7

References

Figure S1: Photo 1, microscope camera snapshots showing the colour change from red to blue crystals or vice versa.

Figure S2: Photo 2. Example of microscope camera snapshot showing the red crystals of **5** and **5**A as a block-like and a needle-like form.

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is © The Royal Society of Chemistry 2012

Figure S3: Atomic displacement plot (30% probability level) of the molecular structure of the purple compound $[Cu(tan)_4](BF_4)_2(CH_3OH)_{1.5}(H_2O)$ (3). Hydrogen atoms, anions and non-coordinating methanol and water molecules are omitted for clarity.

Figure S4. Packing figure of compound **2** along Y axis. Hydrogen atoms, anions and water molecules are omitted for clarity.

Figure S5. Packing figure of compound **7** along Y axis. Hydrogen atoms are omitted for clarity.

Figure S6: IR Spectra in the range 1800-400 cm⁻¹ for compounds **2**, **4**, **5**, **6** and **7**.

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is $\ensuremath{\mathbb{O}}$ The Royal Society of Chemistry 2012

Compound $[Cu(tan)_4](BF_4)_2(H_2O)_2$ (4) blue

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is $\ensuremath{\mathbb{O}}$ The Royal Society of Chemistry 2012

Compound $[Cu_2(tan)_4]_n(CIO_4)_{3n}(H_2O)_{6n}$ (6/6A) red (from ref. 1)

Compound $[Cu_2(tan)_3](ClO_4)_2]$ (7) red.

Compound	colour	IR ^a							anions
free ligand		1010	875	775	641	490	425	400	
2. [Cu(tan) ₄](ClO ₄) ₂ (H ₂ O) ₂ *	blue	1016	878	784	643 621	508	438	421	1072(br)
4. [Cu(tan) ₄](BF ₄) ₂ (H ₂ O) ₂	blue	1014	880	784	642 622	506	3 438	418	1036 1047
5/5A. [Cu ₂ (tan) ₄] _n (BF ₄) _{3n} (H ₂ O) _{6n} **	red	1024	885	790	653 644	520	460 452	437 427	1050
6/6A [Cu ₂ (tan) ₄] _n (ClO ₄) _{3n} (H ₂ O) _{6n} **	red	1030	883	789	622	524 514	452 4 4	29(w) 22(w) 17(w)	1059
7. [Cu ₂ (tan) ₃](ClO ₄) ₂	red	1028	872	784	617	522 512	443	423(w) 412(w)	1058 1100

Table S1. IR data of the Cu compounds with the ligand tan.

br = broad; w = weak; * = X-ray structure done, ** = X-ray structure done, the X-ray crystal structures, with crystals directly from the mother liquid have the formula $[Cu_2(tan)_4]_n(BF_4)_{3n}$ (**5**), $[Cu(tan)_4]_n(BF_4)_{3n}(CH_3OH)_n(H_2O)_{5n}$ (**5A**), $[Cu_2(tan)_4]_n(CIO_4)_{3n}$ (**6**) and $[Cu_2(tan)_4]_n(CIO_4)_{3n}(CH_3OH)_{2n}$ (**6A**), the dry compounds have the formula shown in this table (see experimental section) ^a = strongest peaks of the ring vibration ^{2, 3}

References:

- 1. G. A. van Albada, M. Ghazzali, K. Al-Farhan, I. Mutikainen and J. Reedijk, *Inorg. Chem. Commun.*, 2011, **14**, 162-165.
- 2. W. L. Armarego, G. B. Barlin and E. Spinner, Spectrochim. Acta, 1966, 22, 117-&.
- 3. H. J. Stoklosa, J. R. Wasson, E. V. Brown, H. W. Richardson and W. E. Hatfield, *Inorg. Chem.*, 1975, **14**, 2378-2382.