Electronic Supplementary Information (ESI)

A series of isostructural mesoporous metal-organic frameworks obtained by ion-exchange induced single-crystal to single-crystal transformation

Qingxia Yao,^a Junliang Sun,^a Kuo Li,^b Jie Su,^a Maxim V. Peskov,^a and Xiaodong Zou^{a,*}

^a Inorganic and Structural Chemistry and Berzelii Centre EXSELENT on Porous Materials, Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, SE-10691, Sweden. Fax: 46 8 15 21 87; Tel: 46 8 16 23 89; E-mail: <u>xzou@mmk.su.se</u>

^bCollege of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.

Supporting information

S1- Materials and methods

H₃BTB was synthesized according to the reported procedure.¹ All other chemicals were purchased from commercial suppliers and used without further purification. FT-IR spectrum was performed on a Varian 670-IR spectrometer. Metal ion ratio was analyzed using ICP-AES on an ESCALAB2000 analyzer. Single-crystal X-ray diffraction data were collected at room temperature on an Oxford Diffraction Xcalibur 3 diffractometer equipped with a CCD camera using Mo K α ($\lambda = 0.71073$ Å) radiation. Powder X-ray diffraction (PXRD) patterns were collected using a PANanalytical X'Pert PRO diffractometer equipped with a Pixel detector and using Cu K α ($\lambda = 1.5406$ Å) radiation. All samples were ground with a little DMF prior to data collection and dispersed uniformly on zero-background Si plates.

S2 – Direct synthesis

SUMOF-1-Zn: a mixture of H₃BTB (85.0 mg, 0.2 mmol), bipyridine (24.0 mg, 0.15 mmol), and Zn(NO₃)₂·6H₂O (91.0 mg, 3.0 mmol) dissolved in DMF (10.0 mL) was tightly sealed in a vial and heated at 85° C for 2 days. Faint yellow crystals were isolated by decanting the mother liquid and washed with DMF. Yield > 60% (based on H₃BTB). The resulting crystals were immersed in fresh DMF. The phase purity of the product was confirmed by powder X-ray diffraction.

SUMOF-1-Co: this compound was prepared by a similar procedure as SUMOF-1-Zn, but using $Co(NO_3)_2 \cdot 6H_2O$ instead of $Zn(NO_3)_2 \cdot 6H_2O$. Yield > 30% (based on H₃BTB).

S3 – Single-crystal X-ray crystallography

Single crystal X-ray diffraction data were collected on an XCalibur3 diffractometer equipped with a CCD camera and using Mo K α (λ =0.71073 Å) radiation at room temperature. Data reduction was done by CrysAlisPro program and multi-scan adsorption correction was applied. The structures were solved by direct methods. All non-hydrogen framework atoms were located from the difference Fourier map and refined anisotropically. All hydrogen framework atoms were added on a riding model. The final structures were refined by fullmatrix least-squares techniques against F^2 using the SHELX programs.² Due to the high symmetry of the framework structures and large pore sizes, the guest molecules (DMF and H₂O) could not be located due to the disorder. Solvent-free diffraction intensities, produced by PLATON/SQUEEZE³ to remove the scattering contribution from the highly disordered guest molecules, were used for the final structure refinement. Due to the large fractional pore volume in SUMOF-1, the intensity quality and resolution of the diffraction data were rather poor as indicated by the low I/ σ , high R_{int} and low 2 θ angles. These also resulted in relatively high R-values in the final refinements. Due to the similar atomic scattering factors for all metals, it was not possible to determine the occupancies of different metals by X-ray diffraction. The molar ratios of the metals determined by ICP-AES analysis were used in the refinement.

Fig. S1 Dodecahedral mesorporous cavity in space-filling mode. The yellow ball with a diameter of 2.1 nm indicates the available pore volume of the cavity. The cavity window has a free diameter of 0.8 nm. The 4,4'-bipyridine molecules are disordered.

Identification code	SUMOF-1-Zn	SUMOF-1-Co
Empirical formula	$C_{23}H_{14}NO_4Zn$	$C_{23}H_{14}NO_4Co$
Formula weight	433.72	427.28
Temperature (K)	293	293
Wavelength (Å)	0.71073	0.71073
Crystal system	cubic	cubic
Space group	Pm-3n	Pm-3n
a (Å)	27.6567(7)	27.6523(6)
Volume $(Å^3)$	21154.4(9)	21144.3(8)
Ζ	12	12
Density (calculated)	0.409 g/cm^3	0.403 g/cm^3
Absorption coefficient	0.356	0.252
F(000)	2652	2616
Crystal size (mm ³)	$0.55 \times 0.50 \times 0.50$	0.55 imes 0.35 imes 0.28
Crystal color	Faint yellow	brown
Theta range for data collection	$4.17^{\circ} < \theta < 20.83^{\circ}$	$4.30^{\circ} < \theta < 24.40^{\circ}$
	$-20 \le h \le 27$,	$-32 \le h \le 29,$
Index ranges	$-27 \le k \le 27,$	$-32 \le k \le 26,$
	<i>-</i> 27≤ <i>l</i> ≤27	$-32 \le l \le 29$
Reflections collected	79277	116524
Unique reflections	1991 ($R_{(int)} = 0.1535$)	$3090 (R_{(int)}=0.1324)$
Completeness to theta	0.988	0.992
Absorption correction	Multi-scan	Multi-scan
Min. and max. transmission	0.82378 and 1.00000	0.89927 and 1.00000
Pafinament method	Full-matrix least-squares	Full-matrix least-squares
Kennement method	on F^2	on F^2
Data / restraints / parameters	1991 / 6 / 77	3090 / 6 / 77
Goodness-of-fit on F^2	1.076	1.064
Final D indiana [D]	R1 = 0.0983,	R1 = 0.0834,
Thiar K hidrees [1>2signia(1)]	wR2 = 0.2734	wR2 = 0.2195
Pindiago (all data)	R1 = 0.1183,	R1 = 0.1171,
	wR2 = 0.2972	wR2 = 0.2487
Largest diff. peak and hole	0.569 and -0.263 $e \cdot Å^3$	0.646 and -0.357 $e \cdot Å^3$

Table S1. Crystal data and structure refinements for all SUMOF-1s.

Identification code	SUMOF-1-Cu	SUMOF-1-(Co:2Zn)	SUMOF-1-(Ni:2Zn)
Empirical formula	C ₂₃ H ₁₄ NO ₄ Cu	C ₂₃ Co _{0.35} H ₁₄ NO ₄ Zn _{0.65}	C ₂₃ Ni _{0.38} H ₁₄ NO ₄ Zn _{0.62}
Formula weight	431.89	431.37	431.19
Temperature (K)	293	293	293
Wavelength (Å)	0.71073	0.71073	0.71073
Crystal system	cubic	cubic	cubic
Space group	Pm-3n	Pm-3n	Pm-3n
<i>a</i> (Å)	27.4490(8)	27.6890(7)	27.529(4)
Volume ($Å^3$)	20681.4(10)	21228.5(9)	20862(5)
Ζ	12	12	12
Density (calculated)	0.416 g/cm^3	0.405 g/cm ³	0.405 g/cm ³
Absorption coefficient	0.325	0.319	0.328
F(000)	2640	2639	2643
Crystal size (mm ³)	$0.50 \times 0.35 \times 0.28$	$0.56 \times 0.49 \times 0.46$	$0.50 \times 0.40 \times 0.38$
Crystal color	blue	dark red	green
Theta range for data collection	$4.33^{\circ} < \theta < 19.78^{\circ}$	$4.16^{\circ} < \theta < 23.25^{\circ}$	$4.16^{\circ} < \theta < 17.22^{\circ}$
	$-26 \le h \le 26,$	<i>-</i> 19≤ <i>h</i> ≤30,	-18≤ <i>h</i> ≤23,
Index ranges	$-26 \le k \le 24,$	$-30 \le k \le 30$,	$-23 \le k \le 20$,
	<i>-</i> 24 <i>≤l≤</i> 26	$-30 \le l \le 30$	-23≤ <i>l</i> ≤22
Reflections collected	67474	103500	47799
Unique reflections	$1679 (R_{(int)} = 0.1707)$	$2721 (R_{(int)} = 0.1510)$	$1164 (R_{(int)} = 0.1636)$
Completeness to theta	0.986	0.992	0.981
Absorption	Multi-scan	Multi-scan	Multi-scan
Min and max			
transmission	0.99188 and 1.00000	0.92917and 1.00000	0.93150 and 1.00000
Refinement method	Full-matrix least- squares on F^2	Full-matrix least- squares on F^2	Full-matrix least-squares on F^2
Data / restraints / parameters	1679 / 4/ 77	2721 / 6 / 77	1164 / 7 / 77
Goodness-of-fit on F^2	1.099	1.097	1.110
Final R indices	R1 = 0.1234,	R1 = 0.1075,	R1 = 0.0955,
[<i>I</i> >2sigma(<i>I</i>)]	wR2 = 0.3233	wR2 = 0.2752	wR2 = 0.2725
D indiana (-11 d-4)	R1 = 0.1512,	R1 = 0.1369,	R1 = 0.1116,
k indices (all data)	wR2 = 0.3540	wR2 = 0.3050	wR2 = 0.2936
Largest diff. peak and hole	$0.377 \& -0.228 e \cdot Å^3$	$0.894 \& -0.451 e \cdot Å^3$	$0.415 \& -0.232 e \cdot Å^3$

S4 – Procedure for framework metal ion exchange

SUMOF-1-Cu: to obtain the Cu²⁺ exchanged framework of SUMOF-1, single crystals of the parent compound SUMOF-1-Zn were soaked in a DMF solution of Cu(NO₃)₂·3H₂O (0.04 M) for 3 days. After decanting the solution, the Cu²⁺-exchanged crystals were washed thoroughly with DMF and then soaked in fresh DMF. For ICP-AES analysis, the crystals were transferred to fresh DMF, kept there for 7 days to remove the excess metal salt within the pores, and dried at 100 °C overnight. ICP-AES analysis revealed that the framework Zn²⁺ ions were completely exchanged by Co²⁺, resulting in SUMOF-1-Cu. The reverse ion exchange was also investigated by soaking the fully exchanged SUMOF-1-Cu in DMF solution of Zn(NO₃)₂·6H₂O (0.04 M) for three month. ICP-AES analysis revealed 38% of the framework Cu²⁺ ions were exchanged by Zn²⁺, resulting in **SUMOF-1-(Cu:2Zn)**.

For kinetic study of the metal ion exchange, crystals of SUMOF-1-Zn were soaked in 0.04 M DMF solution of $Cu(NO_3)_2$ ·3H₂O. A small amount of sample was taken out at regular intervals (see Table S1), washed thoroughly with DMF, kept in fresh DMF for 7 days and dried at 100 °C overnight prior to ICP-AES analysis.

SUMOF-1-(Co:2Zn): single crystals of SUMOF-1-Zn were immersed in DMF solution of $Co(NO3)_2 \cdot 6H_2O$ (0.04 M) for 3 months, washed thoroughly with DMF, and then soaked in fresh DMF. For ICP-AES analysis, the crystals were transferred to fresh DMF, kept there for 7 days and dried at 100 °C overnight. ICP-AES analysis revealed that 35% of the framework Zn^{2+} ions were exchanged by Co^{2+} , resulting in SUMOF-1-(Co:2Zn). The reverse ion exchange was also investigated by soaking the resulting SUMOF-1-(Co:2Zn) in DMF solution of $Zn(NO_3)_2 \cdot 6H_2O$ (0.04 M) for 7 days. ICP-AES analysis revealed that all framework Co^{2+} ions were completely exchanged by Zn^{2+} , indicating a complete reversible ion exchange.

SUMOF-1-(Ni:2Zn): single crystals of SUMOF-1-Zn were immersed in DMF solution of $Ni(NO_3)_2 \cdot 6H_2O$ (0.04 M) for 3 months, washed thoroughly with DMF, and then soaked in fresh DMF. For ICP-AES analysis, the crystals were transferred to fresh DMF, kept there for 7 days and dried at 100 °C overnight. ICP-AES analysis revealed 38% of the framework Zn^{2+} ions were exchanged by Ni²⁺, resulting in SUMOF-1-(Ni:2Zn). The reverse ion exchange was also investigated by soaking the resulting SUMOF-1-(Ni:2Zn) in DMF solution of $Zn(NO_3)_2 \cdot 6H_2O$ (0.04 M) for 7 days. ICP-AES analysis revealed that all framework Ni²⁺ ions were exchanged by Zn²⁺, indicating a complete reversible ion exchange.

Samples	Time	Metal molar ratio (%)	
		Zn	Cu
SUMOF-1-Zn soaked in DMF solution of Cu(NO ₃) ₂ ·3H ₂ O (0.04 M)	0 min	100	0
	5 min	89	11
	10 min	78	21
	30 min	60	40
	1 h	54	46
	6 h	40	60
	12 h	23	77
	2 d	6	94
	3 d	5	95
	90 d (yielding SUMOF-1-Cu)	1	99
SUMOF-1-Cu soaked in DMF solution of Zn(NO ₃) ₂ ·6H ₂ O (0.04 M)	90 d	38	62
		Zn	Со
SUMOF-1-Zn soaked in DMF solution of Co(NO ₃) ₂ ·6H ₂ O (0.04 M)	90 d (yielding SUMOF-1- (Co:2Zn))	65	35
SUMOF-1-(Co:2Zn) soaked in DMF solution of Zn(NO ₃) ₂ ·6H ₂ O (0.04 M)	7 d	100	0
		Zn	Ni
SUMOF-1-Zn soaked in DMF solution of Ni(NO ₃) ₂ ·6H ₂ O (0.04 M)	90 d (yielding SUMOF-1- (Ni:2Zn))	62	38
SUMOF-1-(Ni:2Zn) soaked in DMF solution of Zn(NO ₃) ₂ ·6H ₂ O (0.04 M)	7 d	100	0

Table S2. Metal ion ratio during the ion exchange process analyzed by ICP-AES.

Fig. S2 Photographs of a SUMOF-1-Zn crystal ($0.5 \times 0.5 \times 1.5$ mm in size) soaked in DMF solution of Cu(NO₃)₂·3H₂O at different time periods, showing that the diffusion of Cu²⁺ ions into the crystal is isotropic. The cyan color is associated with the incorporation of Cu²⁺ ions into the crystal.

Fig. S3 Photographs of ion exchange process between Cu^{2+} and Zn^{2+} . (a) Yellow SUMOF-1-Zn crystals in DMF. (b) SUMOF-1-Cu crystals after soaking the SUMOF-1-Zn crystals in DMF solution of $Cu(NO_3)_2 \cdot 3H_2O$ for three days. The color of the crystals is changed from yellow to blue. (c) SUMOF-1-(Cu, 2Zn) crystals after soaking the SUMOF-1-Cu crystals in DMF solution of $Zn(NO_3)_2 \cdot 6H_2O$ for three months. The color of the crystals is changed from blue to light blue.

Fig. S4 Photographs of ion exchange process between Co^{2+} and Zn^{2+} . (a) Yellow SUMOF-1-Zn crystals in DMF. (b) SUMOF-1-(Co:2Zn) crystals after soaking the SUMOF-1-Zn crystals in DMF solution of $\text{Co}(\text{NO}_3)_2 \cdot 6\text{H}_2\text{O}$ for three months. The color of the crystals is changed from yellow to dark brown. (c) and (d) SUMOF-1-(Co, 2Zn) crystals being soaked in DMF solution of $\text{Zn}(\text{NO}_3)_2 \cdot 6\text{H}_2\text{O}$ for two and seven days, respectively. The yellow color of the crystals is recovered, indicating that the ion exchange process is reversible.

Fig. S5 Photographs of ion exchange process between Ni^{2+} and Zn^{2+} . a) Yellow SUMOF-1-Zn crystals in DMF. (b) SUMOF-1-(Ni:2Zn) crystals after soaking the SUMOF-1-Zn crystals in DMF solution of Ni(NO₃)₂·6H₂O for three months. The color of the crystals is changed from yellow to green. (c) and (d) SUMOF-1-(Ni, 2Zn) crystals being soaked in DMF solution of Zn(NO₃)₂·6H₂O for two and seven days, respectively. The yellow color of the crystals is recovered, indicating that the ion exchange process is reversible.

Fig. S6 FT-IR spectra of SUMOF-1-Zn, SUMOF-1-Co, SUMOF-1-Cu, SUMOF-1-(Co:2Zn), SUMOF-1-(Ni:2Zn). All the spectra are similar, indicating the same framework.

S5 – Thermal stability study

Thermogravimetric analysis (TGA) was performed in air flow from 30 °C to 600 °C with a heating rate of 10 °C/min using a high-resolution thermogravimetric analyzer (Perkin Elmer TGA 7). TGA analysis showed that the samples lost the solvents (> 60%) in the range of 30-200 °C and decomposed between 260 °C and 350 °C. Note that the final weight losses of SUMOF-1-Zn and SUMOF-1-(Ni : 2Zn) are much higher than the complete losses of the solvents and organic linkers, probably due to the partial losses of the metal clusters.

Fig. S7 TGA plots of SUMOF-1-Zn, SUMOF-1-Co, SUMOF-1-Cu, SUMOF-1-(Co:2Zn), and SUMOF-1-(Ni:2Zn).

References

- 1. J. Kim, B. Chen, T. M. Reineke, H. Li, M. Eddaoudi, D. B. Moler, M. O'Keeffe, O. M. Yaghi, *J. Am. Chem. Soc.* 2001, *123*, 8239-8247.
- 2. G. M. Sheldrick, Acta Crystallogr. 2008, A64, 112-122.
- 3. A. L. Spek, J. Appl. Cryst. 2003, 36, 7-13.