Supporting information (SI)

Metal salts of the binary 4,5-dicyano-2*H*-1,2,3-triazole anion ([C₄N₅]⁻)

by Carles Miró Sabaté, Erwann Jeanneau and Henri Delalu

Table 1 Calculated (scaled) and measured IR and Raman frequencies with intensity (IR) and activity (Raman) values for the 4,5-dicyano-2*H*-1,2,3-triazole anion ($v > 250 \text{ cm}^{-1}$).

	Vscal	Icalc/ Acalc	V _{meas}	V _{meas}	Mode
	$(cm^{-1})^{[a]}$	IR/Raman ^[b]	$(IR, cm^{-1})^{[c]}$	$(Raman, cm^{-1})^{[d]}$	Assignment ^[e]
1	· · ·	0/3	•	· · ·	$\gamma(N-N-C)_{ring}$
	473		460(w)	430(5)	$+\gamma(C-C\equiv N)$
2	475	1/3	475(w)	470(5)	δ(C−C≡N)
3		3/4			v(C-C)
	506			500(2)	$+ \delta (N-C-C)_{ring}$
4	537	6/3	520(m)	525(10)	γ(C−C≡N)
5	619	4/0	605(w)		$\delta(C-C\equiv N)$
6	629	2/14	630(w)		v(C-C)
7	652	0/2	650(vw)	655(2)	$\gamma(N-C-C)_{ring}$
8	687	0/0	710(vw)	710(2)	$\gamma(N_3)$
9	970	0/6	1000(vw)	1010(10)	$\delta(N_3)$
10	1052	3/50	1090(w)	1090(10)	v(N–N)
11	1145	36/0	1165(m)		v(C–N) _{ring}
12	1149	10/4	1180(m)	1160(2)	v(N–N)
13	1241	4/19	1280(w)	1290(10)	$v_s(C-N)_{ring}$
14	1330	50/35	1365(m)	1375(10)	$v_{as}(C-N)_{ring}$
15	1445	13/90	1500(w)	1505(20)	$v(C-C)_{ring}$
16	2219	175/319	2240(s)	2240(70)	$v_{as}(C\equiv N)$
17	2223	144/519	2250(s)	2250(100)	$v_s(C\equiv N)$

[a] Calculated frequencies $(B3LYP/6-311+G(d,p))^{1,2}$ scaled by 0.9613;³ [b] Calculated IR intensities and Raman activities; [c] Experimental IR frequencies and intensities; [d] Experimental Raman frequencies and activities in () brackets; [e] Approximate description of vibrational modes: v = stretching, $\delta =$ in-plane bending, $\gamma =$ out-of-plane bending, $\omega =$ in-plane rocking, $\tau =$ torsion; as = asymmetric and s = symmetric.

Rb–N5	3.028(3)	Rb–N4 ⁱⁱⁱ	3.065(3)
Rb–N6	2.938(3)	Rb–N1 ^{iv}	3.271(3)
Rb–N1 ⁱ	3.062(3)	Rb–N9 ^v	3.168(3)
Rb–N4 ⁱⁱ	3.124(3)	Rb–N9 ^{vi}	3.017(3)
Rb–N5 ⁱⁱ	3.166(3)		
N1–Rb–N4 ⁱⁱ	66.9(1)	N5 ⁱⁱ –Rb–N1 ^{iv}	122.2(1)
N1–Rb–N5 ⁱⁱ	91.4(1)	N5 ⁱⁱ –Rb–N9 ^v	155.2(1)
N1–Rb–N4 ⁱⁱⁱ	75.5(1)	N5 ⁱⁱ –Rb–N9 ^{vi}	109.8(1)
N1–Rb–N1 ^{iv}	110.6(1)	N4 ⁱⁱⁱ –Rb–N5	100.3(1)
N1–Rb–N9 ^v	64.7(1)	N4 ⁱⁱⁱ –Rb–N6	124.4(1)
N1–Rb–N9 ^{vi}	69.8(1)	N4 ⁱⁱⁱ –Rb–N1 ^{iv}	65.0(1)
N1–Rb–N5	170.4(1)	N4 ⁱⁱⁱ –Rb–N9 ^v	155.2(1)
N1-Rb-N6	160.0(1)	N4 ⁱⁱⁱ –Rb–N9 ^{vi}	109.8(1)
N4 ⁱⁱ –Rb–N5 ⁱⁱ	24.6(1)	N5–Rb–N6	25.8(1)
N4 ⁱⁱ –Rb–N4 ⁱⁱⁱ	68.1(1)	N5–Rb–N1 ^{iv}	74.5(1)
N4 ⁱⁱ –Rb–N5	103.6(1)	N5–Rb–N9 ^v	124.7(1)
N4 ⁱⁱ –Rb–N6	118.5(1)	N5–Rb–N9 ^{vi}	114.0(1)
N4 ⁱⁱ –Rb–N1 ^{iv}	131.7(1)	N6–Rb–N1 ^{iv}	80.7(1)
N4 ⁱⁱ –Rb–N9 ^v	131.4(1)	N6–Rb–N9 ^v	108.5(1)
N4 ⁱⁱ –Rb–N9 ^{vi}	97.7(1)	N6–Rb–N9 ^{vi}	90.3(1)
N5 ⁱⁱ –Rb–N4 ⁱⁱⁱ	70.6(1)	N1 ^{iv} –Rb–N9 ^v	65.4(1)
N5 ⁱⁱ –Rb–N5	79.0(1)	N1 ^{iv} –Rb–N9 ^{vi}	127.8(1)
N5 ⁱⁱ –Rb–N6	96.2(1)	N9 ^v –Rb–N9 ^{vi}	69.5(1)

 Table 2 Selected distances (Å) and angles (°) for the coordination around the Rb⁺ cation in compound 4.

Symmetry codes: (i) x, -1+y, z; (ii) 2-x, 1-y, 1-z; (iii) 2-x, -0.5+y, 1.5-z; (iv) x, 1.5-y, 0.5+z; (v) 1-x, 1-y, 1-z; (vi) 1-x, -0.5+y, 0.5-z.

Table 3 Selected distances (Å) and angles (°) for the coordination around the Mg^{2+} cation in compound **6**.

Mg–O10	2.046(3)	Mg–O10 ⁱ	2.046(3)
Mg-O11	2.065(3)	Mg–O12 ⁱ	2.056(3)
Mg-O12	2.056(3)	Mg–O11 ⁱ	2.065(3)
$O10^{i}$ –Mg– $O12^{i}$	90.5(1)	O11 ⁱ -Mg-O11	179.9(1)
$O10^{i}$ –Mg– $O11^{i}$	89.7(1)	O10-Mg-O11	89.7(11)
$O12^{i}$ –Mg–O11 ⁱ	90.2(1)	O10 ⁱ –Mg–O12	89.4(11)
O10 ⁱ –Mg–O10	179.9(1)	$O12^{i}$ -Mg-O12	179.9(1)
$O12^{i}$ –Mg–O10	89.4(1)	O11 ⁱ –Mg–O12	89.7(1)
O11 ⁱ –Mg–O10	90.2(1)	O10-Mg-O12	90.5(1)
O10 ⁱ –Mg–O11	90.2(1)	O11-Mg-O12	90.2(1)
O12 ⁱ –Mg–O11	89.7(1)	_	

Symmetry codes: (i) 2-x, 1-y, 2-z; (ii) 1+x, 1.5-y, 0.5+z.

Table 4 Selected distances (Å) and ang	les (°) for th	ne coordination	around the	Sr^{2+}	cation	in
compound 8b .						

Sr–N23 ⁱ	2.726(4)	Sr013	2.709(3)
Sr–O13 ⁱ	2.726(3)	Sr-O14	2.476(4)
Sr-O2	2.538(3)	Sr-O24	2.581(4)
Sr-O12	2.552(3)	Sr-O25	2.545(4)
$N23^{i}$ -Sr-O13 ⁱ	71.0(1)	O13–Sr–O14	69.2(1)
$N23^{i}$ -Sr-O2	133.0(1)	$N23^{i}$ -Sr-O24	70.1(1)
$O13^{i}$ -Sr-O2	140.8(1)	$O13^{i}$ -Sr-O24	93.8(1)
$N23^{i}$ -Sr-O12	125.2(1)	O2–Sr–O24	73.7(1)
$O13^{i}$ -Sr- $O12$	71.5(1)	O12–Sr–O24	74.1(1)
O2-Sr-O12	69.4(1)	O13–Sr–O24	140.3(1)
$N23^{i}$ -Sr-O13	70.3(1)	$N23^{i}$ -Sr-O25	72.9(1)
$O13^{i}$ -Sr-O13	70.2(1)	$O13^{i}$ -Sr-O25	140.9(1)
O2-Sr-O13	140.2(1)	O2–Sr–O25	76.8(1)
O12-Sr-O13	128.8(1)	O12–Sr–O25	145.0(1)
$N23^{i}$ -Sr-O14	138.8(1)	O13–Sr–O25	83.7(1)
$O13^{i}$ -Sr-O14	102.1(1)	O14–Sr–O24	150.3(1)
O2-Sr-O14	78.1(1)	O14–Sr–O25	94.8(1)
O12-Sr-O14	87.2(1)	O24–Sr–O25	88.0(1)

Symmetry code: (i) 1–x, 1–y, 1–z.

Table 5 Selected hy-	drogen-bonding	geometry for co	ompounds 6 and 8b
----------------------	----------------	-----------------	-------------------

$D-H$ ••• A^b	D-H (Å)	H•••A (Å)	D•••A (Å)	$D-H \bullet \bullet A (^{\circ})$		
6						
O10–H102•••N6 ⁱ	0.827(4)	2.042(4)	2.857(1)	171.0(2)		
O10–H101•••N1 ⁱⁱ	0.841(4)	2.053(4)	2.886(1)	175.1(2)		
O11-H112•••O13	0.819(4)	1.973(4)	2.762(1)	167.0(2)		
O11–H111•••N9 ⁱⁱⁱ	0.836(4)	2.230(5)	2.944(1)	144.8(2)		
O12–H122•••O13 ^{iv}	0.838(4)	2.008(4)	2.824(1)	174.9(1)		
O12-H121•••N4	0.838(4)	2.005(5)	2.796(1)	160.1(2)		
O13-H131•••N5	0.852(4)	1.958(4)	2.775(1)	163.4(2)		
		8b				
O23–H231•••N14 ⁱ	0.829(4)	1.991(4)	2.814(1)	171.9(2)		
O21–H212•••N15 ⁱⁱ	0.833(4)	2.528(4)	3.107(1)	127.6(1)		
O21–H212•••N16 ⁱⁱ	0.833(3)	2.002(4)	2.796(1)	158.7(1)		
O21–H211•••N4 ⁱⁱⁱ	0.831(4)	2.498(5)	3.265(1)	153.8(1)		
O22–H222•••N15 ^{iv}	0.822(3)	2.024(4)	2.845(1)	176.1(1)		
O9–H91•••N4 ^v	0.854(4)	2.317(5)	3.168(1)	174.4(1)		
O22–H221•••N15 ^{vi}	0.816(4)	2.424(4)	3.154(1)	149.5(1)		
O24–H242•••N5 ^v	0.823(4)	2.058(4)	2.870(1)	169.2(2)		

Symmetry codes for **6**: (i) x, 1.5–y, 0.5+z; (ii) 1–x, 1–y, 2–z; (iii) 1+x, 1.5–y, 0.5+z; (iv) 2–x, 1–y, 1–z. **8b**: (i) 0.5–x, -0.5+y, 1.5–z; (ii) -0.5+x, 1.5–y, -0.5+z; (iii) -0.5+x, 1.5–y, 0.5+z; (iv) 1.5–x, -0.5+y, 1.5–z; (v) 0.5+x, 1.5–y, 0.5+z; (vi) 0.5+x, 1.5–y, -0.5+z.

Graph-set discussion of compounds 6 and 8b

Using the formalism of graph-set analysis,^{4,5} the seven hydrogen bonds found in the structure of **6** form **D1,1(2)** dimmeric graph-sets and six of these hydrogen bonds also form dimmeric **D2,2(7)** interactions (primary level). At the secondary level, finite **D2,2(X)** (X = 4, 5, 7) and infinite **C1,2(6)** and **C2,2(X)** (X = 8–11) chain patterns and ring hydrogen-bonded networks of the type **R2,4(12)** and **R4,4(18)** can be found. Fig. 1a shows a view of the smaller **R2,4(12)** patterns, which are formed by interaction of the magnesium octahedrons over water molecules (O11•••O13 = 2.762(1) and O12•••O13^{iv} = 2.824(1) Å; symmetry code: (iv) 2–x, 1–y, 1–z). These patterns form infinite **C1,2(6)** chains along the *c*-axis. Fig. 1b shows the larger **R4,4(18)** graph-sets, which are formed by interaction of the magnesium octahedrons over anions (O10•••N1ⁱⁱ = 2.886(1) and O11•••N9ⁱⁱⁱ = 2.944(1) Å; symmetry codes: (ii) 1–x, 1–y, 2–z; (iii) 1+x, 1.5–y, 0.5+z). In analogy to the **R2,4(12)** patterns described above, these graph-sets also form infinite chains, which run parallel to the *a*-axis and take the graph-set descriptor **C2,2(9)**.

Fig. 1 Ring hydrogen-bonding graph-sets in the crystal structure of compound 6 (a) view along the *a*-axis and b) view along the *c*-axis. Thin lines represent coordination around the Mg^{2+} cations and thick dotted lines represent hydrogen bonds.

The structure of compound **8b** shows extensive hydrogen-bonding (Table 5). Using the formalism of graph-set analysis, the eight hydrogen bonds found in the structure of the compound form seven **D1,1(2)** dimmeric graph-sets and one **C1,1(6)** infinite chain (primary level). This later motif is the only chain hydrogen-bonding motif found in the structure and is formed by the interaction of the carboxylic acid proton of one anion with one of the triazole ring nitrogen atoms (O9•••N4^v = 3.168(1) Å, symmetry code: (v) 0.5+x, 1.5–y, 0.5+z). At the secondary level, most of the graph-sets formed are dimmeric interactions, which take the labels **D1,2(2)**, **D2,1(3)**, **D2,3(9)**, **D2,2(X)** (X = 4, 5, 7) and **D3,3(X)** (X = 10, 11). Additionally, ring hydrogen-bonded networks with the descriptors **R2,1(3)** and **R2,4(8)** are also found. The first are formed by the side-on interaction of two nitrogen atoms of a triazole anion with a water molecule (O21•••N16ⁱⁱ = 2.796(1) Å and O21•••N15ⁱⁱ = 3.107(1) Å; symmetry code: (ii) -0.5+x, 1.5-y, -0.5+z) and the latter by the hydrogen bonds formed by two molecules of water (O22•••N15^{iv} = 2.845(1) Å and O22•••N15^{vi} = 3.154(1) Å; symmetry code: (iv) 1.5-x, -0.5+y, 1.5-z; (vi) 0.5+x, 1.5-y, -0.5+z) that bridge two triazole anions (Fig. 2).

Fig. 2 Ring hydrogen-bonding graph-sets in the crystal structure of compound 8b. The Sr^{2+} cations have been omitted for the sake of simplicity. * depict R2,1(3) graph sets and the thick dotted lines represent hydrogen bonds.

General method

All chemical reagents and solvents of analytical grade were obtrained from Sigma-Aldrich Inc. or Acros Organics and used as supplied. ¹H and ¹³C NMR spectra were recorded on a JEOL Eclipse 400 instrument. The chemical shifts are given relative to tetramethylsilane as a external standard. Infrared (IR) spectra were recorded at room temperature on a Perkin-Elmer

Spectrum instrument equipped with a Universal ATR sampling accessory. Raman spectra were recorded on a Perkin-Elmer Spectrum 2000R NIR FT-Raman instrument equipped with a Nd:YAG laser (1064 nm). IR intensities are given in parentheses as w = weak, m = medium and s = strong. Raman activities are reported in percentages relative to the most intense peak and are given in parentheses. Elemental analyses were performed with a Netsch Simultanous Thermal Analyzer STA 429. The thermal behavior was analyzed by differential scanning calorimetry (SETARAM DSC131 instrument, calibrated with standard pure indium and zinc) at a heating rate of $\beta = 5$ °C min⁻¹ in closed aluminum containers and with a nitrogen flow of 20 mL min⁻¹. The reference sample was a closed aluminum container.

References

- 1 A.D. Becke, J. Chem. Phys., 1993, 98, 5648.
- 2 C. Lee, W. Yang and R.G. Parr, Phys. Rev., 1988, B37, 785.
- 3. P. Scott and L. Radom, J. Phys. Chem., 1996, 100, 16502.
- M. C. Etter and J. C. MacDonald, Acta Crystallogr., 1990, B46, 256–262; J. Bernstein, R. E. Davis, L. Shimoni and N. L. Chang, Angew. Chem., 1995, 107, 1689–1708; Angew. Chem. Int. Ed. Eng., 1995, 34, 1555–1573.
- 5 http://www.ccdc.cam.ac.uk/support/documentation/rpluto/TOC.html.