Electronic Supplementary Information

Acid induced acetylacetonato replacement in biscyclometalated iridium(III) complexes

Yanfang Li,^{*a,b*} Yang Liu *^{*a,c*} and Ming Zhou*^{*a,c*}

^a Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, 398 Ruoshui Road,

Suzhou Industrial Park, Jiangsu, 215123, P. R. China.

^b Graduate School of the Chinese Academy of Sciences. Beijing, 100049, P. R. China

^c SunaTech Inc. bioBAY, Suzhou Industrial Park, Jiangsu, 215123, P. R. China

E-mail: mzhou2007@sinano.ac.cn

yliu2007@sinano.ac.cn

List of Scheme and Figures

1. UV-Vis spectrum of acetylacetone in acetonitrile	Fig. S1
2. ¹ H NMR investigation of the transition from $Ir(L)_2(acac)$ to $[Ir(L)_2(MeCN)_2][OTf]$ upon the TFA- <i>d</i>	addition of Fig. S2
3. UV-Vis and emission spectra of Ir (btp) ₂ acac with/without Hg(ClO ₄) ₂	Fig. S3
4. Emission spectra of complex 2-4 upon addition of Hg(ClO ₄) ₂	Fig. S4
5. Hg ²⁺ sensing mechanisms proposed in Ref. 23 (A) and Ref. 24 (B)	.Scheme S1
6. ¹ H NMR studies on the sufur-containing compounds (20 mM in CD ₃ CN) upon the addition	of HgCl ₂ Fig. S5
7. Emission spectra of complex Ir(MDQ) ₂ acac upon addition of different amounts TFA and H	g(ClO ₄) ₂
8. Emission spectra of 1 (20 μ M) in MeCN solution by addition of different amounts of Hg(Cl	$O_4)_2$ in
HEPES aqueous solution	Fig. S7
9. Cyclic voltammograms of 6 (500 μ M) in CH ₃ CN solution	Fig. S9
10. Cyclic voltammograms of 1-3 in the absence and presence of $Hg(ClO_4)_2$ and $TFAFig.$	s. S8 & S10
11. ESI-MS study of the products of 1-2 mixed with 2 equiv of Hg(ClO ₄) ₂ Figs.	. S11 & S12
12. Study on the chemical kinetics	s. S13 – S15
13. ¹ H NMR, ¹³ C NMR and Mass Spectra of Ir(III) complexesFigs	. S16 – S30

Fig. S1. UV-Vis spectrum of acetylacetone (20 μ M) in CH₃CN solution

Fig. S2. ¹H NMR investigation of the transition from $Ir(L)_2(acac)$ to $[Ir(L)_2(MeCN)_2][OTf]$ upon the addition of TFA-*d* of 2 and 3 equiv. B: from **1** to **6**; C: from **2** to **7**; (all complexes dissolved in CD₃CN, *ca*. 4 mM).

Fig. S3. UV-Vis and emission spectra of $Ir(btp)_2acac$ (20 μ M) in CH₃CN solution with/without Hg²⁺.

Fig. S4. Emission spectra of complex 2-4 (20 μ M) in CH₃CN solution upon addition of different amounts Hg(ClO₄)₂.

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is $\ensuremath{\mathbb{O}}$ The Royal Society of Chemistry 2012

A B Scheme S1. Hg²⁺ sensing mechanisms proposed in Ref. 23 (A) and Ref. 24 (B).

Fig. S5. ¹H NMR studies on the sufur-containing compounds (20 mM in CD_3CN) upon the addition of HgCl₂. (A) thiophene, (B) thiophene plus 1 equiv. of HgCl₂ and (C) thiophene plus 2 equiv. of HgCl₂; (D) btp, (E) btp plus 1 equiv. of HgCl₂ and (F) btp plus 2 equiv. of HgCl₂; (G) bt, (H) bt plus 1 equiv. of HgCl₂ and (I) bt plus 2 equiv. of HgCl₂.

Fig. S6. Emission spectra of complex $Ir(MDQ)_2acac (20 \ \mu M)$ in CH₃CN solution upon addition of different amounts TFA and Hg(ClO₄)₂. $\lambda_{ex} = 445$ nm

Fig. S7. Emission spectra of 1 (20 μ M) in MeCN solution by addition of different amounts of Hg(ClO₄)₂ in HEPES aqueous solution ($\lambda_{ex} = 440$ nm)

Fig. S8. Cyclic voltammograms of **1** (500 μ M) in CH₃CN solution in the absence and presence of (A) Hg(ClO₄)₂ and (B) TFA. All measurements were carried out in a one-compartment cell under N₂ gas, equipped with a platinum working electrode, a platinum wire counter electrode, and a Ag/AgNO₃ (0.1 M) reference electrode. The supporting electrolyte was 0.10 M tetrabutyl ammonium hexafluorophosphate (Bu₄NPF₆) CH₃CN solution. The potential scan rate was 50 mV/s⁻¹.

Fig. S9. Cyclic voltammograms of 6 (500 μ M) in CH₃CN solution The supported electrolyte was 0.10 M tetrabutyl ammonium hexafluorophosphate (Bu₄NPF₆) CH₃CN solution. The potential scan rate was 50 mV/s⁻¹.

Fig. S10. Cyclic voltammograms of 2 and 3 (500 μ M) in CH₃CN solution in the absence and presence of Hg(ClO₄)₂ and TFA. The experimental conditions were same as that described in Fig. S8.

Fig. S11. ESI-MS study of the product of Ir(btp)₂acac mixed with 2 equiv of Hg(ClO₄)₂. The ESI-MS is identical to that of **6**, i,e., [Ir(btp)₂(MeCN)₂][OTf] synthesized in this work (see Fig. S23).

Fig. S12. ESI-MS study of Ir(piq)₂acac mixed with 2 equiv of Hg(ClO₄)₂. The ESI-MS is identical to that of **7**, i.e., [Ir(piq)₂(MeCN)₂][OTf] synthesized in this work (see Fig. S27).

These studies shown in Fig. S11 & S12 were carried out in order to find any clue of the so-called Hg^{2+} -Ir(btp)₂(acac) complex.

Study on the chemical kinetics: The chemical kinetics experiment was measured quantitatively by monitoring the change in absorbance at 476 nm. The cyclometalated Ir(III) complex, Ir(btp)₂acac, was dissolved in acetonitrile to obtain a stock solution (150 μ M). To 2.5 mL of the Ir(III) complex solution in a quartz cuvette, 25 μ L of the aqueous solution of TFA (7.5×10⁻² M) was added and consequently examined by UV-Vis absorption spectroscopy. The reaction was investigated at five different temperatures (30 °C, 35 °C, 40 °C, 45 °C and 50 °C) and the UV–Vis absorption spectra were recorded as Figure S13. The concentration of Ir(btp)₂acac solution during the reaction was determined spectrophotometrically at 476 nm according to calibration curve (Fig. S14).

 $Ir(btp)_2acac + TFA + MeCN \rightarrow [Ir(btp)_2(MeCN)_2][CF_3COO] + Hacac$ $C_0: a \qquad b$ $C_t: a-x \qquad b-x \qquad x \qquad x$

Ir(btp)₂acac dissociation reaction is estimated as a second-order reaction. The kinetics of the reaction was calculated according to equation (1): $Rate = \frac{d[P]}{dt} = \frac{dx}{dt} = k[Ir(btp)_2 acac][TFA] = k(a-x)(b-x)$, the second-order rate constant k was calculated as the equation (2): $k = \frac{1}{t(a-b)} \ln \left[\frac{b(a-x)}{a(b-x)} \right]$. The k at different temperatures were shown in Table S1. A plot of ln k versus 1/T was linear with negative slope and positive intercept (see Fig. S15). According to Arrhenius equation (3): $\ln k = \ln A - \frac{E_a}{RT}$, the apparent activation energy (E_a) was evaluated as 51.6 kJ· mol⁻¹. In the mean time, according to the equation (4): $\ln k$ $= -\Delta G^{\circ}/RT = -\Delta H^{\circ}/RT + \Delta S^{\circ}/R$, ΔH° and ΔS° were evaluated as 51.6 kJ· mol⁻¹ and 41.7 kJ· mol⁻¹ respectively.

Fig. S13. Absorbance changes with time and temperatures during the reaction of complex $Ir(btp)_2acac$ (150 μ M) in CH₃CN solution with 5 eq TFA.

Fig. S14. Representative calibration curve of $A_{476 nm}$ versus of the concentration of $Ir(btp)_2acac$ in CH_3CN solution.

T (°C)	$k \pmod{1} L \min^{-1}$
30	8.09
35	9.59
40	12.7
45	15.9
50	20.0

Table. S1. k values at different temperatures.

Fig. S15. Plot of $\ln k vs 1/T$ for Ir(btp)₂acac

Fig. S16. ¹H NMR spectrum of 3, i.e., Ir(bt)₂(acac) in CD₃CN

Fig. S17. ¹H NMR spectrum of **4**, i.e., $Ir(ppy)_2(acac)$ in DMSO- d_6

Fig. S18. ¹H NMR spectrum of 8, i.e., [Ir(bt)₂(MeCN)₂][OTf] in CDCl₃.

Fig. S19. ¹H NMR spectrum of 1, i.e., Ir(btp)₂(acac) in CDCl₃

Fig. S20. ¹³C NMR spectrum of 1, i.e., Ir(btp)₂(acac) in CDCl₃

Fig. S21. ¹H NMR spectrum of 6, i.e., [Ir(btp)₂(MeCN)₂][OTf] in CD₃CN

Fig. S22. ¹³C NMR spectrum of 6, i.e., [Ir(btp)₂(MeCN)₂][OTf] in CD₃CN

Fig. S24. ¹H NMR spectrum of **2**, i.e., $Ir(piq)_2(acac)$ in DMSO- d_6

Fig. S26. ¹H NMR spectrum of 7, i.e., [Ir(piq)₂(MeCN)₂][OTf] in CDCl₃

Fig. S27. MS spectrum of 7, i,e., [Ir(piq)₂(MeCN)₂][OTf].

Fig. S28. ¹H NMR spectrum of 5, i.e., [Ir(btp)₂(phen)][Cl] in CDCl₃

 $\sum_{i=1}^{i} \frac{1}{4} \frac{5}{6} \frac{1}{4} \frac{4}{6} \frac{4}{5} \frac{4}{5} \frac{4}{6} \frac{4}{5} \frac{4}{6} \frac{4}{6} \frac{4}{5} \frac{1}{6} \frac{1}{6} \frac{1}{6} \frac{1}{6} \frac{1}{6} \frac{1}{6} \frac{1}{6} \frac{1}{6} \frac{1}{6} \frac{1}{2} \frac{1}{6} \frac{1}{6} \frac{1}{2} \frac{1}{6} \frac{1}{2} \frac{1}{6} \frac{1}{2} \frac{1}{6} \frac{1}{2} \frac{1}{6} \frac{1}{6}$

Fig. S29. ¹³C NMR spectrum of 5, i.e., [Ir(btp)₂(phen)][Cl] in CDCl₃

S17