Electronic Supporting Information

Selective recognition of fluoride and acetate by the newly designed ruthenium framework. Experimental and theoretical investigations

Tanaya Kundu,^{*a*} Abhishek Dutta Chowdhury,^{*a*} Dipanwita De,^{*a*} Shaikh M Mobin,^{*a*} Vedavati G. Puranik,^{*b*} Anindya Datta^{**a*} and Goutam Kumar Lahiri^{**a*}

^aDepartment of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India. E-mail: <u>lahiri@chem.iitb.ac.in</u>

^b Center for Materials Characterization, National Chemical Laboratory, Dr. Homi Bhabha Road, Pune – 411008, India

Bond lengths							
X-ray DFT							
O(1)-C(1)	1.270(2)	1.326					
O(2)-C(1)	1.247(2)	1.220					
N(1)-C(3)	1.341(2)	1.357					
N(1)-C(2)	1.363(2)	1.374					
N(2)-C(3)	1.319(2)	1.320					
N(2)-C(4)	1.384(2)	1.376					
N(3)-C(5)	1.333(2)	1.322					
N(3)-C(11)	1.395(2)	1.386					
N(4)-C(5)	1.335(2)	1.367					
N(4)-C(6)	1.392(2)	1.384					
C(1)-C(2)	1.491(2)	1.487					
C(2)-C(4)	1.387(2)	1.391					
C(4)-C(5)	1.443(2)	1.445					
C(6)-C(11)	1.385(2)	1.418					

Table S1 Selected bond lengths (Å) for H_3L

Intramolecular				
D-HA	d(D-H)	d(HA)	d(DA)	∠D-HA
N3-H3O1 (0)	<mark>0.88</mark>	<mark>1.89</mark>	<mark>2.663(2)</mark>	<mark>144</mark>
Intermolecular				
D-HA	d(D-H)	d(HA)	d(DA)	∠D-H…A
O111-H111O333(1)	<mark>0.84(3)</mark>	<mark>2.15(3)</mark>	<mark>2.956(3)</mark>	<mark>164(3)</mark>
O111-H222O333(1)	<mark>0.89(3)</mark>	1.93(1)	2.805(2)	<mark>168(2)</mark>
O222-H555O333(0)	<mark>0.88(2)</mark>	<mark>2.00(2)</mark>	<mark>2.871(2)</mark>	177(2)
O222-H666N2 (3)	<mark>0.96(2)</mark>	1.92(2)	2.861(2)	<mark>164(2)</mark>
O333-H333O2 (4)	<mark>0.93(2)</mark>	1.78(2)	<mark>2.697(2)</mark>	171(2)
O333-H444O1 (1)	<mark>0.92(2)</mark>	1.85(2)	<mark>2.716(2)</mark>	158(2)
N4-H4O111 (2)	<mark>0.88</mark>	<mark>1.88</mark>	<mark>2.725(2)</mark>	<mark>163</mark>

Table S2 Distances (Å) and angles (°) of hydrogen bonds in H_3L

- (0) x,y,z (1) -x+1,-y,-z+1
- (2) x,+y,+z+1
- (3) x,+y,+z-1
- (4) x+1,+y,+z

Intramolecular				
D-HA	d(D-H)	d(HA)	d(DA)	∠D-HA
N2-H2011	0.88	1.87	2.739(11)	172
N3-H3O2	0.88	1.88	2.675(6)	149
C3-H(3A)O4	0.95	2.38	3.291(15)	160
Intermolecular				
D-HA	d(D-H)	d(HA)	d(DA)	∠D-HA
$C(10)-H(10)O(12)^{i}$	0.95	2.35	3.109(9)	137
C(15)-H(15)O(8) ⁱⁱ	0.95	2.59	3.534(9)	173
C(18)-H(18)O(8) ⁱⁱⁱ	0.95	2.55	3.472(8)	162

Table S3 Distances (Å) and angles (°) of hydrogen bonds in [1](ClO₄)

i = 3/2-x, 1/2-y, 2-zii = 1/2+x, -1/2+y, 1+z iii = 1/2+x, 1/2-y, 1/2+z

Bond lengths			Bond angles		
	X-ray	DFT		X-ray	DFT
Ru(1)-N(5)	2.052(4)	2.088	N(6)-Ru(1)-N(8)	86.94(16)	96.23
Ru(1)-N(6)	2.054(4)	2.110	N(6)-Ru(1)-N(7)	101.32(18)	100.09
Ru(1)-N(7)	2.037(4)	2.069	N(8)-Ru(1)-N(7)	78.78(16)	78.07
Ru(1)-N(8)	2.023(4)	2.094	N(8)-Ru(1)-N(1)	98.49(16)	95.92
Ru(1)-N(1)	2.054(4)	2.064	N(7)- $Ru(1)$ - $N(1)$	85.23(15)	88.94
Ru(1)-O(1)	2.103(3)	2.085	N(6)-Ru(1)-N(5)	78.71(15)	77.85
Ru(2)-N(13)	2.049(4)		N(1)-Ru(1)-N(5)	94.74(18)	93.14
Ru(2)-N(14)	2.047(4)		N(6)- $Ru(1)$ - $O(1)$	97.00(14)	89.95
Ru(2)-N(15)	2.018(4)		N(7)- $Ru(1)$ - $O(1)$	93.26(15)	92.90
Ru(2)-N(16)	2.032(4)		N(1)- $Ru(1)$ - $O(1)$	78.34(14)	79.01
Ru(2)-N(9)	2.061(4)		N(5)- $Ru(1)$ - $O(1)$	86.76(14)	87.45
Ru(2)-O(3)	2.111(3)		N(8)- $Ru(1)$ - $N(5)$	101.20(16)	101.74
O(1)-C(1)	1.307(5)	1.319	N(6)-Ru(1)-N(1)	172.25(18)	166.13
O(2)-C(1)	1.214(6)	1.242	N(7)- $Ru(1)$ - $N(5)$	180.0(2)	177.91
O(3)-C(32)	1.282(5)		N(8)- $Ru(1)$ - $O(1)$	171.71(15)	169.81
O(4)-C(32)	1.267(6)		O(1)-C(1)-O(2)	124.4(4)	121.62
N(1)-C(3)	1.343(7)	1.351	N(15)-Ru(2)-N(16)	79.73(16)	
N(1)-C(2)	1.350(6)	1.379	N(15)-Ru(2)-N(14)	88.14(15)	
N(2)-C(4)	1.362(6)	1.369	N(16)- $Ru(2)$ - $N(14)$	101.03(18)	
N(2)-C(3)	1.340(7)	1.333	N(15)-Ru(2)-N(13)	100.70(15)	
N(3)-C(5)	1.370(6)	1.324	N(14)- $Ru(2)$ - $N(13)$	78.60(15)	
N(3)-C(11)	1.369(6)	1.380	N(15)-Ru(2)-N(9)	97.71(15)	
N(4)-C(5)	1.315(6)	1.380	N(16)-Ru(2)-N(9)	85.75(15)	
N(4)-C(6)	1.384(7)	1.374	N(13)-Ru(2)-N(9)	94.59(18)	
N(9)-C(34)	1.334(7)		N(16)- $Ru(2)$ - $O(3)$	93.37(14)	
N(9)-C(33)	1.361(6)		N(14)- $Ru(2)$ - $O(3)$	97.14(14)	
N(10)-C(34)	1.363(7)		N(13)- $Ru(2)$ - $O(3)$	86.23(14)	
N(10)-C(35)	1.371(6)		N(9)- $Ru(2)$ - $O(3)$	77.67(14)	
N(11)-C(36)	1.379(6)		N(15)- $Ru(2)$ - $O(3)$	172.04(14)	
N(11)-C(42)	1.394(6)		N(14)-Ru(2)-N(9)	171.79(18)	
N(12)-C(36)	1.335(6)		N(16)- $Ru(2)$ - $N(13)$	179.41(18)	
N(12)-C(37)	1.381(6)		O(3)-C(32)- O(4)	120.9(4)	
C(1)-C(2)	1.511(6)	1.478			
C(4)-C(5)	1.465(7)	1.457			
C(2)-C(4)	1.379(7)	1.408			
C(6)-C(11)	1.415(7)	1.423			
C(32)-C(33)	1.457(7)				
C(33)-C(35)	1.405(7)				
C(35)-C(36)	1.435(7)				
C(37)-C(42)	1.399(7)				

Table S4 Selected bond lengths (Å) and angles (°) for 1 (DFT: molecule 1 only)

Table S5 TD-DFT for $\mathbf{1}^+$

State	Energy (eV)	λ (nm)	f^{a}	Transition	Character
5	2.75	450.22	0.1265	HOMO-2 \rightarrow LUMO(0.52)	$Ru(d\pi) \rightarrow bpy(\pi^*)$
				HOMO-2→LUMO+1 (0.20)	
6	2.92	424.02	0.0725	HOMO-2 \rightarrow LUMO+2(0.45)	$Ru(d\pi) \rightarrow bpy(\pi^*)$
21	3.73	332.36	0.1056	HOMO \rightarrow LUMO+6(0.31)	Ru($d\pi$)/ H ₂ L(π^*) \rightarrow bpy
				HOMO-2 \rightarrow LUMO+3(0.30)	$(\pi^*)/H_2L(\pi^*)$
28	3.97	312.32	0.7294	$HOMO-3 \rightarrow LUMO+2(0.56)$	Ru($d\pi$)/ H ₂ L(π^*) \rightarrow bpy
				HOMO-2 \rightarrow LUMO+6(0.21)	$(\pi^*)/H_2L(\pi^*)$
40	4.49	275.88	0.5706	HOMO-5 \rightarrow LUMO+1(0.35)	H_2L (π [*])→bpy (π [*])
				HOMO-6 \rightarrow LUMO(0.33)	

^{*a*} Oscillator strength.

Table S6 Selected molecular orbitals along with their energies and compositions of A $(1^+$

with F⁻ in Scheme 1)

M.O.	Energy	Composition (%))
	(eV)	Ru	bpy	H_2L	F
LUMO+5	-1.388	2	97	1	0
LUMO+4	-1.429	3	97	0	0
LUMO+3	-1.514	7	92	1	0
LUMO+2	-1.754	2	97	1	0
LUMO+1	-2.475	9	90	1	0
LUMO	-2.541	6	93	1	0
HOMO	-4.524	5	2	93	0
HOMO-1	-5.048	1	0	99	0
HOMO-2	-5.399	68	12	20	0
HOMO-3	-5.450	67	14	19	0
HOMO-4	-5.556	63	15	22	0
HOMO-5	-5.860	6	2	92	0

State	Energy	λ (nm)	f^a	Transition	Character
	(ev)				
5	2.5665	485.08	0.1628	HOMO-2 \rightarrow LUMO(0.58)	$Ru(d\pi) \rightarrow bpy(\pi^*)$
6	2.7183	456.11	0.0636	HOMO-2 \rightarrow LUMO+1(0.56)	$Ru(d\pi) \rightarrow bpy(\pi^*)$
15	3.5080	353.44	0.1310	HOMO-1 \rightarrow LUMO+4(0.35)	Ru($d\pi$)/ H ₂ L(π^*)
				HOMO \rightarrow LUMO+3(0.26)	\rightarrow bpy(π^*)
21	3.6257	341.96	0.2670	HOMO \rightarrow LUMO+4(0.56)	Ru($d\pi$)/ H ₂ L(π^*)
				HOMO-2 \rightarrow LUMO+5(0.21)	\rightarrow bpy(π^*)
					* * · · /

Table S7 TD-DFT for $A(1^+ \text{ with } F^- \text{ in Scheme } 1)$

^{*a*} Oscillator strength.

Table S8 Selected molecular orbitals along with their energies and compositions for B

 $(\mathbf{1}^+ \text{ with OAc}^- \text{ in Scheme 1})$

M.O.	Energy	Composition (%))
	(eV)	Ru	bpy	H_2L	OAc
LUMO+6	-0.159	3	96	1	0
LUMO+5	-1.374	3	97	0	0
LUMO+4	-1.411	4	96	0	0
LUMO+3	-1.486	6	92	2	0
LUMO+2	-1.725	2	97	1	0
LUMO+1	-2.452	9	90	1	0
LUMO	-2.522	6	93	1	0
HOMO	-4.406	4	2	94	0
HOMO-1	-4.935	0	0	100	0
HOMO-2	-5.357	68	12	20	0
HOMO-3	-5.400	67	14	19	0

State	Energy (eV)	λ (nm)	f^a	Transition	Character
5	2.5544	485.38	1633	HOMO-2 \rightarrow LUMO(0.58)	$Ru(d\pi) \rightarrow bpy(\pi^*)$
6	2.7066	458.08	0.0630	HOMO-2 \rightarrow LUMO+1(0.56)	$Ru(d\pi) \rightarrow bpy(\pi^*)$
16	3.5019	354.05	0.1004	HOMO-1 \rightarrow LUMO+4(0.36) HOMO \rightarrow LUMO+4(0.24)	Ru($d\pi$)/ H ₂ L(π^*) \rightarrow bpv(π^*)
21	3.6186	342.63	0.3417	$HOMO \rightarrow LUMO + 6(0.43)$	$Ru(d\pi)/H_2L(\pi^*)$ $\rightarrow bpy(\pi^*)$

Table S9 TD-DFT for **B** (1^+ with OAc⁻ in Scheme 1)

^{*a*} Oscillator strength.

Fig. S1 Mass spectra of (a) H₃L in CH₃OH and (b) [1](ClO₄) in CH₃CN.

Fig. S2 DFT optimised structures of (a) H_3L and (b) 1^+

(b)

Fig. S3 (a) Packing diagram of H₃L along the *b*-axis with symmetry equivalent position, (i): -x+1,-y,-z+1. (b) Packing diagram of [**1**](ClO₄) along the *c*-axis. Symmetry related atoms O2', N3' and O11" are O2': 2-x, y, 2.5-z; N3': 2-x, y, 2.5-z; O11'': 1-x, y, 1.5-z.

Fig. S4 Cyclic (——) and differential pulse (-----) voltammograms of [1](ClO₄) $(10^{-3} \text{ mol dm}^{-3})$ versus SCE in CH₃CN. Scan rate 100 mV s⁻¹.

Fig. S5 Selected molecular orbitals of $\mathbf{1}^+$.

Fig. S6 (a) EPR spectrum of the coulometrically generated oxidised species (1^{2^+}) at 110 K and (b) spin-density plot of 1^{2^+} .

Fig. S7 Molecular structures of (a) initial A, (b) DFT optimised A and (c) DFT optimised

Fig. S8 Selected molecular orbitals for $\mathbf{1}^+$ with $F^-(\mathbf{A})$.

Fig. S9 Molecular structures of (a) initial B and (b) DFT optimised B.

Fig. S10 Selected molecular orbitals of $\mathbf{1}^+$ with OAc⁻ (**B**).

C44

C46

C45

(b)

36

C42

N1 O

D⁰⁴

N12

C41

C37

C38

C39

C40

Intramolecular				
D-HA	d(D-H)	d(HA)	d(DA)	∠D-HA
N3-H3NO2 (1)	0.954	1.821	2.707	153.11
N11-H11NO4(1)	1.030	1.924	2.680	127.62

(1) x,y,z

Fig. S11 ORTEP diagram of 1 (two molecules in the asymmetric unit) from the crystal of 2[1]. 5CH₃CN. Ellipsoids are drawn at 50% probability level. Table shows the intramolecular hydrogen bonding parameters.

Fig. S12 Absorption spectra of $\mathbf{1}^+$ (5 x 10^{-5} mol dm⁻³) in CH₃CN and $\mathbf{1}^+$ in presence of one equivalent TBA salts of Cl⁻, Br⁻, I⁻, HSO₄⁻, SCN⁻.

Fig. S13 Plots represent the change in absorbance (ΔA) of CH₃CN solution of 1⁺ at 498 nm in presence of (a) F⁻ and (b) OAc⁻ versus the concentration of F⁻ and OAc⁻, respectively.

Fig. S14 Absorption spectral changes of 1^+ (5 x 10^{-5} mol dm⁻³) in CH₃CN on gradual additions of 0-3 equivalents of [TBA][H₂PO₄].

Fig. S15 Absorption spectral changes of 1^+ (5 x 10^{-5} mol dm⁻³) in CH₃CN on gradual additions of 0-1 equivalent of [TBA][OH].

Fig. S16 ¹H NMR spectra of (a) $\mathbf{1}^+$ in CD₃CN and (b) in presence of D₂O.

Fig. S17 ¹H NMR spectra in CD₃CN of (a) $\mathbf{1}^+$, (b) $\mathbf{1}^+$ in presence of one equivalent of [TBA][F] and (c) $\mathbf{1}^+$ in presence of one equivalent of [TBA][OAc].

Fig. S18 ¹⁹F NMR spectra in CD₃CN of (a) TBAF and (b) TBAF in presence of 0.6 equivalent of $\mathbf{1}^+$. Trifluoro-toluene is used as an internal standard (δ = -62.23) at 298K.

Fig. S19 Quenching of emission intensity of 1^+ during the additions of 0 to 8 equivalents of (a) TBACl, (b) TBABr,(c) TBAI and (d) TBAHSO₄ in CH₃CN at 298K.

Fig. S20 Quenching of emission intensity of $\mathbf{1}^+$ during the addition of 0 to 10 equivalents of TBAH₂PO₄ in CH₃CN at 298K.

Fig. 21 Quenching of emission intensity of $\mathbf{1}^+$ during the additions of 0 to 10 equivalents of TBAOH in CH₃CN at 298K.

Fig. S22 The simulated and experimental ESI-MS peaks in CH₃CN of (a) $[1^+ \cdot F^-]$ (**A**) and (b) $[1^+ \cdot OAc^-]$ (**B**), in situ generated by the additions of one equivalent of [TBA][F] and [TBA][OAc], respectively, in the solution of 1^+ .