Electronic Supplementary Information for Dalton Transactions This journal is © The Royal Society of Chemistry 2011

Supporting Information

A Computational Experiment to Study Hydrogenations of Various Unsaturated

Compounds Catalyzed by a Rationally Designed Metal-free Catalyst

Lili Zhao, Gang Lu, Fang Huang, and Zhi-Xiang Wang*

SI1. Energetic and geometric results for the borohydride elimination in **1** to give $(2,6-Me-Ph)_2B-H$ and 1,2,3,4-tetrahydro pyridine

Fig. S1 Energetic and geometric results for the borohydride elimination in 1 to give $(2,6-Me-Ph)_2B-H$ and 1,2,3,4-tetrahydro pyridine

Fig. S2-1 M05-2X/6-311++G^{**} optimized structures of various complexes between the catalyst (1), and $CH_2=CH_2$ (4) and $CH_2=C(Me)OSiMe_3$ (5). The selected atomic distances are given in Å. Trivial hydrogen atoms were omitted for clarity

Fig. S2-2 M05-2X/6-311++G^{**} optimized structures of various complexes between the catalyst (1), and imines (Me₂C=NMe (6) and Ph(Me)C=NMe (7)). The selected atomic distances are given in Å. Trivial hydrogen atoms were omitted for clarity

Fig. S2-3 M05-2X/6-311++G** optimized structures of various complexes between the catalyst (1), and imines (Me₂C=O (8) and Ph(Me)C=O (9)). The selected atomic distances are given in Å. Trivial hydrogen atoms were omitted for clarity.

SI3. Optimized structures of CO_2 activation products mediated the experimentally prepared B/P FLP, Al/P FLP and our designed B/N FLP (1)

Fig. S3 Optimized structures of CO_2 activation products mediated by the experimentally prepared B/P FLP, B/Al FLP and our designed B/N FLP (1), the optimized bond parameters are given in Å.

SI4. The Energetic results (in kcal mol⁻¹) for the hydrogenations of $4 \sim 9$ in the gas phase

	$1_H_2 + X$	X_IN1	X_TS	X_IN2	1 + XPR		
	$\Delta G[\Delta H]$	$\Delta G[\Delta H]$	$\Delta \text{G}^{\neq}[\Delta \text{H}^{\neq}]$	$\Delta G[\Delta H]$	$\Delta G[\Delta H]$		
CH ₂ CH ₂ (4)	0.0[0.0]	5.8[-3.7]	29.5[15.5]	-27.8[-35.8]	-35.6[-33.2]		
CH ₂ =C(Me)OSiMe ₃ (5)	0.0[0.0]	2.7[-0.1]	29.4[14.2]	-20.0[-31.4]	-26.7[-25.2]		
$Me_2C=NMe(6)$	0.0[0.0]	-5.0[-17.7]	17.0[1.3]	-17.0[-27.0]	-21.6[-20.1]		
$Ph(Me)C=NMe(7R)^{b}$	0.0[0.0]	0.6[-12.8]	20.4[2.2]	-17.1[-29.8]	-21.0[-20.4]		
Ph(Me)C=NMe (7S)	0.0[0.0]	-2.9[-14.1]	19.2[1.7]	-15.3[-27.2]	-21.0[-20.4]		
Me ₂ C=O (8)	0.0[0.0]	-1.4[-15.2]	12.2[-4.1]	-14.7[-26.2]	-16.1[-14.7]		
Ph(Me)C=O (9R) ^b	0.0[0.0]	-3.2[-16.5]	11.2[-6.0]	-16.8[-28.5]	-14.0[-11.9]		
Ph(Me)C=O (9S)	0.0[0.0]	-1.4[-14.5]	10.8[-5.1]	-17.1[-26.4]	-14.0[-11.9]		
^a At the M05-2X/6-311++G** level in the gas phase. ^b For imine Ph(Me)C=NMe (7) and ketone (Ph(Me)C=O (9), two hydrogenation nathways leading to R- and S-enantiomers, respectively, have been considered							

Table S4 Energetic results (in kcal mol⁻¹) for the hydrogenations of **4**~**9** in the gas phase.^a

SI5. Chemical drawing of the structures of $tBu_3P-CH_2CH_2-B(C_6F_5)_3$ and 1_4_CPB

Fig. S5 Chemical drawing of the structures of tBu₃P-CH₂CH₂-B(C₆F₅)₃ and 1_4_CPB

SI6. Optimized structures and NBO analysis of CH₂=CH₂ (4) and (CH₂=C(Me)OSiMe₃ (5)

Fig. S6 The optimized structure of **4** and **5**. The Bond distances are colored in black and given in Å. Net charges (Q) were obtained from NBO analysis and colored in red.

SI7. The IRC results of 4_TS

Fig. S7 (A) The IRC analysis of the transition state 4_TS at the M052X-6-31G** level. (B) The optimized geometries (bond length in Å) on the potential energy surface (PES).

SI8. Total energies and Cartesian coordinates of all the structures

	Н	G		Н	G
1	-896.335302	-896.411232	7R_IN1	-1301.679908	-1301.779448
H_2	-1.152211	-1.166998	7R_TS	-1301.659395	-1301.751284
1_TS	-897.470371	-897.541605	7R_IN2	-1301.699708	-1301.800516
1_H_2	-897.502269	-897.575776	7R_PR	-405.356692	-405.402771
4_IN1	-1109.981419	-1110.072559	78_IN1	-1301.681385	-1301.784393
4_TS	-1109.953548	-1110.039764	7 S_T S	-1301.657446	-1301.750622
4_IN2	-1109.984841	-1110.080225	7S_IN2	-1301.695192	-1301.797122
4PR	-213.646865	-213.684572	7S_PR	-405.356692	-405.402771
5_IN1	-1499.176392	-1499.280775	9R_IN1	-1282.313002	-1282.406799
5_TS	-1499.143183	-1499.243896	9R_TS	-1282.298458	-1282.386101
5_IN2	-1499.202685	-1499.31017	9R_IN2	-1282.325686	-1282.421991
5PR	-602.866811	-602.91807	9R_PR	-385.971746	-386.014019
6_IN1	-1109.981419	-1110.072559	98_IN1	-1282.307525	-1282.401637
6_TS	-1109.953548	-1110.039764	9S_TS	-1282.296648	-1282.386163
6_IN2	-1109.984841	-1110.080225	98_IN2	-1282.319555	-1282.419616
6PR	-213.646865	-213.684572	9S_PR	-385.971746	-386.014019
8_IN1	-1090.599763	-1090.68521	8_IN2	-1090.61248	-1090.701594
8_TS	-1090.585925	-1090.667441	8PR	-194.263987	-194.297658

Table SI8-1. Absolute enthalpies (H) and Gibbs free energies (G) (in Hartrees) of the optimized structures of the reactions in the solvent

	H	G		Н	G
1	-896.3575658	-896.4334958	7R_IN1	-1301.711232	-1301.810772
H ₂	-1.15548384	-1.17027084	7R_TS	-1301.687256	-1301.779145
1_TS	-897.4893229	-897.5605569	7R_IN2	-1301.73821	-1301.839018
1_H ₂	-897.5159501	-897.5894571	7R_PR	-405.3656732	-405.4117522
4_IN1	-976.0566719	-976.1412759	7S_IN1	-1301.713292	-1301.8163
4_TS	-976.026135	-976.103434	7S_TS	-1301.687983	-1301.781159
4_IN2	-976.1078991	-976.1947201	7S_IN2	-1301.734166	-1301.836096
4PR	-79.74612432	-79.77366232	7S_PR	-405.3656732	-405.4117522
5_IN1	-1499.21644	-1499.320823	9R_IN1	-1282.340017	-1282.433814
5_TS	-1499.177652	-1499.323776	9R_TS	-1282.323225	-1282.410868
5_IN2	-1499.250408	-1499.357893	9R_IN2	-1282.359181	-1282.455486
5PR	-602.8829657	-602.9342247	9R_PR	-385.9751975	-386.0174705
6_IN1	-1110.0074	-1110.09854	9S_IN1	-1282.336791	-1282.430903
6_TS	-1109.977229	-1110.063445	9S_TS	-1282.321852	-1282.411367
6_IN2	-1110.022219	-1110.117603	9S_IN2	-1282.355772	-1282.455833
6PR	-213.653797	-213.691504	98_PR	-385.9751975	-386.0174705
8_IN1	-1090.624991	-1090.710438	8_IN2	-1090.64255	-1090.731664
8_TS	-1090.607307	-1090.688823	8PR	-194.2666026	-194.3002736

Table SI8-2. Absolute enthalpies (H) and Gibbs free energies (G) (in Hartrees) of the optimized structures of the reactions in the gas phase