D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
N(5)-H(5A)O(57)#2	0.91	2.19	2.942(3)	139.4
N(5)-H(5A)O(84)#2	0.91	2.51	3.200(3)	132.5
N(5)-H(5B)O(1)#2	0.91	1.95	2.843(4)	168.4
N(5)-H(5C)O(4)#3	0.91	2.11	2.963(3)	156.0
N(66)-H(66A)O(55)#4	0.91	2.22	3.103(4)	164.0
N(66)-H(66A)O(56)#4	0.91	2.35	3.024(4)	130.4
N(66)-H(66B)O(5)#5	0.91	2.19	2.936(4)	138.3
N(66)-H(66B)O(2)#6	0.91	2.64	3.288(4)	128.5
N(66)-H(66C)O(9)#1	0.91	2.32	3.069(4)	139.2
N(66)-H(66C)O(21)	0.91	2.30	3.058(4)	140.7
O(57)-H(57)O(55)#4	0.84	1.77	2.541(3)	152.4
O(2)-H(2)O(1)#3	0.84	1.85	2.510(3)	135.0
O(5)-H(5)O(6)#7	0.84	1.87	2.539(3)	135.1
O(56)-H(56)O(58)#1	0.84	1.77	2.535(3)	150.0
O(99)-H(1W)O(84)#8	0.825(18)	2.36(2)	3.174(4)	168(4)
O(99)-H(2W)O(6)#7	0.809(18)	2.00(2)	2.798(3)	170(4)
O(3)-H(3)O(58)	0.84	1.98	2.813(3)	170.5

Table S1. Hydrogen bonds for $[Cu_{2}^{II}(Ale)_{4}(H_{2}O)_{2}] \cdot 2H_{2}O$ (Å and °)

Symmetry transformations used to generate equivalent atoms: #1 -x,-y+2,-z #2 -x+1,-y+2,-z+1 #3 -x+1, y+1/2, -z+1/2 #4 x,-y+3/2,z+1/2 #5 x-1,y,z #6 -x,y-1/2,-z+1/2 #7 -x+1,-y+2,-z #8 x,-y+3/2,z-1/2

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
N(1)-H(1C)O(1)#2	0.89	2.35	3.038(7)	134.0
N(1)-H(1C)O(4)#3	0.89	2.32	3.107(7)	147.0
N(1)-H(1A)O(2)#4	0.89	2.14	2.977(7)	155.4
N(1)-H(1A)O(7)#5	0.89	2.60	3.125(7)	118.9
N(1)-H(1B)O(6)#6	0.89	2.30	3.085(6)	147.1
N(1)-H(1B)O(3)#7	0.89	2.61	3.239(7)	128.2
O(7)-H(71)O(6)#3	0.91(8)	1.89(8)	2.743(6)	156(7)
O(7)-H(72)O(8)#4	0.84(9)	2.13(9)	2.889(6)	150(8)
O(7)-H(72)O(5)#1	0.84(9)	2.51(8)	2.911(7)	111(7)
O(8)-H(8)O(1)#8	0.82	2.14	2.850(6)	145.3
O(8)-H(8)O(5)	0.82	2.68	3.124(6)	115.9
O(2)-H(2)O(6)#9	0.82	2.11	2.509(6)	109.8
O(5)-H(5)O(3)#8	0.82	1.86	2.473(6)	130.3

Table S2. Hydrogen bonds for $[Co^{II}(Pam)_2(H_2O)_2]$ (Å and °)

Symmetry transformations used to generate equivalent atoms:

#1 -x,-y+1,-z+1 #2 x+1,y,z #3 -x+1,-y+1,-z+1 #4 -x+1/2,y-1/2,-z+3/2 #5 x+1/2,-y+1/2,z+1/2 #6 -x+3/2,y-1/2,-z+3/2 #7 -x+1,-y+1,-z+2 #8 -x+1/2,y+1/2,-z+3/2 #9 x-1/2,-y+3/2,z+1/2

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
O(9)-H(14)O(7)#2	0.98(7)	1.55(7)	2.522(3)	173(6)
O(6)-H(13)O(8)	0.86(6)	2.75(6)	3.105(3)	106(4)
O(6)-H(13)O(2)#3	0.86(6)	2.04(6)	2.840(3)	155(5)
O(3)-H(12)O(7)#4	0.97(5)	1.81(5)	2.741(3)	160(4)
N(1)-H(1C)O(1)#4	0.89	2.36	3.122(4)	143.4
N(1)-H(1C)O(2)#5	0.89	2.30	3.032(4)	138.8
N(1)-H(1A)O(7)#6	0.89	2.30	3.081(4)	147.2
N(1)-H(1B)O(3)#7	0.89	2.65	3.148(4)	116.5
N(1)-H(1B)O(9)#8	0.89	2.12	2.971(4)	159.4
O(3)-H(3)O(8)#1	0.73(5)	2.51(5)	2.921(3)	117(5)
O(3)-H(3)O(6)#8	0.73(5)	2.25(5)	2.887(3)	145(5)
O(8)-H15O(5)#2	1.20(4)	1.27(4)	2.464(3)	171(5)

Table S3. Hydrogen bonds for $[Ni(Pam)_2(H_2O)_2]$ (Å and °).

Symmetry transformations used to generate equivalent atoms:

#1 -x,-y+2,-z #2 x-1/2,-y+3/2,z+1/2 #3 -x+1/2,y-1/2,-z+1/2

#4 -x+1,-y+2,-z #5 x+1,y,z #6 -x+3/2,y+1/2,-z+1/2

#7 x+1/2,-y+5/2,z+1/2 #8 -x+1/2,y+1/2,-z+1/2

Figure S1- Rietveld refinement for the $C_{16}H_{52}Cu_2N_4O_{30}P_8 \cdot 2H_2O$ compound, indicating the experimental data, the calculated intensities, the background function, the difference curve and the Bragg positions.

Compound	Interaction with BSA(%)	Compound	Interaction with BSA(%)
([Cu ^{II} (Pam)] ⁻ H ₂ O) _n	98	$[\mathrm{Cu}^{\mathrm{II}}_{2}(\mathrm{Ale})_{4}(\mathrm{H}_{2}\mathrm{O})_{2}]$	94
$[\mathrm{Co}^{\mathrm{II}}(\mathrm{Pam})_2(\mathrm{H}_2\mathrm{O})_2]$	76	$[\mathrm{Co}^{\mathrm{II}}_{2}(\mathrm{Ale})_{4}(\mathrm{H}_{2}\mathrm{O})_{2}]$	54
$[Ni^{II}(Pam)_2(H_2O)_2]$	91	$[\mathrm{Ni}^{\mathrm{II}}_{2}(\mathrm{Ale})_{4}(\mathrm{H}_{2}\mathrm{O})_{2}]$	88
$[\mathrm{Mn}^{\mathrm{II}}(\mathrm{Pam})_2(\mathrm{H}_2\mathrm{O})_2]$	0	$[Mn^{II}_{2}(Ale)_{4}(H_{2}O)_{2}]$	52

Table S4. Level of BSA binding of the complexes after 48 h incubation