Supporting Information

Synthesis, crystal structure, spectroscopic and electrochemical properties, and H₂-evolving activity of a new [PtCl(terpyridine)]⁺ derivative with viologen-like redox properties

Masayuki Kobayashi,^a Shigeyuki Masaoka^{a,b,c} and Ken Sakai*^{a,d,e}

^{*a*} Department of Chemistry, Faculty of Science, Kyushu University Hakozaki 6-10-1, Higashi-ku, Fukuoka 812-8581, Japan

^b Institute for Molecular Science, Higashiyama 5-1, Myodaiji, Okazaki 444-8787, Japan

^c PRESTO, Japan Science and Technology Agency (JST), Honcho 4-1-8, Kawaguchi, Saitama 332-0012, Japan

^d International Institute for Carbon-Neutral Energy Research (WPI-I²CNER), Kyushu University

^e International Research Center for Molecular Systems (IRCMS), Kyushu University

E-mail: ksakai@chem.kyushu-univ.jp

Fig. S1. A space-filling representation showing the π -stacking interactions of Mepytpy⁺ cations in the crystal.

Fig. S2. (left) UV-vis absorption spectra of $[\mathbf{PV}](\text{ClO}_4)_2 \cdot \text{H}_2\text{O}$ in aqueous 0.1 M NaCl solutions at various \mathbf{PV}^{2+} concentrations, under air, at 20 °C. (right) The concentration dependence of absorbance at 397 nm in the concentration range of 0.04–0.20 mM, revealing that \mathbf{PV}^{2+} does not form a dimer under these conditions.

Fig. S3. One of the energy-minimized conformers afforded by the B3LYP level of DFT calculations using the LanL2DZ basis set and the PCM method (water) in Gaussian 03. The optimized geometry is given in Table S1. Comparison of the optimized geometry and the crystal structure of \mathbf{PV}^{2+} is made in Table S5.

Fig. S4. One-electron-reduced species of \mathbf{PV}^{2+} (*i.e.*, \mathbf{PV}^{+}) in water, which was optimized at the UB3LYP level of DFT using the LanL2DZ basis set and the PCM method (water) in Gaussian 03. The final coordinates are given in Table S2.

Fig. S5. Frontier molecular orbitals (occupied MOs) of a fully optimized structure of \mathbf{PV}^{2+} in water (PCM), obtained by using the B3LYP level of DFT and the LanL2DZ basis set implemented in the Gaussian 03 suite programs.

Fig. S6. Frontier molecular orbitals (unoccupied MOs) of a fully optimized structure of \mathbf{PV}^{2+} in water (PCM), obtained by using the B3LYP level of DFT and the LanL2DZ basis set implemented in the Gaussian 03 suite programs.

Fig. S7. Frontier molecular orbitals (occupied MOs) of a fully optimized structure of \mathbf{PV}^{+} in water (PCM), obtained by using the UB3LYP level of DFT and the LanL2DZ basis set implemented in the Gaussian 03 suite programs.

Fig. S8. Frontier molecular orbitals (unoccupied MOs) of a fully optimized structure of \mathbf{PV}^{++} in water (PCM), obtained by using the UB3LYP level of DFT and the LanL2DZ basis set implemented in the Gaussian 03 suite programs.

Fig. S9. Solid-state emission spectrum of $[PV](ClO_4)_2 \cdot H_2O$ ($\lambda_{ex} = 400$ nm) at room temperature.

Fig. S10. Spectral changes given during the 5 h photolysis for (a) \mathbf{PV}^{2+} and (b) $[PtCl(tpy)]^+$. The experimental conditions are same to those in Figs. 9a,b. In both cases, spectra were measured before and after the photolysis, where the visible chromophores of radical species were bleached by exposing the solution to air (O₂) before the measurement. The loss in the initial forms of \mathbf{PV}^{2+} and $[PtCl(tpy)]^+$ are estimated from the decrease in their characteristic absorption at 356 and 344 nm, respectively.

Atom	X	Y	Z	Atom	X	Y	Z
Pt1	2.083536	-0.000132	0.000946	C23	0.975492	-4.712732	0.098056
N2	0.128961	-0.000180	-0.001794	H24	-1.055244	-3.949133	0.074779
N3	1 759692	-2 025610	0.043936	H25	3 117432	-5 120496	0 115003
N4	1 759842	2 025358	-0.043938	C26	0 975549	4 712435	-0 100416
Cl5	4.526598	-0.000095	0.004641	H27	-1.055162	3.948668	-0.082236
C6	-0.513807	-1 202144	0.019248	H28	3 117480	5 120373	-0 111870
C7	-0.513653	1 201786	-0.024503	H29	0 670486	-5 758045	0 118744
C8	2 696023	-3 005483	0.068712	H30	0.670500	5 757717	-0 122050
C9	0 410078	-2.355573	0.046562	C31	-4 112972	0.000232	-0.004280
C10	2 696148	3 005317	-0.066465	C32	-4 846296	-1 035500	-0 629217
C11	0 410226	2 355233	-0.049935	C33	-4 844963	1 038450	0.619370
C12	-1 913801	1 223018	-0.024637	C34	-6 236778	1 020246	0.606007
C13	-1 913979	-1 223254	0.016786	C35	-6 238965	-1 013618	-0.618830
C14	0.003227	-3 694357	0.073338	H36	-4 355406	-1 855348	-1 150092
C15	2 336234	-4 363279	0.095976	H37	-4 352683	1 859034	1 137760
H16	3 734224	-2.689803	0.066454	N38	-6 91 5993	0.004083	-0.007124
C17	0.003322	3 693979	-0.078018	H39	-6.828152	1 800680	1 082095
C18	2 336307	4 363084	-0.094784	H40	-6.830657	-1 792420	-1 096932
H19	3 734373	2 689750	-0.061479	C41	-8 409958	-0.007079	0.026049
C20	-2 626309	-0.000066	-0.004276	H42	-8 745772	-0 454861	0.966840
H21	-2.440815	2 174514	-0.063972	H43	-8 783338	-0 592528	-0.816774
H22	-2.441296	-2.174670	0.054657	H44	-8.778190	1.018749	-0.049603

Table S1. Cartesian coordinates of a fully optimized structure of $[PtCl(Mepytpy)]^{2+}$ (**PV**²⁺) in water. The structure was optimized at B3LYP level of DFT using the LANL2DZ basis set and the PCM method (water) in Gaussian 03.

E(RB + HF - LYP) = -1163.28306599 hartree

Sum of electronic and zero-point Energies = -1162.940238 hartree

C7

C8

C9

C10

C11

C12

C13

C14

C15

H16

-0.519007

2.699236

0.405512

2.699153

0.405449

-1.906580

-1.906549

0.010186

2.347594

3.735127

Atom Х Y Ζ Atom Х Y Ζ Pt1 2.091057 0.000010 0.000740 C23 0.982873 -4.717572 0.000447 N2 0.142798 -0.000017 -0.001986 H24 -1.047446 -3.961962 -0.003148 N3 1.758997 -2.025019 0.000992 H25 3.130345 -5.119265 0.004108 N4 1.758944 2.025042 C26 4.717569 -0.000114 0.000472 0.982736 Cl5 4.558211 0.000055 0.003987 H27 -1.047559 3.961897 -0.003303 C6 -0.518976 -1.209830-0.002808 H28 3.130196 5.119331 0.003218

H29

H30

C31

C32

C33

C34

C35

H36

H37

N38

0.682277

0.682107

-4.107093

-4.880187

-4.880155

-6.260531

-6.260565

-4.409572

-4.409507

-6.961686

-5.764369

5.764356

-0.000045

-1.212889

1.212820

1.190290

-1.190311

-2.191823

2.191743

0.000002

0.000243

-0.000337

-0.006855

-0.009655

-0.007829

-0.009369

-0.011223

-0.012792

-0.009351

-0.013274

0.040031

1.081426

Table S2. Cartesian coordinates of a fully optimized structure of $[PtCl(Mepytpy)]^{+\bullet}(PV^{+\bullet})$ in water. The structure was optimized at UB3LYP level of DFT using the LANL2DZ basis set and the PCM method (water) in Gaussian 03.

C17 0.010081 3.705243 -0.001790H39 -6.849617 2.104806 -0.009333 C18 2.347470 4.363794 0.001864 H40 -6.849681 -2.104806-0.012651 H19 3.735054 2.685507 0.003576 C41 -8.443600 -0.000004 C20 -0.000044 H42 -2.656662 -0.005564 -8.786221 -0.000595 H21 -2.415134 2.188827 -0.005448 H43 -8.826479 -0.889815 -0.467003 H22 -2.415082-2.188910-0.005283 H44 -8.826492 0.890352 -0.466049

-0.002916

0.002790

-0.001174

0.002090

-0.001466

-0.004744

-0.004719

-0.001460

0.002607

0.004348

E(UB + HF - LYP) = -1163.42986083 hartree

1.209779

-3.008162

-2.357132

3.008213

2.357110

1.229132

-1.229203

-3.705277

-4.363754

-2.685419

Sum of electronic and zero-point Energies = -1163.089124 hartree

Excited State	$E(cm^{-1})$	λ (nm)	f^{a} (> 0.05)	Transition	CI coef (> 0.3)
3	23269	429.76	0.1543	$96 \rightarrow 98 \pmod{1 \rightarrow LUMO}$	0.64699
8	28899	346.03	0.2636	$93 \rightarrow 98 \pmod{4}$ (HOMO-4 \rightarrow LUMO)	0.57701
				$96 \rightarrow 99 \pmod{(\text{HOMO-1} \rightarrow \text{LUMO+1})}$	0.33235
10	29734	336.31	0.0569	$96 \rightarrow 100 \text{ (HOMO-1} \rightarrow \text{LUMO+2)}$	0.68173
11	30534	327.50	0.0762	$95 \rightarrow 99 \text{ (HOMO-2} \rightarrow \text{LUMO+1)}$	0.63029
19	34947	286.15	0.0937	$91 \rightarrow 98 \pmod{\text{HOMO-6} \rightarrow \text{LUMO}}$	0.58371
				$93 \rightarrow 99 (\text{HOMO-4} \rightarrow \text{LUMO+1})$	0.30235
21	35494	281.74	0.3447	$93 \rightarrow 99 (\text{HOMO-4} \rightarrow \text{LUMO+1})$	0.33033
				$93 \rightarrow 100 \text{ (HOMO-4} \rightarrow \text{LUMO+2)}$	0.49598
22	35503	281.67	0.3669	$93 \rightarrow 99 (\text{HOMO-4} \rightarrow \text{LUMO+1})$	0.36074
				$93 \rightarrow 100 \text{ (HOMO-4} \rightarrow \text{LUMO+2)}$	0.34203
				$97 \rightarrow 102 (HOMO \rightarrow LUMO+4)$	0.33947
23	35505	281.65	0.0739	$97 \rightarrow 102 (HOMO \rightarrow LUMO+4)$	0.60486
25	36662	272.76	0.1091	$96 \rightarrow 102 (\text{HOMO-1} \rightarrow \text{LUMO+4})$	0.66303
29	38305	261.06	0.0593	$92 \rightarrow 99 \pmod{\text{HOMO-5} \rightarrow \text{LUMO+1}}$	0.42381
				$95 \rightarrow 102 (\text{HOMO-2} \rightarrow \text{LUMO+4})$	0.51157
34	39795	251.29	0.4435	$92 \rightarrow 99 \pmod{\text{HOMO-5} \rightarrow \text{LUMO+1}}$	0.49587
				$95 \rightarrow 102 (HOMO-2 \rightarrow LUMO+4)$	0.35379
37	40368	247.72	0.1047	$88 \rightarrow 98 \pmod{1000}$ (HOMO-9 \rightarrow LUMO)	0.45249
				$95 \rightarrow 103 \text{ (HOMO-2} \rightarrow \text{LUMO+5)}$	0.37126
38	40579	246.43	0.2090	$91 \rightarrow 99 \text{ (HOMO-6} \rightarrow \text{LUMO+1)}$	0.60828
39	40833	244.90	0.0552	$86 \rightarrow 98 \pmod{11} \rightarrow \text{LUMO}$	0.56744
52	44468	224.88	0.0549	$96 \rightarrow 105 \text{ (HOMO-1} \rightarrow \text{LUMO+7)}$	0.64540

Table S3. The absorption transitions for \mathbf{PV}^{2+} in aqueous media calculated by the TD-DFT method, based on the optimized geometry in Table S1. The corresponding MOs are shown in Figs. S5 and S6.

^{*a*} Oscillator strength.

Excited State	$E(cm^{-1})$	λ (nm)	$f^a (> 0.05)$	Transition	CI coef (> 0.3)
2	10519	950.67	0.2953	$98\alpha \rightarrow 99\alpha \text{ (HOMO} \rightarrow \text{LUMO)}$	0.9315
7	21136	473.13	0.1607	$97\beta \rightarrow 98\beta \text{ (HOMO} \rightarrow \text{LUMO)}$	0.8898
10	23917	418.11	0.0673	$95\alpha \rightarrow 100\alpha \text{ (HOMO-3} \rightarrow \text{LUMO+1)}$	0.5786
				$98\alpha \rightarrow 105\alpha \text{ (HOMO} \rightarrow \text{LUMO+6)}$	0.3045
				$95\beta \rightarrow 99\beta \text{ (HOMO-2} \rightarrow \text{LUMO+1)}$	0.5270
				$97\beta \rightarrow 98\beta \text{ (HOMO} \rightarrow \text{LUMO)}$	0.3216
12	24663	405.47	0.0809	$98\alpha \rightarrow 105\alpha \text{ (HOMO} \rightarrow \text{LUMO+6)}$	0.8775
23	28689	348.56	0.1000	$96a \rightarrow 100a \text{ (HOMO-2} \rightarrow \text{LUMO+1)}$	0.6949
				$93\beta \rightarrow 98\beta$ (HOMO-4 \rightarrow LUMO)	-0.5743
24	28998	344.85	0.3261	$96a \rightarrow 99a \text{ (HOMO-2} \rightarrow \text{LUMO)}$	0.4408
				$97\beta \rightarrow 100\beta \text{ (HOMO} \rightarrow \text{LUMO+2)}$	0.7083
29	30905	323.57	0.1875	$95\alpha \rightarrow 100\alpha \text{ (HOMO-3} \rightarrow \text{LUMO+1)}$	-0.3753
				$92\beta \rightarrow 98\beta \text{ (HOMO-5} \rightarrow \text{LUMO)}$	0.6333
				$95\beta \rightarrow 99\beta \text{ (HOMO-3} \rightarrow \text{LUMO+1)}$	0.4143
				$97\beta \rightarrow 100\beta \text{ (HOMO} \rightarrow \text{LUMO+2)}$	-0.3190
31	31449	317.98	0.0853	$95a \rightarrow 99a \text{ (HOMO-3} \rightarrow \text{LUMO)}$	0.5104
				$95\beta \rightarrow 100\beta \text{ (HOMO-2} \rightarrow \text{LUMO+2)}$	0.6025
33	31790	314.56	0.0648	$93a \rightarrow 99a \text{ (HOMO-5} \rightarrow \text{LUMO)}$	0.6230
				$93\beta \rightarrow 100\beta \text{ (HOMO-4} \rightarrow \text{LUMO+2)}$	-0.3601

Table S4. The absorption transitions for \mathbf{PV}^{+} in aqueous media calculated by the TD-DFT method, based on the optimized geometry in Table S2. The corresponding MOs are shown in Figs. S7 and S8.

^{*a*} Oscillator strength.

X-ray	data	DFT results		
Pt1–N1	2.020(4)	Pt1–N4	2.051	
Pt1–N2	1.964(3)	Pt1–N2	1.954	
Pt1–N3	2.023(4)	Pt1–N3	2.051	
Pt1–Cl1	2.3167(10)	Pt1–Cl5	2.443	
N1-Pt1-N2	79.70(13)	N4-Pt1-N2	80.92	
N2-Pt1-N3	82.54(13)	N2-Pt1-N3	80.91	
N1-Pt1-Cl1	99.03(10)	N4–Pt1–Cl5	99.07	
N3-Pt1-Cl1	98.73(10)	N3–Pt1–Cl5	99.08	

Table S5. Comparison of the geometrical parameters (bond lengths in Å and angles in degree) of \mathbf{PV}^{2+} between the crystallographically observed and DFT-based structures.