Electronic Supplementary Information

Magnetic, electrochemical and spectroscopic properties of iron(III) aminebis(phenolate) halide complexes[†]

Rebecca K. Dean,^{*a*} Candace Fowler,^{*a*} Kamrul Hasan,^{*a*} Kagan Kerman,^{*b*} Philip Kwong,^{*a*} Simon Trudel,^{*c*} Daniel B. Leznoff,^{*d*} Heinz-Bernard Kraatz,^{*b*} Louise N. Dawe,^{*e*} and Christopher M. Kozak*^{*a*}

^{*a*}Department of Chemistry, Memorial University of Newfoundland St. John's, Newfoundland A1B 3X7 CANADA * Corresponding author E-mail: <u>ckozak@mun.ca</u>

^bDepartment of Physical and Environmental Sciences, University of Toronto at Scarborough Toronto, Ontario M1C 1A4 CANADA

> ^cDepartment of Chemistry, University of Calgary Calgary, Alberta T2N 1N4 CANADA

^dDepartment of Chemistry, Simon Fraser University Burnaby, British Columbia V5A 1S6 CANADA

^eX-ray Diffraction Laboratory, Centre for Chemical Analysis, Research and Training, Memorial University of Newfoundland, St. John's, Newfoundland, A1B 3X7, Canada

Additional electrochemical data

 $1a = FeCl[O_2NO]^{BuBuFurf}$

 $4b = FeBr[O_2NO]^{BuMeMeth}$

Electrolytes: 0.2 M LiClO₄ or NaBF₄ or NaPF₆ in acetonitrile. The dissolution of NaBF₄ and NaPF₆ in acetonitrile requires the a mixture of 1:10 (water:acetonitrile, v/v). The compound **1a** had dark purple colour and **4b** had dark-brown colour in LiClO₄. However, both of the compounds were colourless in NaBF₄ and NaPF₆ electrolytes.

Three-electrode system included a working electrode (glassy carbon, platinum or gold) from Bioanalytical Systems (BAS) and a platinum wire as the counter electrode, and the Ag/AgCl reference electrode was connected to the system through a salt bridge. The measurements were taken using a CHinstruments 660A potentiostat and Ar gas was applied throughout the measurements.

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is O The Royal Society of Chemistry 2012

Table S1: DPV; Pt electrode

Initial E: 0 V; Final E: 1.25 V; Amplitude: 50 mV, Pulse width; 50 ms; Sample width: 17 ms; Pulse period: 0.2 s, Quiet time: 5 s; Sensitivity: 10 μA.

1a	4b
LiClO ₄ Oxd. Peak 1 0.70 V; Peak 2 0.95 V	Peak 1 0.60 V; Peak 2 0.80 V
Red. Peak 1 0.72 V	Peak 1 0.47 V; Peak 2 0. 87 V
NaBF ₄ Oxd. Peak 1 0.75 V; Peak 2 0.95 V	Peak 1 0.55 V; Peak 2 0.75 V; Peak 3 0.95 V
Red. Peak 1 0.65 V; Peak 2 0.75 V	Peak 1 0.65 V; Peak 2 0.75 V; Peak 3 0.95 V
NaPF ₆ Oxd. Peak 1 0.35 V; Peak 2 0.70 V; Peak 3 0.95 V	Peak 1 0.30 V; Peak 2 0.55 V; Peak 3 0.90 V
Red. Peak 1 0.25 V; Peak 2 0.65 V; Peak 3 0.90 V	Peak 1 0.25 V; Peak 2 0.50 V; Peak 3 0.85 V

Table S2: DPV; Glassy carbon electrode

1a	4b
LiClO ₄ Oxd. Peak 1 0.35 V; Peak 2 0.60 V; Peak 3 0.85 V	Peak 1 0.15 V; Peak 2 0.95 V
Red. Peak 1 0.45 V; Peak 2 0.90 V	Peak 1 0.10 V; Peak 2 0. 82 V

NaBF ₄	4 Oxd. Peak 1 0.65 V; Peak 2 0.95 V	Peak 1 0.60 V; Peak 2 0.785 V; Peak 3 1.15 V
	Red. Peak 1 0.60 V; Peak 2 0.90 V	Peak 1 0.55 V; Peak 2 0.80 V; Peak 3 1.10 V

 NaPF₆
 Oxd. Peak 1 0.35 V; Peak 2 0.65 V; Peak 3 0.90 V
 Peak 1 0.40 V; Peak 2 0.65 V; Peak 3 1.15 V

 Red. Peak 1 0.30 V; Peak 2 0.60 V; Peak 3 0.85 V
 Peak 1 0.30 V; Peak 2 0.55 V; Peak 3 1.0 V

Table S3: CV; Pt electrode

Initial E: open circuit potential; High E: 1.25 V, Low E: 0 V; Initial P/N: Positive; Scan rate: 100 mV; Sample interval: 1 mV; Quiet time: 5 s; Sensitivity: 10 µA.

 $E^{0} = (E_{ox} + E_{red})/2; \Delta E = E_{ox} - E_{red}; \Delta E_{fwhm}$: Full-width at half-maximum, (Standard deviations in brackets, n=3).

		1a			4b		
		E ⁰	ΔΕ	ΔE_{fwhm}	E ⁰	ΔE	ΔE_{fwhm}
LiClO ₄	Peak 1	1175 (7)	50(8)	120(9)	535(12)	130(13)	110(12)
	Peak 2	860(1)	8(4)	130(12)	835(23)	70(11)	120(10)
NaBF ₄	Peak 1	625(14)	50(9)	120(14)	0.675(19)	0.150(13)	110(15)
	Peak 2	1050(18)	200(24)	80(13)	850(21)	200(12)	100(12)
NaPF ₆	Peak 1	725(9)	50(12)	110(12)	625(13)	50(16)	110(12)
	Peak 2	900(14)	100(11)	90(8)	900(12)	100(8)	100(15)
	Peak 3	1100(17)	100(9)	80(7)	1150(15)	120(16)	90(11)

Table S4: CV; Glassy carbon electrode

		1a			4b		
		E ⁰	ΔE	ΔE_{fwhm}	E ⁰	ΔE	ΔE_{fwhm}
LiClO ₄	Peak 1	375(10)	50(12)	90(7)	175(12)	50(13)	90(12)
	Peak 2	800(23)	100(19)	100(17)	775(28)	50(11)	90(15)
NaBF ₄	Peak 1	625(26)	50(16)	110(15)	825(24)	50(16)	100(13)
	Peak 2	925(19)	50(15)	100(14)	-		
NaPF ₆	Peak 1	375(24)	50(5)	100(10)	325(24)	50(7)	90(8)
	Peak 2	775(28)	150(18)	110(9)	875(25)	50(12)	100(7)
	Peak 3	1150(32)	100(21)	90(8)	1100(31)	125(12)	80(9)

NOTE: In general, CV measurements indicated a **pseudo-reversible redox process**, **which involved oneelectron**. The appearance of multiple peaks might be attributed to the different configurations of the complex in solution, that would allow the oxidation of the Fe core at varying potentials.

Figure S1. Scan rate dependence of 1 mM **1a** in 0.2 M LiClO₄ at (a) 0.05 V/s, (b) 0.1 V/s, (c) 0.25 V/s, (d) 0.5 V/s, (e) 1 V/s, (f) 2 V/s using a glassy carbon electrode.

Figure S2. Scan rate dependence of 1 mM **1a** in 0.2 M LiClO₄ at (a) electrolyte, (b) 0.01 V/s, (c) 0.05 V/s, (d) 0.1 V/s, (e) 0.25 V/s, (f) 0.5 V/s, (g) 1 V/s, (h) 2 V/s using a platinum electrode.

Figure S3. Scan rate dependence of 1 mM **4b** in 0.2 M LiClO₄ at (a) electrolyte, (b) 0.01 V/s, (c) 0.05 V/s, (d) 0.1 V/s, (e) 0.25 V/s, (f) 0.5 V/s, (g) 1 V/s, (h) 2 V/s (i) 5 V/s using a glassy carbon electrode.

Figure S4. Scan rate dependence of 1 mM **4b** in 0.2 M LiClO₄ at (a) electrolyte, (b) 0.01 V/s, (c) 0.05 V/s, (d) 0.1 V/s, (e) 0.25 V/s, (f) 0.5 V/s, (g) 1 V/s, (h) 2 V/s using a platinum electrode.

Figure S5. Scan rate dependence of 1 mM **1a** in 0.2 M NaBF₄ at (a) 0.05 V/s, (c) 0.1 V/s, (d) 0.25 V/s, (e) 0.5 V/s, (f) 1 V/s using a platinum electrode.

Figure S6. Scan rate dependence of 1 mM **1a** in 0.2 M LiClO₄ at (a) 0.05 V/s, (c) 0.1 V/s, (d) 0.25 V/s, (e) 0.5 V/s, (f) 1 V/s using a gold electrode.

NOTE: As expected from the solution-based studies, the dependence of the compounds between the anodic peak height and scan rate on all the electrode materials and electrolytes showed a linear relationship, which indicated a **diffusion-controlled process**.

Figure S7. Cyclic voltammograms for 1 mM **1a** in (a) 0.2 M LiClO₄ and (b) 0.2 M NaPF₆ at 0.1 V/s using a platinum electrode.

Figure S8. Cyclic voltammograms for 1 mM (a) **1a** and (b) **4b** in 0.2 M NaBF₄ at 0.1 V/s using a glassy carbon electrode.

Figure S9. Cyclic voltammograms for 1 mM (a) **1a** and (b) **4b** in 0.2 M NaPF₆ at 0.1 V/s using a glassy carbon electrode.

Figure S10. Cyclic voltammoaggrams for (a) 1 mM **1a** and (b) electrolyte in 0.2 M LiClO₄ at 0.1 V/s using a glassy carbon electrode.ag/

NOTE: As observed in Fig. 10, the redox signals were overlapping with the strong Au oxidation signal (0.9-1.1 V vs. Ag/AgCl), the further measurements were not taken using gold electrodes.

Figure S11. Differential pulse voltammograms for 1 mM **1a** in 0.2 M LiClO₄ at 0.1 V/s with the oxidation scans using (a) a glassy carbon electrode, (b) a platinum electrode, blank electrolyte at (c) glassy carbon electrode and (d) platinum electrode; the reduction scans using (a') a glassy carbon electrode and (b') a platinum electrode, blank electrolyte at (c') glassy carbon electrode and (d') platinum electrode.

Figure S12. Differential pulse voltammograms for 1 mM 4b in 0.2 M NaPF₆ with the oxidation scans using (a) a glassy carbon electrode and (b) a platinum electrode.