Microwave Plasma Synthesis of Lanthanide Zirconates From Microwave Transparent Oxides

Yi-Hsin Chou^a, Nicole Hondow^b, Chris I. Thomas^a, Robert Mitchell^a, Rik Brydson^b and Richard E Douthwaite^a

^aDepartment of Chemistry, University of York, Heslington, York, YO10 5DD, UK

^b Leeds Electron Microscopy and Spectroscopy (LEMAS) Centre, Institute of Materials Research, University of Leeds, Leeds LS2 9JT, UK

Supplementary Information

	Pages
PXRD comparison of microwave and furnace prepared $Ln_2Zr_2O_7$ and $Ln_4Zr_3O_{12}$	2-11
SEM comparison of microwave and furnace prepared $Ln_2Zr_2O_7$ and $Ln_4Zr_3O_{12}$	11-13
Microwave apparatus diagrams	14
Heating profiles of microwave prepared Ln ₂ Zr ₂ O ₇ and Ln ₄ Zr ₃ O ₁₂	15-20

	Furnace	Microwave	Reference ^[9a]
Space Group	$Fm \overline{3}m$	$Fm \overline{3}m$	Fm $\overline{3}$ m
Lattice Parameter a	5.201(8) Å	5.175(9)Å	5.211 Å

	Furnace	Microwave	Reference ^[&]
Space Group	Fd $\overline{3}m$	Fd $\overline{3}$ m	Fd $\overline{3}m$
Lattice Parameter a	10.73(2) Å	10.77(2)Å	10.882 Å

[&] M. E. Björketuna, C. S. Knee, B. J. Nymana and G. Wahnströma, Solid State Ionics, 2008, 178, 1642-1647.

	Furnace	Microwave	Reference ^[9a]
Space Group	$Fm \overline{3}m$	$Fm \overline{3}m$	$Fm \overline{3}m$
Lattice Parameter a	5.24(2) Å	5.22 (4)Å	5.280 Å

	Furnace	Microwave	Reference ^[†]
Space Group	$Fm \overline{3}m$	Fm $\overline{3}$ m	$Fm \overline{3}m$
tattice Parameter a † data from ICSD ref Kongelige Danske	5.210(6) Å Videnskabernes Selskab	5.20 (5)Å , Matematisk-Fysike Med	5.21Å delelser (1967) 35 , 1-37

Lattice Parameter a 5.19(4) Å 5.19 (2) Å 5.2 Å

† data from ICSD ref Kongelige Danske Videnskabernes Selskab, Matematisk-Fysike Meddelelser (1967) **35**, 1-37

	Furnace	Microwave	Reference [*]
Space Group	R $\overline{3}$ (hex)	$Fm \overline{3}m$	R $\overline{3}$ (hex)
Lattice Parameter a	9.74(2) Å	5.232(3)Å	9.729(1) - 9.738(2) Å
c	9.06(1) Å	5.232(3)Å	9.103(2) - 9.115(3) Å

[*] V. P. Redko and L. M. Lopato, *Inorg. Mater.*, 1991, 27, 1609-1614.

Furnace

Microwave

Furnace

Microwave

Space Group	$Fm \overline{3}m$	$Fm \overline{3}m$
Lattice Parameter	5.22(4)Å	5.250(3)Å

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is The Royal Society of Chemistry 2012

	Furnace	Microwave	Reference ^[*]
Space Group	R $\overline{3}$ (hex)	$Fm \overline{3}m$	R $\overline{3}$ (hex)
Lattice Parameter a	9.78(4) Å	5.233(2)Å	9.732(2) Å
c	8.94(8) Å	5.233(2)Å	9.109(3) Å

[*] V. P. Redko and L. M. Lopato, Inorg. Mater., 1991, 27, 1609-1614.

	Furnace	Microwave	Anneal	Low T ref ^[*]	High T ref ^[11]
Space Group	R $\overline{3}$ (hex)	R $\overline{3}$ (hex)	R $\overline{3}$ (hex)	R $\overline{3}$ (hex)	R $\overline{3}$ (hex)
Lattice a	9.64(3) Å	9.659(10) Å	9.641(6) Å	9.654(1) Å	9.68(3) Å
c	9.01(7) Å	8.987(1) Å	9.009(7) Å	9.021(1) Å	8.96(7) Å

[*] V. P. Redko and L. M. Lopato, Inorg. Mater., 1991, 27, 1609-1614.

Y₂Zr₂O₇ microwave synthesis (left); furnace synthesis (right)

La₂Zr₂O₇ microwave synthesis (left); furnace synthesis (right)

Gd₂Zr₂O₇ microwave synthesis (left); furnace synthesis (right)

Dy₂Zr₂O₇ microwave synthesis (left); furnace synthesis (right)

Gd₄Zr₃O₁₂ microwave synthesis (left); furnace synthesis (right)

 $Dy_4Zr_3O_{12}$ microwave synthesis (left); furnace synthesis (right)

Microwave apparatus used for temperature measurements and synthetic reactions. The unfocussed cavity (top) was used for the $Ln_2Z_{r2}O_7$ systems and the focussed cavity (bottom) was used for the $Ln_4Zr_3O_{12}$ systems.

La₂Zr₂O₇ heating profile at O₂=10ml/min, 900W

Time (second)

Gd₂Zr₂O₇ heating profile at O₂=10ml/min, 900W

Please note: Sudden drops in the recorded temperature early in the heating process are due to plasma interference, arising from absorption of surface emitted photons by the plasma. Visually, the plasma exhibits some instability early in the experiments but subsequently stabilises, allowing uninterrupted temperature measurement.

Yb₂Zr₂O₇ heating profile at O₂=10ml/min, 900W

Gd₄Zr₃O₁₂ heating profile at O₂=10ml/min, 500W

 $Dy_4Zr_3O_{12}$ heating profile at $O_2=10ml/min$, 500W

Ho₄Zr₃O₁₂ heating profile at O₂=10ml/min, 500W

 $Yb_4Zr_3O_{12}$ heating profile at $O_2=10ml/min$, 500W