Supporting Information

Effective enhancement of the performance of black dye based dye-sensitized solar cells by metal-oxide surface modification of TiO_2 photoelectrode

Hironobu Ozawa, Yu Okuyama and Hironori Arakawa*

Department of Industrial Chemistry, Faculty of Engineering, Tokyo University of Science, 12-1, Ichigaya-Funagawara, Shinjuku, Tokyo, 162-0826, JAPAN E-mail: h.arakawa@ci.kagu.tus.ac.jp; Fax: (+08) 3 5261 4631; Tel: (+81) 3 5228 8311

Experimental Section

Materials and General Measurements

Black dye was prepared according to the literature.^[1] Titanium isopropoxide and deoxycholic acid (DCA) were purchased from Tokyo Chemical Industry Co. 1,2-Dimethyl-3-propylimidazolium iodide (DMPImI) was purchased from Shikoku Kasei. All solvents and reagents were of the highest quality available and were used as received.

The elemental analysis was carried out on a Perkin Elmer 2400II elemental analyzer using acetanilide as a standard material. ¹H NMR spectra were acquired on a Bruker BioSpin AVANCE 400M spectrometer, where chemical shifts in CD₃OD were referenced to internal standard tetramethylsilane. XPS spectra were obtained using a JEOL JPS-9010MC X-ray photoelectron spectrometer. TEM images were obtained using a Hitachi H-9500 transmission electron microscope.

Preparation of TiO₂ photoelectrodes and DSCs

TiO₂ pastes were prepared using titanium isopropoxide.^[2] Nanocrystalline TiO₂ photoelectrodes were prepared by screen printing the TiO₂ paste on fluorine-doped SnO₂ conducting glasses (FTO, Nippon Sheet Glass Co., 10 Ω /square). TiO₂ thin films were composed of six layers (from the bottom to the third layer: 20 nm TiO₂ particles, the fourth and fifth layers: a 8:2 mixture of 20 nm and 100 nm particles, and the top layer: a 6:4 mixture of 20 nm and 100 nm particles, film thickness: approximately 35 µm).^[3] TiO₂ photoelectrodes were calcinated at 520 °C after every layer was coated. Surface modification of TiO₂ photoelectrodes were carried out by immersing them into the solution of metal salt for 20 min under N₂ atmosphere, and then calcinated at 500 °C for 1 h. The active areas of these TiO₂ films were determined using a KEYENCE VHX-200 digital microscope. The TiO₂ photoelectrodes were immersed in 0.2 mM black dye 1-propanol solution^[4] containing of 20 mM DCA for 18 h at room temperature to adsorb black dye onto the TiO₂ surface. Black dye was desorbed from the TiO₂ film by immersing in 0.05 M NaOH solution, and the amount of dye adsorption was estimated from the absorption spectrum of the resulting solution.

Photoelectrochemical measurements were performed in a two-electrode sandwich cell configuration composed of the dye-adsorbed TiO₂ photoelectrode, a platinum-sputtering counter electrode, a spacer film (50 μ m), and an electrolyte solution (0.05 M I₂, 0.1 M LiI, 0.6 M DMPImI and 0.3 M *tert*-butylpyridine (TBP) in acetonitrile).

Photovoltaic measurements

The photocurrent-voltage (*I-V*) characteristics of the DSCs were measured on a Keithley 2400 source meter under irradiation of AM 1.5, 100 mW/cm² (1 sun) supplied by a solar simulator (Yamashita Denso, YSS-150A). The incident light intensity was calibrated with a grating spectroradiometer LS-100 (EKO Instruments) and Si photodiode (Bunkoh Keiki). The incident monochromatic photon-to-current conversion efficiency (IPCE) was measured on a PEC-S10 (Peccell Technologies). Electrochemical impedance spectroscopic (EIS) studies were conducted using an electrochemical interface SI 1287 (Solartron) and a frequency response analyzer 1255B (Solartron).

The open-circuit voltage decay (OCVD) measurements

The OCVD measurements were conducted to investigate the electron lifetimes in the TiO₂ photoelectrodes. In this measurement, decay of V_{oc} value was monitored after the irradiation for the cell was stopped. The electron lifetime was estimated from the fitting for the obtained decay curve of V_{oc} .^[5,6]

In the case that estimated electron lifetime was relatively shorter, it suggests that backward electron transfer processes (electron transfer from the conduction band of TiO_2 to the oxidized form of dyes or to I_3^-) were facilitated. On the other hand, relatively longer electron lifetime suggests that such backward electron transfer processes were retarded.

Precursor	$J_{ m sc}$	$V_{ m oc}$	FF	η	Amount of dye adsorption
(0.1 M)	(mA/cm^2)	(V)		(%)	$(\times 10^{-7} \text{ mol/cm}^2)$
none	20.82	0.703	0.711	10.42	1.5
$Mg(OC_2H_5)_2$	20.89	0.715	0.714	10.67	1.5
MgCl ₂	20.14	0.710	0.719	10.28	1.6
Al[OCH(CH ₃) ₂] ₃	17.68	0.739	0.738	9.65	1.1
AlCl ₃	19.39	0.718	0.714	9.93	1.5
Bi[OCOCH(C ₂ H ₅)(C ₅ H ₁₁)]	₃ 6.67	0.756	0.782	3.94	1.3
BiCl ₃	12.77	0.708	0.814	7.36	1.0
YCl ₃	18.65	0.731	0.706	9.61	1.7
Zr(OH) ₃ (OCOCH ₃)	18.50	0.718	0.696	9.25	1.1
$Ca(OC_2H_5)_2$	14.26	0.742	0.760	8.04	1.4
Nb[OCH(CH ₃) ₂] ₅	20.31	0.707	0.704	10.12	1.6

Table S1. Solar cell performances of the black dye based DSCs with the TiO_2 photoelectrode modified by various kinds of metal oxide^a

Table 52. Solar cell performance of the DSC with black dye					
Cell number	$J_{ m sc}$	V _{oc}	FF	η	
	(mA/cm^2)	(V)		(%)	
1	20.82	0.703	0.711	10.42	
2	20.73	0.705	0.708	10.35	
3	20.83	0.710	0.696	10.31	
4	21.02	0.704	0.707	10.46	
5	20.98	0.699	0.713	10.45	
6	20.77	0.701	0.709	10.32	

Table S2. Solar cell performance of the DSC with black dye^a

Cell number	$J_{ m sc}$	$V_{ m oc}$	FF	η
	(mA/cm^2)	(V)		(%)
0.01 M				
1	20.71	0.704	0.708	10.31
2	21.07	0.698	0.703	10.34
3	20.45	0.709	0.706	10.23
4	20.38	0.710	0.710	10.28
0.05 M				
1	20.75	0.713	0.715	10.59
2	21.05	0.702	0.714	10.63
3	21.04	0.712	0.708	10.61
4	19.97	0.724	0.732	10.58
0.10 M				
1	20.89	0.715	0.714	10.67
2	21.01	0.706	0.716	10.62
3	20.67	0.724	0.713	10.66
4	20.60	0.723	0.719	10.71
0.15 M				
1	20.43	0.727	0.724	10.75
2	20.41	0.721	0.729	10.74
3	20.87	0.726	0.708	10.73
4	20.02	0.733	0.734	10.77
0.20 M				
1	20.25	0.721	0.717	10.46
2	20.37	0.720	0.716	10.50
3	20.18	0.722	0.718	10.46
4	20.10	0.724	0.723	10.51

Table S3. Solar cell performance of the black dye based DSC with TiO_2 photoelectrode modified by MgO using different concentration of Mg(OEt)₂ solution^a

Cell number	$J_{ m sc}$	$V_{ m oc}$	FF	η
	(mA/cm^2)	(V)		(%)
0.01 M				
1	20.27	0.712	0.717	10.37
2	20.19	0.708	0.722	10.33
3	20.61	0.703	0.717	10.40
4	20.09	0.722	0.720	10.43
0.05 M				
1	20.21	0.711	0.713	10.24
2	20.53	0.703	0.707	10.21
3	20.50	0.700	0.710	10.20
4	20.18	0.721	0.704	10.25
0.10 M				
1	20.14	0.710	0.719	10.28
2	20.25	0.705	0.723	10.32
3	20.00	0.708	0.731	10.34
4	20.38	0.718	0.697	10.20

Table S4. Solar cell performance of the black dye based DSC with TiO_2 photoelectrode modified by MgO using different concentration of MgCl₂ solution^a

Cell number	$J_{ m sc}$	$V_{ m oc}$	FF	η
	(mA/cm^2)	(V)		(%)
0.01 M				
1	20.41	0.729	0.722	10.75
2	21.46	0.732	0.723	10.82
3	20.37	0.724	0.719	10.62
4	20.39	0.731	0.725	10.81
0.03 M				
1	19.54	0.731	0.728	10.41
2	19.66	0.731	0.731	10.49
3	19.73	0.730	0.725	10.44
4	19.25	0.732	0.730	10.29
0.05 M				
1	19.11	0.739	0.735	10.39
2	19.07	0.737	0.737	10.36
3	19.16	0.741	0.734	10.42
0.10 M				
1	17.68	0.739	0.738	9.65
2	17.56	0.738	0.739	9.57
3	17.74	0.740	0.742	9.74
4	17.75	0.739	0.734	9.63

Table S5. Solar cell performance of the black dye based DSC with TiO_2 photoelectrode modified by Al_2O_3 using different concentration of $Al(OiPr)_3$ solution^a

Cell number	$J_{ m sc}$	$V_{ m oc}$	FF	η
	(mA/cm^2)	(V)		(%)
0.01 M				
1	20.45	0.715	0.703	10.28
2	20.70	0.712	0.695	10.23
3	20.05	0.721	0.700	10.14
4	20.27	0.717	0.710	10.33
0.05 M				
1	20.35	0.714	0.708	10.30
2	20.41	0.719	0.707	10.38
3	20.21	0.713	0.708	10.22
3	20.44	0.709	0.710	10.29
0.10 M				
1	19.39	0.718	0.714	9.93
2	18.82	0.729	0.724	9.94
3	20.02	0.714	0.704	10.06
4	19.38	0.715	0.713	9.89

Table S6. Solar cell performance of the black dye based DSC with TiO_2 photoelectrode modified by Al_2O_3 using different concentration of $AlCl_3$ solution^a

Figure S1. Electron lifetimes as a function of V_{oc} for the DSCs with MgO modified TiO₂ photoelectrode using MgCl₂ as a precursor.

Figure S2. V_{oc} as a function of capacitance for the DSCs with MgO modified TiO₂ photoelectrode using MgCl₂ as a precursor.

Figure S3. Electron lifetimes as a function of V_{oc} for the DSCs with Al₂O₃ modified TiO₂ photoelectrode using AlCl₃ as a precursor.

Figure S4. V_{oc} as a function of capacitance for the DSCs with Al₂O₃ modified TiO₂ photoelectrode using AlCl₃ as a precursor.

Figure S5. TEM images of TiO₂ nanoparticles treated with $Mg(OEt)_2$ (a), $MgCl_2$ (b), $Al(OiPr)_3$ (c), and $AlCl_3$ (d), respectively. The MgO or Al_2O_3 thin overlayer was formed in the case for (a) and (c).

References

- M. K. Nazeeruddin, P. Pechy, T. Renouard, S. M. Zakeeruddin, R. Humphyry-Baker, P. Comte, P. Liska, L. Cevey, E. Costa, V. Shklover, L. Spiccia, G. B. Deacon, C. A. Bignozzi, M. Grätzel, *J. Am. Chem. Soc.*, **2001**, *123*, 1613-1624.
- (2) M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Müller, P. Liska, N. Vlachopoulos, M. Grätzel, *J. Am. Chem. Soc.*, **1993**, *115*, 6382-6390.
- (3) Z.-S. Wang, T. Yamaguchi, H. Sugihara, H. Arakawa, *Langmuir*, **2005**, *21*, 4272-4276.
- (4) H. Ozawa, M. Awa, T. Ono, H. Arakawa, Chem.-Asian J., 2012, 7, 156-162.
- (5) A. Zaban, M. Greenshtein, J. Bisquert, Chem. Phys. Chem., 2003, 4, 859-864.
- (6) J. Bisquert, A. Zaban, M. Greenshtein, I. Mora-Seró, J. Am. Chem. Soc., 2004, 126, 13550-13559.