Supporting Information

Dual facet of gold(III) in the reactions of gold(III) and porphyrins

Hongbin Lv,^a Boyan Yang,^a Jing Jing,^a Yi Yu,^a Jing Zhang *^b,Jun-Long Zhang*^a

^a Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P.R. China, Fax: +86-10-62767034, E-mail: <u>zhangjunlong@pku.edu.cn</u>

^b College of Materials Science and Opto-Electronic Technology, Graduate University of Chinese Academy of Sciences, Beijing 100049, P.R. China

Table of Contents :

1.	Experimental Section	4
	1.1 General Experimental Information	4
	1.2 Synthesis of Gold Porphyrins	4
	1.2.1 Gold(III) 5,10,15,20-tetrakis(pentafluorophenyl)porphyrin	4
	1.2. 2 Gold(III) 5,10,15,20-tetrakis(2,6-dichlorophenyl)porphyrin	4
	1.2.3 Gold(III) 5,10,15,20-tetrakis(phenyl)porphyrin (11b)	5
	1.2.4 Gold(III) 5,10,15,20-tetrakis(3,5-ditertbutylphenyl)porphyrin	5
	1.2.5 Gold(III) 5,10,15,20-tetrakis(2,6-dimethoxylphenyl)porphyrin	5
	1.3 Synthesis of porpholactones	5
	1.3.1 Synthesis and Characterization of [Au(Pic.)Cl ₂]	5
	1.3.2 Synthesis and Characterization of [Au(bpy)Cl ₂]Cl	5
	1.3.3 Synthesis and Characterization of [Au(Salen)Cl]	6
	1.3.4 Synthesis and Characterization of [Au(Phen)Cl ₂]Cl	6
	1.3.5 Synthesis and Characterization of [Au(DiPic)Cl]	6
	1.3.6 Synthesis of Silver Porphyrins	6
	1.3.7 Synthesis and Characterization of Prophyrins	6
	1.3.8 5,10,15,20-Tetrakis(pentafluorophenyl)porphyrin	6
	1.3.9 5,10,15,20-Tetrakis(2,3,5,6-tetrafluorophenyl) porphyrin (4)	6
	1.3.10 5,10,15,20-Tetrakis(2,3,4,5-tetrafluorophenyl) porphyrin (5)	7
	1.3.11 5,10,15,20-Tetrakis(2,4,6-trifluorophenyl) porphyrin (6)	7
	1.3.11 5,10,15,20-Tetrakis(2,6-difluorophenyl) porphyrin (7)	7
	1.3.12 5,10,15,20-Tetrakis(3,5-difluorophenyl) porphyrin (8)	7
	1.3.13 5,10,15,20-Tetrakis(4-fluorophenyl) porphyrin (9)	7
	1.3.14 Gold(III) 5,10,15,20-tetrakis(2,3,5,6-tetrafluorophenyl)porphyrin (4b)	7
	1.3.15 Gold(III) 5,10,15,20-tetrakis(2,3,4,5-tetrafluorophenyl)porphyrin (5b)	7
	1.3.16 Gold(III) 5,10,15,20-tetrakis(2,4,6-trifluorophenyl)porphyrin (6b)	7
	1.3.17 Gold(III) 5,10,15,20-tetrakis(2,6-difluorophenyl)porphyrin (7b)	8
	1.3.18 Gold(III) 5,10,15,20-tetrakis(3,5-difluorophenyl)porphyrin (8b)	8
	1.3.19 Gold(III) 5,10,15,20-tetrakis(4-fluorophenyl)porphyrin (9b)	8
	1.3.20 Gold(III) 5,10,15,20-tetrakis(4-chlorophenyl)porphyrin (10b)	8
	1.5 Spectra for β -Monochloroporphyrins	9
	1.5.1 β -Monochloro tetra(pentafluorophenyl)porphyrins (β -Cl-F ₂₀ TPP) (2)	9
	2. Spectra data for porpholactones	9
	2.1 Tetra(pentafluorophenyl)porpholactone (3)	9
	Figure S1. ¹ H NMR spectrum of 3 (CDCl ₃)	.10
	Figure S2. ¹⁹ F NMR spectrum of 3 (CDCl ₃)	.10
	Figure S3. UV-vis (Black trace) and fluorescence (Red trace) spectra of 3 (CH ₂ Cl ₂)	.11
	Figure S4. FT-IR of 3	. 11
	Figure S5. MS of 3	.12
	2.2 Tetra(2,3,5,6-tetrafluorophenyl)porpholactone (4a)	
	Figure S6. ¹ H NMR spectrum of 4a (CDCl ₃)	.13
	Figure S8. UV-vis (Black trace) and fluorescence (Red trace) spectra of 4a (CH ₂ Cl ₂).	.14

	Figure S9. FT-IR of 4a	14
	Figure S10. MS of 4a	15
	2.3 Tetra(2,3,4,5-tetrafluorophenyl)porpholactone (5a)	16
	Figure S11. ¹ H NMR spectrum of 5a (CDCl ₃)	16
	Figure S13. UV-vis (Black trace) and fluorescence (Red trace) spectra of $5a$ (CH ₂	Cl ₂) 17
	Figure S14. FT-IR of 5a	17
	Figure S15. MS of 5a	18
	2.4 Tetra(2,4,6-tetrafluorophenyl)porpholactone (6a).	
	Figure S16. ¹ H NMR spectrum of 6a (CDCl ₃)	19
	Figure S17. ¹⁹ F NMR spectrum of 6a (CDCl ₃)	19
	Figure S18. UV-vis (Black trace) and fluorescence (Red trace) spectra of $6a$ (CH ₂	Cl ₂) 20
	Figure S19. FT-IR of 6a	20
	Figure S20. MS of 6a	21
	2.5 Tetra(2,6-difluorophenyl)porpholactone (7a)	22
	Figure S21. ¹ H NMR spectrum of 7a (CDCl ₃)	22
	Figure S22. ¹⁹ F NMR spectrum of 7a (CDCl ₃)	23
	Figure S23. UV-vis (Black trace) and fluorescence (Red trace) spectra of $7a$ (CH ₂	Cl ₂) 23
	Figure S24. FT-IR of 7a	24
	Figure S25. MS of 7a	24
	2.6 Tetra(3,5-difluorophenyl)porpholactone (8a)	25
	Figure S26. ¹ H NMR spectrum of 8a (CDCl ₃)	25
	Figure S27. ¹⁹ F NMR spectrum of 8a (CDCl ₃)	26
	Figure S28. UV-vis (Black trace) and fluorescence (Red trace) spectra of $8a$ (CH ₂	Cl ₂) 26
	Figure S29. FT-IR of 8a	27
	Figure S30. MS of 8a	27
	2.7 Tetra(4-fluorophenyl)porpholatcone (9a)	28
	Figure S31. ¹ H NMR spectrum of 9a (CDCl ₃)	28
	Figure S32. ¹⁹ F NMR spectrum of 9a (CDCl ₃)	29
	Figure S33. UV-vis (Black trace) and fluorescence (Red trace) spectra of $9a$ (CH ₂	Cl ₂) 29
	Figure S34. FT-IR of 9a	30
	Figure S35. MS of 9a	30
	2.8 Tetra(4-chlorophenyl)porpholatcone (10a)	31
	Figure S36. ¹ H NMR spectrum of 10a (CDCl ₃)	31
	Figure S37. UV-vis (Black trace) and fluorescence (Red trace) spectra of 10a (C	CH ₂ Cl ₂)
		32
	Figure S38. FT-IR of 10a	32
	Figure S39. MS of 10a	33
	2.9 Tetraphenylporpholactone (11a)	34
	Figure S40. ¹ H NMR spectrum of 11a (CDCl ₃)	34
	Figure S41. UV-vis (Black trace) and fluorescence (Red trace) spectra of 11a (C	CH ₂ Cl ₂)
		35
	Figure S42. FT-IR of 11a	35
	Figure S43. MS of 11a	36
3.	References	36

1. Experimental Section

1.1 General Experimental Information

Unless otherwise stated, all reactions were performed under an inert atmosphere of nitrogen in either standard Schlenk techniques or flame-dried flasks. UV-vis spectra were recorded on an Agilent 8453 UV-vis spectrometer equipped with an Agilent 89090A thermostat (± 0.1 °C). All NMR spectra were recorded on a Varian Mercury Plus 300 MHz spectrophotometer (300M for ¹H, and 282M for ¹⁹F) or Bruker Avance 600 MHz spectrophotometer (600M for ¹H, and 564M for ¹⁹F). All chemical shifts were reported in ppm and all coupling constants were in Hz. For ¹⁹F NMR spectra, hexafluorobenzene in CDCl₃ was used as the internal reference at 0 ppm. Mass spectra were recorded on Bruker APEX IV FT-ICR Mass Spectrometer. GC/MS spectra we collected on Agilent 5975C/7890A. IR spectra were recorded on Nicolet Magna IR 750. X-ray Crystallography data was collected on a Rigaku Saturn 724 diffractometer at 173K.

1.2 Synthesis of Gold Porphyrins

General procedure: A mixture of HAuCl₄·4H₂O (30.9mg, 0.075mmol) and AgOTf (77.1mg, 0.3mmol) in 4mL THF wasadded to the solution of porphyrin (0.05mmol) and NaOAc (26.7mg, 0.325mmol) in CH₂Cl₂. The reaction mixture was stirred at room temperature for 1-2h. After the solvent was evaporated in vacuum, the residue was chromatographyed on silica column (using CH₂Cl₂ to remove free porphyrin and CH₂Cl₂/CH₃OH=50:1 to collect the product). After solvent evaporation, the solid was dissolved in 3mL acetone. 20mg LiCl dissolved in 5mL water was then added to the acetone solution and reddish-brown precipitation was obtained after acetone was removed. The resulted solid was filtrated and recrystallized from CH₂Cl₂/petroleum ether to afford corresponding product.

1.2.1 Gold(III) 5,10,15,20-tetrakis(pentafluorophenyl)porphyrin

¹HNMR (CDCl₃, 300 MHz): δ 9.51 (s, 8H) ¹⁹FNMR (CDCl₃, 282 MHz): δ 25.33-25.25 (m, 8F), 14.704 (t, 4F, J = 23.1 Hz), 3.06-2.88 (m, 8F); ESI-MS (M⁺) m/z = 1169.0; HRMS-ESI (M⁺): calc'd for C₄₄H₈AuF₂₀N₄: 1169.0095, found: 1169.0017.

1.2. 2 Gold(III) 5,10,15,20-tetrakis(2,6-dichlorophenyl)porphyrin

¹HNMR (CDCl₃, 300 MHz): 9.23(s, 8H, Por-H), 7.95(s, 12H, Ar-H); HRMS-ESI (M-Cl⁺): calc'd

for $C_{44}H_{20}AuCl_8N_4$: 1084.8803, found: 1084.8766.

1.2.3 Gold(III) 5,10,15,20-tetrakis(phenyl)porphyrin (11b)

¹HNMR (CDCl₃, 300 MHz): δ 9.25 (s, 8H) 8.30(dd, 8H, *ortho*-Ar-H, J=7.5Hz, 1.5Hz), 7.83-7.86(m, 12H, Ar-H); HRMS-ESI (M-Cl⁺): calc'd for C₄₄H₂₈AuN₄: 809.1974, found: 809.1968.

1.2.4 Gold(III) 5,10,15,20-tetrakis(3,5-ditertbutylphenyl)porphyrin

¹HNMR (CDCl₃, 300 MHz): δ 9.33 (s, 8H, Por-H), 8.09(d, 8H, *ortho*-Ar-H, J=1.5Hz), 7.91(t, 4H, *para*-Ar-H, J=1.5Hz), 1.53 (s, 72H, -C(CH₃)₃); HRMS-ESI (M-Cl⁺): calc'd for C₇₆H₉₂AuN₄: 1257.6982, found: 1257.6952.

1.2.5 Gold(III) 5,10,15,20-tetrakis(2,6-dimethoxylphenyl)porphyrin

¹HNMR (CDCl₃, 300 MHz): 9.15 (s, 8H, Por-H), 7.85 (t, 4H, *para*-Ar-H, J=8.5Hz), 7.08 (d, 8H, *meta*-Ar-H, J=8.5Hz), 3.58 (s, 24H, -OCH₃); HRMS-ESI (M-Cl⁺): calc'd for $C_{52}H_{44}AuN_4O_8$: 1049.2819, found: 1049.2826.

1.3 Synthesis of porpholactones

General Procedure: Porphyrins (for **3-8**) or silver porphyrins (for **9a-11**) (0.025 mmol), gold complex (0.05 mmol), AgOTf (0.1 mmol, 26.0 mg) and NaOAc (0.125 mmol, 10.5 mg) were added to a Schlenk tube, 2 mL acetic acid was added *via* syringe in succession. The resulting reaction mixture was refluxed for 12 h at 120°C. The solvent was then removed under vacuum and the residue was then purified by flash column chromatography to give the products.

1.3.1 Synthesis and Characterization of [Au(Pic.)Cl₂]

[Au(Pic.)Cl₂] was synthesized according to the literature.¹ ¹H NMR (d⁶-acetone, 300 MHz): δ 9.31(d, 1H, *J* = 6.0 Hz), 8.69 (t, 1H, *J* = 7.6 Hz), 8.26 (m, 1H), 8.20 (d, 1H, *J* = 7.6 Hz).

1.3.2 Synthesis and Characterization of [Au(bpy)Cl₂]Cl

[Au(bpy)Cl₂]Cl was synthesized according to the literature.² ¹H NMR (d³-acetonitrile, 300 MHz): 8.45 (d, 2H, J = 6.9 Hz), 8.01-7.93 (m, 4H), 7.44 (dt, 2H, $J_1 = 2.4$ Hz, $J_2 = 6.3$ Hz).

1.3.3 Synthesis and Characterization of [Au(Salen)Cl]

[Au(Salen)Cl] was synthesized according to the literature.³

1.3.4 Synthesis and Characterization of [Au(Phen)Cl₂]Cl

[Au(Phen)Cl₂]Cl was synthesized according to the literature.²

1.3.5 Synthesis and Characterization of [Au(DiPic)Cl]

Au(DiPic)Cl was synthesized according to the literature.¹

1.3.6 Synthesis of Silver Porphyrins

General procedure: Porphyrins (0.1 mmol), AgOTf (0.2 mmol) and NaOAc (0.5 mmol) were dissolved in $CH_2Cl_2/THF = 1:1(v/v)$, the mixture was refluxed for 12h, then the solvent was removed and the residue was purified by flash column chromatography to give the products (yields >80%).

1.3.7 Synthesis and Characterization of Prophyrins

All porphyrins were synthesized according to the literature.⁵

1.3.8 5,10,15,20-Tetrakis(pentafluorophenyl)porphyrin

¹H NMR (CDCl₃, 300 MHz): δ 8.92 (s, 8H), -2.92 (s, 2H); ¹⁹F NMR (CDCl₃, 282 MHz): δ 25.45 (m, 8F), 10.62 (m, 4F), 0.505 (m, 8F); ESI-MS: *m/z* = 975.1 (MH⁺).

1.3.9 5,10,15,20-Tetrakis(2,3,5,6-tetrafluorophenyl) porphyrin (4)

¹H NMR (CDCl₃, 300 MHz): δ 8.93 (s, 8H), 7.65 (m, 4H), -2.78 (s, 2H); ¹⁹F NMR (CDCl₃, 282

MHz): δ 25.11 (s, 8F), 24.39 (s, 8F); ESI-MS: $m/z = 903.1 \text{ (MH}^+\text{)}$.

1.3.10 5,10,15,20-Tetrakis(2,3,4,5-tetrafluorophenyl) porphyrin (5)

¹H NMR (CDCl₃, 300 MHz): δ 8.86 (s, 8H), 7.79 (m, 4H), -2.99 (s, 2H); ¹⁹F NMR (CDCl₃, 282 MHz): δ 25.47 (m, 4F), 21.85 (m, 4F), 8.13 (m, 4F), 6.70 (m, 4F); ESI-MS: m/z = 903.1 (MH⁺).

1.3.11 5,10,15,20-Tetrakis(2,4,6-trifluorophenyl) porphyrin (6)

¹H NMR (CDCl₃, 600 MHz): δ 8.89 (s, 8H), 7.17 (t, 8H, J = 6.6 Hz), -2.84 (s, 2H);¹⁹F NMR (CDCl₃, 282 MHz): δ 59.61, (t, 8F, J = 6.8 Hz), 55.77 (m, 4F); ESI-MS : m/z = 831.1 (MH⁺).

1.3.11 5,10,15,20-Tetrakis(2,6-difluorophenyl) porphyrin (7)

¹H NMR (CDCl₃, 300 MHz): δ 8.88 (s, 8H), 7.81 (m, 4H), 7.39 (q, 8H, J_1 = 6.6 Hz, J_2 = 1.8 Hz), -2.78 (s, 2H); ¹⁹F NMR (CDCl₃, 282 MHz): δ 53.49 (s, 8F); ESI-MS: m/z = 759.2 (MH⁺).

1.3.12 5,10,15,20-Tetrakis(3,5-difluorophenyl) porphyrin (8)

¹H NMR (CDCl₃, 300 MHz): δ 8.90 (s, 8H), 7.75 (s, 8H), 7.33 (s, 4H), -2.98 (s, 2H); ¹⁹F NMR (CDCl₃, 282 MHz): δ 50.5 (s, 8F); ESI-MS: m/z = 759.2 (MH⁺).

1.3.13 5,10,15,20-Tetrakis(4-fluorophenyl) porphyrin (9)

¹H NMR (CDCl₃, 600 MHz): δ 8.83 (s, 8H), 8.16 (dd, 8H, J_1 = 5.4 Hz, J_2 = 2.4 Hz), 7.46 (m, 12H), -2.83 (s, 2H); ¹⁹F NMR (CDCl₃, 564 MHz): δ 47.27 (s, 4F); ESI-MS: m/z = 687.2 (MH⁺).

1.3.14 Gold(III) 5,10,15,20-tetrakis(2,3,5,6-tetrafluorophenyl)porphyrin (4b)

¹H NMR (CDCl₃, 300 MHz): δ 9.49 (s, 8H,), 7.70-7.60 (m, 4H), ¹⁹F NMR (CDCl₃, 282 MHz): δ 24.52-24.27 (m, 8F), 23.32-23.05(m, 8F). ESI-MS: m/z = 1097.1 (M⁺).

1.3.15 Gold(III) 5,10,15,20-tetrakis(2,3,4,5-tetrafluorophenyl)porphyrin (5b)

¹H NMR (CDCl₃, 300 MHz): δ 9.51 (s, 8H), 7.90-7.70 (m, 4H), ¹⁹F NMR (CDCl₃, 282 MHz): δ 25.23-25.20 (m, 4F), 21.54-21.40-23.05(m, 4F), 7.70 (m, 4F), 6.30-5.80 (m, 4F). ESI-MS: *m*/*z* = 1097.1 (M⁺).

1.3.16 Gold(III) 5,10,15,20-tetrakis(2,4,6-trifluorophenyl)porphyrin (6b)

¹H NMR (CDCl₃, 300 MHz): δ 9.48 (s, 8H), 7.18 (t, 4H, J = 4.8 Hz), ¹⁹F NMR (CDCl₃, 282 MHz):

δ 56.67 (t, 4F, J = 3.6 Hz), 55.24(s, 8F). ESI-MS: m/z = 1025.1 (M⁺).

1.3.17 Gold(III) 5,10,15,20-tetrakis(2,6-difluorophenyl)porphyrin (7b)

¹H NMR (CDCl₃, 300 MHz): δ 9.50 (s, 8H), 7.55-7.52 (m, 4H), 7.23 (m, 8H) ¹⁹F NMR (CDCl₃, 282 MHz): δ 83.33 (m, 8F). ESI-MS: m/z = 953.1 (M⁺).

1.3.18 Gold(III) 5,10,15,20-tetrakis(3,5-difluorophenyl)porphyrin (8b)

¹H NMR (CDCl₃, 300 MHz): δ 9.46 (s, 8H), 7.80-7.0 (d, 4H, J = 5.7 Hz), 7.34-7.29 (m, 8H), ¹⁹F NMR (CDCl₃, 282 MHz): δ 50.03 (s, 8F). ESI-MS: m/z = 953.1 (M⁺).

1.3.19 Gold(III) 5,10,15,20-tetrakis(4-fluorophenyl)porphyrin (9b)

¹H NMR (CDCl₃, 300 MHz): δ 9.25 (s, 8H), 8.24-8.20 (m, 8H), 7.74-7.69 (m, 8H). ¹⁹F NMR (CDCl₃, 282 MHz): δ 50.08 (m, 4F). ESI-MS: m/z = 881.0 (M⁺).

1.3.20 Gold(III) 5,10,15,20-tetrakis(4-chlorophenyl)porphyrin (10b)

¹HNMR (CDCl₃, 300 MHz): δ =9.23 (s, 8H, Por-H), 8.20 (d, 8H, Ar-H, *J*=8.1Hz), 7.84 (d, 8H, Ar-H, *J*=8.1Hz); (d₆-acetone, 300MHz): δ =9.46 (s, 8H, Por-H), 8.35 (d, 8H, Ar-H, *J*=8.1Hz), 7.97 (d, 8H, Ar-H, *J*=8.1Hz); HRMS-ESI (M-Cl⁺): calc'd for C₄₄H₂₄AuCl₄N₄: 947.0391, found: 947.0372.

1.4 Mechanistic Studies

Porphyrin $H_2F_{20}TPP$ (0.025 mmol), gold complex (0.05 mmol), AgOTf (0.1 mmol, 26.0 mg) and NaOAc (0.125 mmol, 10.5 mg) were added to a Schlenk tube, 2 mL acetic acid was added *via* syringe in succession. The resulting reaction mixture was refluxed for 12 h at 120°C. The solvent was then removed under vacuum and the residue was then purified by flash column chromatography to give the products.

1.4.1 Spectra Data for β -Acetylated H₂F₂₀TPP

¹H NMR (CDCl₃, 300 MHz): δ 8.98-8.84 (m, 7H), 2.25 (s, 3H), -3.02 (s, 1H). ¹⁹FNMR: δ 25.79-25.69 (m, 4F), 24.36-24.01 (m, 4F), 13.43-13.23 (m, 2F), 12.56-12.77 (m, 2F), 2.80-2.60 (m, 4F), 2.05-1.88 (m, 4F). IR (cm⁻¹): 1774.3 (C=O); ESI-MS (MH⁺) m/z = 1011.0; HRESI-MS (MH⁺): calc'd for C₄₂H₇F₂₀N₄O₄: 1011.0143, found: 1011.0148.

1.5 Spectra for β -Monochloroporphyrins

1.5.1 β -Monochloro tetra(pentafluorophenyl)porphyrins (β -Cl-F₂₀TPP) (2)

¹H NMR (CDCl₃, 300 MHz): δ 9.00 (d, 4H, J = 5.1 Hz), 8.83 (s, 2H), 8.78 (s, 1H), -3.014 (s, 2H); ¹⁹F NMR (CDCl₃, 282 MHz): δ 25.39-25.15(m, 6F), 25.61 (dd, 2F, $J_1 = 7.8$ Hz, $J_2 = 24.3$ Hz), 11.09-10.77 (m, 3F), 10.18 (t, 1F, J = 22.8 Hz), 0.85-0.50 (m, 6F), -0.24 - -0.42 (m, 2F); HRMS-ESI (MH⁺): calc'd for C₄₄H₁₀ClF₂₀N₄: 1009.0269, found:1009.0269.

2. Spectra data for porpholactones

2.1 Tetra(pentafluorophenyl)porpholactone (3)

¹H NMR (CDCl₃, 300 MHz): δ 8.92 (d, 1H, J = 5.4 Hz), 8.89 (d, 1H, J = 4.8 Hz), 8.86 (d, 1H, J = 3.6 Hz), 8.82 (d, 1H, J = 4.2 Hz), 8.65 (dd, 2H, J_I = 4.8 Hz, J_2 = 42.0 Hz), -1.80 (s, 1H), -2.10 (s, 1H); ¹⁹F NMR (CDCl₃, 282 MHz): δ 25.12-24.93 (m, 4F), 24.73 (dd, 2F, J_1 = 7.2 Hz , J_2 = 16.8 Hz), 11.33 (quad, 3F, J = 22.5 Hz), 10.60 (t, 1F, J = 22.2 Hz), 1.14-0.87 (m, 6F), 0.46-0.29 (m, 2F); ESI-MS (MH⁺) m/z =993.0; HRESI-MS (MH⁺): calc'd for C₄₃H₉F₂₀N₄O₂: 993.0405, found 993.0402; IR (cm⁻¹): 1774 (C=O), 1793 (C=O); UV-vis (CH₂Cl₂), λ_{max} (logε) : 409 (5.18), 510 (3.95), 545 (3.81), 589 (3.60), 642 (4.03).

Figure S2. ¹⁹F NMR spectrum of 3 (CDCl₃)

Figure S4. FT-IR of 3

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is The Royal Society of Chemistry 2012

Figure S5. MS of 3

2.2 Tetra(2,3,5,6-tetrafluorophenyl)porpholactone (4a)

¹H NMR (CDCl₃, 300 MHz): δ 8.90 (s, 1H, J = 4.8 Hz), 8.86 (s, 1H, J = 4.2 Hz), 8.83 (s, 1H, J = 4.2 Hz), 8.79 (s, 1H, J = 3.0 Hz), 8.66 (dd, 2H, J_I = 4.8 Hz, J_2 = 42.0 Hz), 7.65-7.53 (m, 4H), -1.76 (s, 1H), -2.06 (s, 1H); ¹⁹F NMR (CDCl₃, 564 MHz): δ 24.46 (broad), 24.11 (broad), 23.83 (broad), 23.21 (broad), 22.76 (broad); ESI-MS (MH⁺) m/z = 921.1; HRESI-MS (MH⁺): calc'd for C₄₃H₁₃F₁₆N₄O₂: 921.0872, found: 921.0767; IR (cm⁻¹): 1768 (C=O), 1795 (C=O); UV-vis (CH₂Cl₂), λ_{max} (loge) : 413 (5.25), 510 (3.96), 544 (3.33), 588 (3.52), 642 (3.68).

Figure S6. ¹H NMR spectrum of 4a (CDCl₃)

Figure S7. ¹⁹F NMR spectrum of 4a (CDCl₃)

Figure S8. UV-vis (Black trace) and fluorescence (Red trace) spectra of 4a (CH₂Cl₂)

Figure S9. FT-IR of 4a

Figure S10. MS of 4a

2.3 Tetra(2,3,4,5-tetrafluorophenyl)porpholactone (5a).

¹H NMR (CDCl₃, 300 MHz): δ 8.87 (s, 1H, J = 4.8 Hz,), 8.84 (s, 1H, J = 4.2 Hz), 8.80 (s, 1H, J = 4.2 Hz), 8.74 (s, 1H, J = 4.2 Hz), 8.62 (dd, 2H, J_1 = 4.8 Hz, J_2 = 39.0 Hz), 7.65-7.48 (broad, 4H,), -1.86 (s, 1H), -2.18 (s,1H); ¹⁹F NMR (CDCl₃, 282 MHz): δ 25.25 (broad), 22.33 (broad), 8.92(m), 8.32 (t), 7.40 (m), 6.73 (m); ESI-MS (MH⁺) m/z = 921.1; HRESI-MS (MH⁺): calc'd for C₄₃H₁₃F₁₆N₄O₂: 921.0782, found: 921.0770; IR (cm⁻¹): 1790 (C=O); UV-vis (CH₂Cl₂), λ_{max} (logε) : 413 (5.24), 510 (3.98), 547 (3.47), 586 (3.54), 642 (3.42).

Figure S11. ¹H NMR spectrum of 5a (CDCl₃)

Figure S12. ¹⁹F NMR spectrum of 5a (CDCl₃)

Figure S13. UV-vis (Black trace) and fluorescence (Red trace) spectra of 5a (CH₂Cl₂)

Figure S14. FT-IR of 5a

Figure S15. MS of 5a

2.4 Tetra(2,4,6-trifluorophenyl)porpholactone (6a)

¹H NMR (CDCl₃, 300 MHz): δ 8.90 (s, 1H, J = 4.8 Hz), 8.87 (s, 1H, J = 4.2 Hz), 8.83 (s, 1H, J = 4.2 Hz), 8.79 (s, 1H, J = 4.2 Hz), 8.64 (dd, 2H, J_I = 4.8 Hz, J_2 = 42.0 Hz), 7.79 (m, 8H), -1.84 (s, 1H), -2.10 (s, 1H); ¹⁹F NMR (CDCl₃, 282 MHz): δ 48.24-47.80 (m, 8F), 47.51 (m, 1H), 47.20 (t, 2H, J = 7.05Hz), 45.75 (t, 2H, J = 7.05Hz); ESI-MS(MH⁺) m/z = 849.1; HRESI-MS (MH⁺): calc'd for C₄₃H₁₇F₁₂N₄O₂: 849.1159, found:849.1163; IR (cm⁻¹): 1790 (C=O); UV-vis (CH₂Cl₂), λ_{max} (logε) : 412 (5.02), 511 (3.73), 547 (3.44), 587(3.36), 642 (3.50).

Figure S16. ¹H NMR spectrum of 6a (CDCl₃)

Figure S17. ¹⁹F NMR spectrum of 6a (CDCl₃)

Figure S18. UV-vis (Black trace) and fluorescence (Red trace) spectra of 6a (CH₂Cl₂)

Figure S19. FT-IR of 6a

Figure S20. MS of 6a

2.5 Tetra(2,6-difluorophenyl)porpholactone (7a)

¹H NMR (CDCl₃, 300 MHz): δ 8.85-8.70 (m, 4H), 8.66 (d, 1H, J = 4.8Hz), 8.64 (d, 1H, J = 4.8Hz), 8.56 (d, 1H, J = 4.5Hz), 7.73-7.77 (m, 4H), 7.40-7.33 (m, 8H), -1.69 (s, 1H), -2.02 (s, 1H); ¹⁹F NMR (CDCl₃, 282 MHz): δ 40.47-39.82 (m, 6F), 39.24 (m, 1F), 37.94 (m, 1F); ESI-MS (MH⁺) m/z = 777.2; HRESI-MS (MH⁺): calc'd for C₄₃H₂₁F₈N₄O₂: 777.1536, found: 777.1544; IR (cm⁻¹): 1780 (C=O); UV-vis (CH₂Cl₂), λ_{max} (logε) : 412 (4.97), 512 (3.72), 548 (3.58), 588(3.48), 641 (3.56).

Figure S21. ¹H NMR spectrum of 7a (CDCl₃)

Figure S22. ¹⁹F NMR spectrum of 7a (CDCl₃)

Figure S23. UV-vis (Black trace) and fluorescence (Red trace) spectra of 7a (CH₂Cl₂)

Figure S24. FT-IR of 7a

Figure S25. MS of 7a

2.6 Tetra(3,5-difluorophenyl)porpholactone (8a)

¹H NMR (CDCl₃, 300 MHz): δ 8.87 (dd, 2H, J_I = 4.8 Hz, J_2 = 11.4 Hz), 8.77 (d, 1H, J = 4.8 Hz), 8.66 (d, 1H, J = 4.8Hz), 8.63 (d, 1H, J = 4.8Hz), 8.56 (d, 1H, J = 4.8Hz), 7.76-7.62(m, 8H), 7.54-7.48 (m, 4H), -1.85 (s, 1H), -2.20 (s, 1H); ¹⁹F NMR (CDCl₃, 564 MHz): δ 51.69 (s, 2F), 51.32 (s, 2F), 51.18 (s, 2F), 50.61 (s, 2F); ESI-MS (MH⁺) m/z = 777.2; HRESI-MS (MH⁺): calc'd for C₄₃H₂₁F₈N₄O₂: 777.1536, found: 777.1529; IR (cm⁻¹): 1780 (C=O); UV-vis (CH₂Cl₂), λ_{max} (logε) : 415 (4.84), 514 (3.48), 552 (3.20), 567 (3.09), 641 (2.95).

Figure S26. ¹H NMR spectrum of 8a (CDCl₃)

Figure S27. ¹⁹F NMR spectrum of 8a (CDCl₃)

Figure S28. UV-vis (Black trace) and fluorescence (Red trace) spectra of 8a (CH₂Cl₂)

Figure S29. FT-IR of 8a

Figure S30. MS of 8a

2.7 Tetra(4-fluorophenyl)porpholatcone (9a)

¹H NMR (CDCl₃, 300 MHz): δ 8.85-8.80 (m, 4H), 8.68 (dd, 2H, $J_1 = 2.4$ Hz, $J_2 = 5.1$ Hz), 8.57-8.50 (m, 4H), 8.01-7.98 (m, 8H), 7.85-7.80 (m, 4H), -1.76 (s, 1H), -2.07 (s, 1H); ¹⁹F NMR (CDCl₃, 564 MHz): δ 11.31 (q, 3F, J = 40.0Hz), 10.60 (t, 1F, J = 40.7Hz); ESI-MS (MH⁺) m/z 705.2; HRESI-MS (MH⁺): calc'd for C₄₃H₂₅F₄N₄O₂: 705.1913, found: 705.1908; IR (cm⁻¹): 1790 (C=O); UV-vis (CH₂Cl₂), λ_{max} (logε) : 418 (4.41), 516 (2.80), 548 (2.79), 588 (2.37), 644 (1.89).

Figure S31. ¹H NMR spectrum of 9a (CDCl₃)

Figure S32. ¹⁹F NMR spectrum of 9a (CDCl₃)

Figure S33. UV-vis (Black trace) and fluorescence (Red trace) spectra of 9a (CH₂Cl₂)

Figure S34. FT-IR of 9a

Figure S35. MS of 9a

2.8 Tetra(4-chlorophenyl)porpholatcone (10a)

¹H NMR (CDCl₃, 300 MHz): δ 8.94 (s, 1H), 8.82-8.64 (m, 2H), 8.60-8.50 (m, 2H), 8.07-8.00 (t, 6H, J = 8.1 Hz), 7.90 (s, 1H), 7.87 (s, 1H), 7.78-7.69 (m, 9H), -1.75 (s, 1H), -2.11 (s, 1H); ESI-MS (MH⁺) m/z = 769.1; HRESI-MS (MH⁺): calc'd for C₄₃H₂₅Cl₄N₄O₂: 769.0731, found: 769.0735; IR (cm⁻¹): 1790 (C=O); UV-vis (CH₂Cl₂), λ_{max} (logε) : 419 (5.23), 519 (3.83), 557 (3.75), 589 (3.46), 641 (3.00).

Figure S36. ¹H NMR spectrum of 10a (CDCl₃)

Figure S37. UV-vis (Black trace) and fluorescence (Red trace) spectra of 10a (CH₂Cl₂)

Figure S38. FT-IR of 10a

Figure S39. MS of 10a

2.9 Tetraphenyl porpholactone (11a)

¹H NMR (CDCl₃, 300 MHz): δ 8.81-8.75 (m, 4H), 8.70 (dd, 2H, $J_1 = 2.1$ Hz, $J_2 = 5.1$ Hz), 8.60-8.56 (m, 4H), 8.53 (d, 2H, J = 4.5Hz), 8.14-8.08 (m, 10H), 7.98-7.95 (m, 4H), -1.71 (s, 1H), -2.08 (s, 1H); ESI-MS (MH⁺) m/z 633.2, (M+Na⁺) m/z = 655.2; HRESI-MS (MH⁺): calc'd for C₄₃H₂₉N₄O₂: 633.2290, found: 633.1711; HRESI-MS (M+Na⁺): calc'd for C₄₃H₂₈N₄O₂Na: 655.2110, found: 655.2102; IR (cm⁻¹): 1780 (C=O); UV-vis (CH₂Cl₂), λ_{max} (logε) : 418 (5.43), 521 (3.98), 554 (4.07), 589 (3.76), 641 (3.43).

Figure S40. ¹H NMR spectrum of 11a (CDCl₃)

Figure S41. UV-vis (Black trace) and fluorescence (Red trace) spectra of 11a (CH₂Cl₂)

Figure S42. FT-IR of 11a

Figure S43. MS of 11a

3. References

- 1. N. D. Shapiro; F. D. Toste. J. Am. Chem. Soc. 2008, 130, 9244-9245.
- 2. B. P. Block; J. C. Bailar. J. Am. Chem. Soc. 1951, 73, 4722-4725.
- 3. S. L. Barnholtz; J. D. Lydon; G. Huang; M. Venkatesh; C. L. Barnes; A. R. Ketring; S. S. Jurisson. *Inorg. Chem.* **2001**, *40*, 972-976.
- 4. P. de Frémont; N. M. Scott; E. D. Stevens; S. P. Nolan. Organometallics. 2005, 24, 2411-2418.
- 5. J. S. Lindsey; R. W. Wagner. J. Org. Chem. 1989, 54, 828-836.