10

15

20

25

30

Supplementary Information

CuN₆ Jahn–Teller centers in coordination frameworks comprising fully condensed Kuratowski–type secondary building units: phase transitions and magneto– structural correlations

Maciej Grzywa,^a Dmytro Denysenko,^a Jan Hanss,^a Ernst–Wilhelm Scheidt,^b Wolfgang Scherer,^b Matthias Weil,^c and Dirk Volkmer^a*

*To whom correspondence should be addressed

^a Institute of Physics, Chair of Solid State and Materials Chemistry, Augsburg University, Universitätsstrasse 1, 86159 Augsburg, Germany Fax: +49 (0)821 598–5955; Tel: +49 (0)821 598–3006;

E-mail: dirk.volkmer@physik.uni-augsburg.de

^b Institute of Physics, Chair of Chemical Physics, Augsburg University, Universitätsstrasse 1, 86159 Augsburg, Germany Fax: +49 (0)821 598–3227; Tel: +49 (0)821 598–3350;

^c Institute for Chemical Technologies and Analytics, Division of Structural Chemistry, Vienna University of Technology, Getreidemarkt 9/164–SC, 1060 Vienna, Austria

5 Atom	Х	у	Z	U(eq)
Cu2	0	7500	1250	15(1)
Cu1	0	5000	0	20(1)
N4	0	7500	13(3)	20(2)
N2	1218(3)	6282(3)	1250	26(1)
10 N3	0	3415(4)	394(2)	23(1)
N1	1284(3)	5447(3)	779(2)	35(1)
C1	0	3070(5)	1062(3)	36(2)
C2	2194(4)	4835(4)	961(3)	52(2)

Table S1. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters ($\mathring{A}^2 x 10^3$) for α -[Cu(ta)₂]. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

15 **Table S2.** Bond lengths [Å] and angles [deg] for α -[Cu(ta)₂].

Cu2-N2	2.040(4)	Cu1-N1#6	2.186	(4)
Cu2-N2#1	2.040(4)	N4-N3#4	1.330	(5)
Cu2-N2#2	2.040(4)	N4-N3#7	1.330	(5)
Cu2-N2#3	2.040(4)	N2-N1#8	1.336	(4)
20 Cu2-N4#2	2.348(6)	N2-N1	1.336	(4)
Cu2-N4	2.348(6)	N3-N4#4	1.330	(5)
Cu1-N3#4	2.021(5)	N3-C1	1.333	(7)
Cu1-N3	2.021(5)	N1-C2	1.343	(6)
Cu1-N1	2.186(4)	C1-C1#9	1.351	(12)
25 Cu1-N1#4	2.186(4)	C2-C2#8	1.352	(11)
Cu1-N1#5	2.186(4)			
N(2)-Cu(2)-N(2)#1	90.0	N(3)#4-0	Cu(1)-N(1)#6	88.57(13)
N(2)-Cu(2)-N(2)#2	90.0	N(3)-Cu(1)-N(1)#6	91.43(13)
30 N(2)#1-Cu(2)-N(2)#2	180.0	N(1)#4-C	Cu(1)-N(1)#6	88.20(19)
N(2)-Cu(2)-N(2)#3	180.0	N(1)#5-C	180.00(15)	
N(2)#1-Cu(2)-N(2)#3	90.0	N(3)#4-0	Cu(1)-N(1)	91.43(13)
N(2)#2-Cu(2)-N(2)#3	90.0	N(3)-Cu(1)-N(1)	88.57(13)
N(2)-Cu(2)-N(4)#2	90.0	N(1)#4-0	Cu(1)-N(1)	180.0
35 N(2)#1-Cu(2)-N(4)#2	90.0	N(1)#5-C	Cu(1)-N(1)	88.20(19)
N(2)#2-Cu(2)-N(4)#2	90.0	N(1)#6-C	Cu(1)-N(1)	91.80(19)
N(2)#3-Cu(2)-N(4)#2	90.0	N(3)#4-N	J(4)-N(3)#7	109.1(6)
N(2)-Cu(2)-N(4)	90.0	N(3)#4-N	I(4)-Cu(2)	125.4(3)
N(2)#1-Cu(2)-N(4)	90.0	N(3)#7-N	I(4)-Cu(2)	125.4(3)
40 N(2)#2-Cu(2)-N(4)	90.0	N(1)#8-N	N(2)-N(1)	111.2(5)
N(2)#3-Cu(2)-N(4)	90.0	N(1)#8-N	V(2)-Cu(2)	124.4(2)
N(1)#2-Cu(2)-N(4)	180.0	N(1)-N(2	2)-Cu(2)	124.4(2)
N(3)#4-Cu(1)-N(3)	180.0	N(4)#4-N	V(3)-C(1)	107.6(5)
N(3)#4-Cu(1)-N(1)#4	88.57(13)	N(4)#4-N	V(3)-Cu(1)	122.9(4)
45 N(3)-Cu(1)-N(1)#4	91.43(13)	C(1)-N(3)-Cu(1)	129.5(4)
N(3)#4-Cu(1)-N(1)#5	91.43(13)	N(2)-N(1)-C(2)	105.9(4)
N(3)-Cu(1)-N(1)#5	88.57(13)	N(2)-N(1)-Cu(1)	126.2(3)
N(4)#4-Cu(1)-N(1)#5	91.80(19)	C(2)-N(1)-Cu(1)	127.0(3)
N(3)-C(1)-C(1)#9	107.8(3)	N(1)-C(2)-C(2)#8	108.5(3)

Symmetry transformations used to generate equivalent atoms:

50

#1 -y+3/4,x+3/4,-z+1/4; #2 y-3/4,-x+3/4,-z+1/4; #3 -x+0,-y+3/2,z+0; #4 -x,-y+1,-z; #5 -x,y,z; #6 x,-y+1,-z; #7 x,y+1/2,-z; #8 -y+3/4,-x+3/4,-z+1/4; #9 -x+0,-y+1/2,z+0

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is The Royal Society of Chemistry 2012

Atom	X	у	Z		U		
Cu1	0	0.5	0		0.056(2)		
Cu2	0.125	0.625	0.125		0.047(3)		
5 C1	0.0977(3)	0.3758(4)	0.0977(.	3)	0.047(5)		
N1	0.08042(10)	0.4489(3)	0.08042	(10)	0.066(4)		
N2	0.125	0.4922(5)	0.125		0.039(5)		
H1	0.075616	0.332552	0.07561	6	0.038 96		
	1 1 1		0.10.4				
10 Table S4. Selected	bond distances [A] ar	id bond angles [deg] for	\mathbf{p} -[Cu(ta) ₂]				
C1-C1 ⁱ	1.349(7)	Cu2-N2	2 Nix	2.317(9)			
CI-NI	1.344(8)	Cu2-N	,ii	2.317(9)			
CI-NI ²	2.185(7)	Cu2-N	<u>,</u>	2.317(9)			
CI-N2	2.139(11)	Cu2-N2	2^	2.317(9)			
15 Cul-NI	2.174(3)	Cu2-N	y	2.317(9)			
Cul-N1 th	2.174(3)	Cu2-N2	2.4	2.317(9)			
Cu1-N1 ^m	2.174(3)	NI-NI	V	2.199(2)			
Cul-N1 ^w	2.174(3)	N1-N1	v 7	2.897(3)			
Cul-N1 ^v	2.174(3)	N1-N1		2.897(3)			
20 Cu1-N1 ^{VI}	2.174(3)	N1-N2		1.334(6)			
C1 ⁱ -C1-N1·	108 4(5)	N2 ⁱⁱⁱ -C	11-N2 ^{iv}	180.0(5)		C1 ⁱ -N1-N1 ^{iv}	123 7(2)
$C1^{i}$ - $C1$ -N2	71 6(4)	N2 ⁱⁱⁱ -Ci	$11-N2^{vii}$	115 88(1)	8)	$C1^{i}$ -N1-N1 ^v	123.7(2) 123.7(2)
$N1-C1-N1^{i}$	72.7(3)	N2 ⁱⁱⁱ -Ci	$11.N2^{viii}$	115.88(1)	8)	$C1^{i}$ -N1-N2	70.2(4)
$\sim N1-Cu1-N1^{ii}$	96 46(13)	N2 ^{iv} -Ci	11-102 11-N2 ^{vii}	64 12(18))	$Cu1-N1-N1^{i}$	155 8(3)
N1-Cu1-N1 ⁱⁱⁱ	96 46(13)	N1 ⁱⁱⁱ -Ci	$11-N2^{vii}$	97 91(15))	Cu1-N1-N1 ^{iv}	48 23(9)
N1-Cu1-N1 ^{iv}	83 54(13)	N2 ^{iv} -Ci	11-102 11-N2 ^{viii}	64 12(18))	$Cu1-N1-N1^{v}$	48 23(9)
$N1-Cu1-N1^{v}$	83 54(13)	N2 ^{vii} -C	11.02^{viii}	64 12(18))	Cu1-N1-N2	121 4(4)
N1-Cu1-N1 ^{vi}	180.0(5)	N2-Cu	$2 N2^{ix}$	180.0(5)	/	$N1^{i}$ - $N1$ - $N1^{iv}$	144.05(15)
$_{30}$ N1-Cu1-N2 ⁱⁱ	82.09(15)	N2-Cu	$2 - N2^{ii}$	90		$N1^{i}$ -N1-N1 ^v	144.05(15) 144.05(15)
N1-Cu1-N2 ⁱⁱ	82.09(15)	N2-Cu	$2 - N2^{x}$	90		N1 ^{iv} -N1-N1 ^v	68 09(15)
N1-Cu1-N2 ^{iv}	97 91(15)	N2-Cu	$2 \cdot N2^{iii}$	90		N1 ^{iv} -N1-N2	1401(2)
N1-Cu1-N2 ^{vii}	97 91(15)	N2-Cu	$2 \cdot N2^{xi}$	90		N1 ^v -N1-N2	1401(2)
N1-Cu1-N2 ^{viii}	158.3(2)	N2 ^{ix} -Ci	$12-N2^{ii}$	90		C1-N2-Cu1	74.16(17)
$35 \text{ N1}^{\text{ii}}$ -Cu1-N1 ⁱⁱⁱ	96.46(13)	N2 ^{ix} -Ci	$12-N2^{x}$	90		$C1-N2-Cu1^{i}$	110.9(3)
N1 ⁱⁱ -Cu1-N1 ^{iv}	83.54(13)	N2 ^{ix} -Ci	$12-N2^{iii}$	90		C1-N2-Cu2	161.62(16)
N1 ⁱⁱ -Cu1-N1 ^v	180.0(5)	N2 ^{ix} -Ci	$12-N2^{xi}$	90		$C1-N2-N1^{i}$	73.9(5)
N1 ⁱⁱ -Cu1-N1 ^{vi}	83.54(13)	N2 ⁱⁱ -Cu	$2-N2^{x}$	180.0(5)		C1 ⁱ -N2-Cu1	110.9(3)
N1 ⁱⁱ -Cu1-N2	82.09(15)	N2 ⁱⁱ -Ci	$2-N2^{iii}$	90		$C1^{i}$ -N2-Cu1 ⁱ	74.16(17)
$_{40}$ N1 ⁱⁱ -Cu1-N2 ⁱⁱⁱ	82.09(15)	N2 ⁱⁱ -Cu	$2-N2^{xi}$	90		C1 ⁱ -N2-Cu2	161.62(16)
N1 ⁱⁱ -Cu1-N2 ^{iv}	97.91(15)	N2 ^x -Cu	2-N2 ⁱⁱⁱ	90		C1 ⁱ -N2-N1	73.9(5)
N1 ⁱⁱ -Cu1-N2 ^{vii}	158.3(2)	N2 ^x -Cu	2-N2 ^{xi}	90		Cu1-N2-Cu1 ⁱ	174.9(3)
N1 ⁱⁱ -Cu1-N2 ^{viii}	97.91(15)	N2 ⁱⁱⁱ -C	12-N2 ^{xi}	180.0(5)		Cu1-N2-Cu2	87.46(16)
N1 ⁱⁱⁱ -Cu1-N1 ^{iv}	180.0(5)	C1-N1-	Cu1	132.6(3)		Cu1-N2-N1 ⁱ	148.1(5)
45 N1 ⁱⁱⁱ -Cu1-N1 ^v	83.54(13)	C1-N1-	N1 ⁱ	71.6(3)		Cu1 ⁱ -N2-Cu2	87.46(16)
N1 ⁱⁱⁱ -Cu1-N1 ^{vi}	83.54(13)	C1-N1-	N1 ^{iv}	95.1(3)		Cu1 ⁱ -N2-N1	148.1(5)
N1 ⁱⁱⁱ -Cu1-N2	82.09(15)	C1-N1-	N1 ^v	95.1(3)		Cu2-N2-N1	124.4(4)
N1 ⁱⁱⁱ -Cu1-N2 ⁱⁱ	82.09(15)	C1-N1-	N2	106.0(4)		Cu2-N2-N1 ⁱ	124.4(4)
N1 ⁱⁱⁱ -Cu1-N2 ^{iv}	158.3(2)	C1 ⁱ -N1	-Cu1	168.5(3)		N1-N2-N1 ⁱ	111.1(7)
50 N1 ⁱⁱⁱ -Cu1-N2 ^{viii}	97.91(15)	N1 ^{iv} -C	11-N1 ^v	96.46(13)	N1 ^{iv} -Cu1-N1 ^{vi}	96.46(13)
N1 ^{iv} -Cu1-N2	97.91(15)	N1 ^{iv} -C	11-N2 ⁱⁱ	97.91(15)	N1 ^{iv} -Cu1-N2 ⁱⁱⁱ	158.3(2)
N1 ^{iv} -Cu1-N2 ^{vii}	82.09(15)	N1 ^{iv} -Ci	11-N2 ^{viii}	82.09(15)	N1 ^v -Cu1-N1 ^{vi}	96.46(13)
N1 ^v -Cu1-N2	97.91(15)	N1 ^v -Cu	1-N2 ⁱⁱ	158.3(2)		N1v-Cu1-N2 ⁱⁱⁱ	97.91(15)
N1 ^v -Cu1-N2 ^{iv}	82.09(15)	N1 ^v -Cu	1-N2 ^{viii}	82.09(15))	N1 ^{vi} -Cu1-N2	158.3(2)
55 N1 ^{vi} -Cu1-N2 ⁱⁱ	97.91(15)	N1 ^{vi} -Ci	11-N2 ⁱⁱⁱ	97.91(15)	N1 ^{vi} -Cu1-N2 ^{iv}	82.09(15)
N1 ^{vi} -Cu1-N2 ^{vii}	82.09(15)	N2-Cu	I-N2 ⁱⁱ	64.12(18)	N2-Cu1-N2 ⁱⁱⁱ	64.12(18)
N2-Cu1-N2 ^{iv}	115.88(18)	N2-Cu	-N2 ^{vii}	115.88(1)	8)	N2-Cu1-N2 ^{viii}	180.0(5)
N2 ⁱⁱ -Cu1-N2 ⁱⁱⁱ	64.12(18)	N2 ⁱⁱ -Cu	$1-N2^{iv}$	115.88(1)	8)	N2 ⁱⁱ -Cu1-N2 ^{vii}	180.0(5)
N2 ⁱⁱ -Cu1-N2 ^{viii}	115.88(18)				*		

Symmetry transformations used to generate equivalent atoms:

(i) -x+1/4, y+1, -z+5/4; (ii) z, x+1/2, y-1/2; (iii) y-1/2, z+1/2, x; (iv) -y+1/2, -x+1/2, -z; (v) -x, -z+1/2, -y+1/2; (vi) -z, -y+1, -x; (vii) x-1/4, z+1/4, -y+1/2; (viii) z-1/4, -y+2, x-1/4; (ix) -x+5/4, -y+5/4, z+1; (x) z+1, -x+3/4, -y+3/4; (xi) -y+3/4, z+1/2, -x+5/4;

Fig. S1a. Packing diagram of α -[Cu(ta)₂], as viewed along *b*-direction.

Fig. S1b. Packing diagram of α -[Cu(ta)₂], as viewed along *c*-direction.

Fig. S2a. Packing diagram of β -[Cu(ta)₂], as viewed along *b*-direction.

Fig. S2b. Packing diagram of β -[Cu(ta)₂], as viewed along *c*-direction.

Table S5. The intensity, area and peak positions of Bragg reflexes for α - and β -[Cu(ta)₂].

Temperature/°C	Peak	Area	Position/°20	Width/°20
160	(111)	3061.26	8.76	0.06
160 (after cooling)	(111)	3077.16	8.76	0.06
160	(311)	222.98	16.80	0.4
160 (after cooling)	(311)	225.38	16.80	0.4
160	(400)	247.59	20.30	0.17
160 (after cooling)	(400)	246.22	20.30	0.13

Fig. S3a. Calculated (black) and observed (red) powder patterns for α -[Cu(ta)₂].

Fig. S3b. Calculated (black) and observed (red) powder patterns for α -[Cu(ta)₂] – expanded view in the range 6-45 °20.

Fig. S4. IR spectrum of α -[Cu(ta)₂].