Synthesis of Carbon-coated, Porous and water-dispersive Fe₃O₄ Nanocapsules and Their Excellent Performance for Heavy Metal Removal Applications

Kai Cheng, Yu-Mei Zhou, Qian-Wang Chen, Hai-Bo Hu, Hao Zhong, Xianyi Hu, Xiang-Kai Kong

Fig. S1 BJH pore plot of the nanocapsules.

Fig. S2 M-H hysteresis loops of the SiO2@Fe3O4@C nanoparticles.

Fig. S3 FT-IR spectra of as prepared sample.

Metal	Pb	Cd	Zn	Cu	Ni	Со	Mn
C _o (mg/L)	1.0	1.0	1.0	1.0	1.0	1.0	1.0
C _t (mg/L)	<10-3	0.052	<10 ⁻³	<10-3	0.089	0.020	0.066

Table S1 Detailed analysis of an adsorption experiment with different heavy metals (Co: original concentration; Ct:concentration after treatment, detection limit by ICP-AES: 1 ppb).

Fig. S4 EDS of single nanocapsules.

Fig. S5 zeta potential of nanocapsules after uptake different volume of Pb^{2+} .

Fig. S6 The concentration of dissolved iron in different pH value solution.