Electronic supplementary information for Dalton Trans.

# **Preparation and confinement effect of hetereogeneous**

# 9-amino-9-deoxy-epi-cinchonidine organocatalyst for asymmetric aldol

# addition in aqueous medium

# Wei Wang, Xuebing Ma,\* Jun Cao, Jingwei Wan, Qian Tang

College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, P. R. China

### 1. NMR spectra of 1a-e and 9-amino-9-deoxy-epi-cinchonine



9-amino-9-deoxy-epi-cinchonine:

<sup>1</sup>H NMR (300M Hz,CDCl<sub>3</sub>. TMS): δ 8.90 (H-2<sup>′</sup>, 1 H, d, <sup>3</sup>J=6.0 Hz), 8.35 (H-5<sup>′</sup>, 1 H, br s, <sup>3</sup>J=9.0 Hz), 8.15 (H-8<sup>′</sup>, 1 H, d, <sup>3</sup>J=3.0 Hz), 7.70 (H-7<sup>′</sup>, 1 H, t, <sup>3</sup>J=6.0 Hz), 7.58 (H-6<sup>′</sup>, 1 H, t, <sup>3</sup>J=6.0 Hz), 7.52 (H-3<sup>′</sup>, 1 H, d, <sup>3</sup>J=2.0 Hz), 5.78 (H-10, 1 H, ddd), 4.94-5.02 (H-11, 2 H, m), 4.70(H-9, 1 H, d, <sup>3</sup>J=9.0 Hz), 3.26 (H-6α, dd, 1 H), 3.17(H-2-exo, q, 1 H), 3.06 (H-8, 1 H, d, <sup>3</sup>J=9.0 Hz), 2.73-2.83(H-6β, H-2-endo, 2 H), 2.26 (H-5α, s, 1 H), 2.15 (-NH<sub>2</sub>, s, 2 H), 1.57-1.59 (H-3, H-4, H-5β, 3 H), 1.40 (H-7β, 1 H), 0.73 (H-7α, dd, 1H). <sup>13</sup>C NMR (75M Hz, CDCl<sub>3</sub>. TMS): δ 150.1 (C-6<sup>′</sup>), 148.5 (C-4<sup>′</sup>), 148.3 (C-2<sup>′</sup>), 141.6 (C-10), 130.2 (C-10<sup>′</sup>), 128.8 (C-8<sup>′</sup>), 127.6 (C-9<sup>′</sup>), 126.2 (C-7<sup>′</sup>), 123.1 (C-3<sup>′</sup>), 119.4 (C-5<sup>′</sup>), 114.1 (C-11), 77.2 (C-8), 61.7 (C-2), 56.1 (C-9), 40.7 (C-6), 39.5 (C-3), 27.9 (C-5), 27.3 (C-7), 25.8(C-4).



155 150 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 fl (ppm)

# Electronic Supplementary Material (ESI) for Dalton Transactions This journal is The Royal Society of Chemistry 2012





Electronic Supplementary Material (ESI) for Dalton Transactions This journal is C The Royal Society of Chemistry 2012



# Electronic Supplementary Material (ESI) for Dalton Transactions This journal is O The Royal Society of Chemistry 2012





Electronic Supplementary Material (ESI) for Dalton Transactions This journal is O The Royal Society of Chemistry 2012

CD-NH2-4C



8

# Electronic Supplementary Material (ESI) for Dalton Transactions This journal is O The Royal Society of Chemistry 2012







# 2. Elemental analysis of 2a-e

| Catalyst        | Molecular formula                                                                                | Calcd.(Found) (%) |             |             |  |
|-----------------|--------------------------------------------------------------------------------------------------|-------------------|-------------|-------------|--|
|                 | -                                                                                                | С                 | Н           | Ν           |  |
| 2a              | Zr(OH) <sub>3.18</sub> (O <sub>3</sub> PR) <sub>0.41</sub> ·1.98H <sub>2</sub> O                 | 29.24 (29.01)     | 6.29 (6.46) | 4.44 (4.23) |  |
| 2b              | Zr(OH) <sub>3.14</sub> (O <sub>3</sub> PR) <sub>0.43</sub> ·1.76H <sub>2</sub> O                 | 30.64 (30.23)     | 6.41 (6.59) | 4.53 (4.34) |  |
| 2c              | Zr(OH) <sub>2.88</sub> (O <sub>3</sub> PR) <sub>0.56</sub> ·2.89H <sub>2</sub> O                 | 34.31 (33.98)     | 7.02 (7.43) | 4.80 (4.59) |  |
| 2d              | Zr(OH) <sub>3.26</sub> (O <sub>3</sub> PR) <sub>0.37</sub> ·2.02H <sub>2</sub> O                 | 30.07 (30.12)     | 6.52 (6.61) | 4.05 (4.21) |  |
| 2e              | Zr(OH) <sub>3.04</sub> (O <sub>3</sub> PR) <sub>0.48</sub> ·2.28H <sub>2</sub> O                 | 34.46 (34.12)     | 7.00 (7.37) | 4.46 (4.51) |  |
| 3b              | Zr(OH) <sub>3.18</sub> (O <sub>3</sub> PR) <sub>0.41</sub> ·1.12H <sub>2</sub> O                 | 35.00 (35.24)     | 6.95 (7.21) | 5.10 (4.88) |  |
| 3c              | Zr(OH) <sub>3.22</sub> (O <sub>3</sub> PR) <sub>0.39</sub> ·1.47H <sub>2</sub> O                 | 30.83 (30.38)     | 6.35 (6.89) | 4.31 (4.10) |  |
| <b>4</b> c      | Zr(OH) <sub>3.12</sub> (O <sub>3</sub> PR) <sub>0.44</sub> ·1.41H <sub>2</sub> O                 | 32.61 (32.68)     | 6.46 (6.51) | 4.56 (4.46) |  |
| 5c <sub>1</sub> | Zr(O <sub>3</sub> POH) <sub>1.71</sub> (O <sub>3</sub> PR) <sub>0.29</sub> ·2.14H <sub>2</sub> O | 19.43 (19.40)     | 4.31 (4.44) | 2.72 (2.43) |  |
| 5c <sub>2</sub> | Zr(O <sub>3</sub> POH) <sub>1.78</sub> (O <sub>3</sub> PR) <sub>0.22</sub> ·1.54H <sub>2</sub> O | 16.24 (16.09)     | 3.68 (3.92) | 2.27 (2.26) |  |
| 5c3             | Zr(O <sub>3</sub> POH) <sub>1.81</sub> (O <sub>3</sub> PR) <sub>0.19</sub> ·1.21H <sub>2</sub> O | 14.71 (14.54)     | 3.34 (4.02) | 2.06 (1.91) |  |

## 3. TGA analysis



12









Fig.S2

5.XRD spectra



Fig.S3 The powder XRD patterns of zirconium phosphonates 2a-e and 3b, c

6. Nitrogen adsorption-adsorption isotherms





Fig.S4 Nitrogen adsorption-desorption isotherm plots

# 7.AFM images

(1) Zirconium phosphonate 3c



0.4

20110913-maxb-4c3.000

0.2

× 0.200 秒/div Z 60.000 nm/div 0 0



Fig.S 5 AFM images of zirconium phosphonate 3c

(2) Zirconium phosphonate 4c



20110916-ma×b-8c.010





Fig.S6 AFM images of zirconium phosphonate 4c

(3) Zirconium phosphonate  $5c_1$ 



20110919-gaochao-smip.013



20110919-gaochao-smip.013



Fig.S7 AFM images of zirconium phosphonate 5c1

### 8. Influence of other factors on the catalytic properties

#### (1) The acidic additives

#### Table S1.

The direct asymmetric aldol reaction of 4-nitrobenzaldehyde and cyclohexanone in water <sup>a</sup>

| Entry | additive                 | Yield (%) <sup>b</sup> | ee(%)(anti) <sup>c</sup> | ee (%)(syn) <sup>c</sup> | dr(anti/syn) |
|-------|--------------------------|------------------------|--------------------------|--------------------------|--------------|
| 1     | P-TsOH                   | 45                     | 9                        | 17                       | 56/44        |
| 2     | HOAc                     | 71                     | 78                       | 47                       | 65/35        |
| 3     | HCl                      | 90                     | 90                       | 7                        | 77/23        |
| 4     | 4-NO <sub>2</sub> PhCOOH | 94                     | 90                       | 2                        | 79/21        |
| 5     | TFA                      | 64                     | 85                       | 29                       | 73/27        |
| 6     | (S)-NCM                  | 47                     | 69                       | 23                       | 63/37        |
| 7     | PhCOOH                   | 76                     | 92                       | 44                       | 84/16        |
| 8     | (S)-NCM <sup>d</sup>     | 18                     | 47                       | 15                       | 58/42        |
| 9     | TfOH                     | 98                     | 96                       | 25                       | 80/20        |

 $^{\rm a}$  Reaction conditions: 4-nitrobenzaldehyde (0.25 mmol) , cyclohexanone (0.39 mmol) , catalyst  ${\bf 3c}$ 

(0.025 mmol, 10 mol%), 25 °C, 96 h, 1 mL of water, acidic additive ( $3.75 \times 10^{-3}$  mmol).

<sup>b</sup> Isolated yield.

<sup>c</sup> Determined by chrial HPLC.

<sup>d</sup> With out catalyst **3c**, NCM=1,1<sup>/</sup>-bi-2-naphthol cyclic monophosphate.

### (2) Solvents

#### Table S2.

\_

The direct asymmetric aldol reaction of 4-nitrobenzaldehyde and cyclohexanone in water <sup>a</sup>

| Entry | Solvent                                       | Yield (%) <sup>b</sup> | ee(%)(anti) <sup>c</sup> | ee (%)(syn) <sup>c</sup> | dr(anti/syn) |
|-------|-----------------------------------------------|------------------------|--------------------------|--------------------------|--------------|
| 1     | H <sub>2</sub> O                              | 96                     | 96                       | 27                       | 85/15        |
| 2     | THF                                           | 19                     | 48                       | 9                        | 38/62        |
| 3     | DMF                                           | 15                     | 31                       | 8                        | 43/57        |
| 4     | C <sub>2</sub> H <sub>5</sub> OH              | 11                     | 83                       | 5                        | 60/40        |
| 5     | C <sub>6</sub> H <sub>5</sub> CH <sub>3</sub> | 59                     | 5                        | 15                       | 34/66        |
| 6     | CH <sub>3</sub> CN                            | 26                     | 15                       | 0                        | 37/63        |

| 7 | DMSO              | 21 | 9  | 7  | 31/69 |
|---|-------------------|----|----|----|-------|
| 8 | CHCl <sub>3</sub> | 29 | 75 | 64 | 72/28 |

 $^{a}$  Reaction conditions: 4-nitrobenzaldehyde (0.25 mmol) , cyclohexanone (0.39 mmol) , catalyst 3c

(0.025 mmol, 10 mol%), 25 °C, 96 h, 1 mL of solvent, acidic additive  $(3.75 \times 10^{-3} \text{ mmol})$ .

<sup>b</sup> Isolated yield.

<sup>c</sup> Determined by chrial HPLC.

(3) Temperature, used amount of water and zirconium phosphonate

#### Table S3.

| The dire | ct asymmetric | aldol reaction | of 4-nitrobenz | zaldehyde and | cyclohexanone i | n water ' |
|----------|---------------|----------------|----------------|---------------|-----------------|-----------|
|----------|---------------|----------------|----------------|---------------|-----------------|-----------|

| Entry | Catalyst (mol%) | Temp. | Water (mL) | Yield (%) <sup>b</sup> | ee(%)<br>(anti) <sup>c</sup> | ee (%)(syn) <sup>c</sup> | dr(anti/syn) |
|-------|-----------------|-------|------------|------------------------|------------------------------|--------------------------|--------------|
| 1     | 10              | 10    | 1          | 76                     | 97                           | 87                       | 64/36        |
| 2     | 10              | 20    | 1          | 92                     | 96                           | 47                       | 80/20        |
| 3     | 10              | 25    | 1          | 98                     | 96                           | 26                       | 81/19        |
| 4     | 10              | 30    | 1          | 94                     | 95                           | 30                       | 77/23        |
| 5     | 10              | 40    | 1          | 93                     | 90                           | 19                       | 83/17        |
| 6     | 10              | 25    | 0.2        | 81                     | 92                           | 17                       | 86/14        |
| 7     | 10              | 25    | 0.5        | 86                     | 94                           | 13                       | 78/22        |
| 8     | 10              | 25    | 1          | 97                     | 95                           | 14                       | 85/15        |
| 9     | 10              | 25    | 2          | 98                     | 93                           | -21                      | 74/26        |
| 10    | 10              | 25    | 3          | 91                     | 92                           | -27                      | 88/12        |
| 11    | 5               | 25    | 1          | 77                     | 91                           | 47                       | 78/22        |
| 12    | 10              | 25    | 1          | 98                     | 96                           | 32                       | 83/17        |
| 13    | 15              | 25    | 1          | 93                     | 93                           | -38                      | 81/19        |
| 14    | 20              | 25    | 1          | 92                     | 94                           | -10                      | 77/23        |
| 15    | 30              | 25    | 1          | 90                     | 92                           | -26                      | 72/28        |

<sup>a</sup> Reaction conditions: 4-nitrobenzaldehyde (0.25 mmol) , cyclohexanone (0.39 mmol) , catalyst **3c**, 96 h, 1 mL of

water, acidic additive  $(3.75 \times 10^{-3} \text{ mmol})$ .

<sup>b</sup> Isolated yield.

<sup>c</sup> Determined by chrial HPLC.



**Fig.S8** The influence of used amounts of supported-catalyst **3c** on catalytic performance (5 and 15 mol%) *9. HPLC spectra for some compounds* 

(1) The aldol adducts of o-nitrobenzaldehyde to cyclohexanone

Racemic compounds



9-amino-9-deoxy-epi-cinchonine-catalyzed adducts



Supported organocatalyst 3c-catalyzed adducts



(2) The aldol adducts of m-nitrobenzaldehyde to cyclohexanone



Racemic compounds

9-amino-9-deoxy-epi-cinchonine-catalyzed adducts



Supported organocatalyst 3c-catalyzed adducts



(3) The aldol adducts of m-nitrobenzaldehyde to cyclohexanone



Racemic compounds

9-amino-9-deoxy-epi-cinchonine-catalyzed adducts



Supported organocatalyst 3c-catalyzed adducts

