Supporting Information

Metallation of *N*-vinylpyrroles and –indoles with Hg(OAc)₂: *N*-vinyl *vs.* pyrrole nucleophilic sites

Boris A. Trofimov, * Andrey V. Ivanov, Igor A. Ushakov, Elena Yu. Schmidt, Lyubov N. Sobenina, Alexander M. Vasil'tsov and Albina I. Mikhaleva

A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 1 Favorsky Str., 664033 Irkutsk, Russian Federation

e-mail: boris trofimov@irioch.irk.ru

Contents

Contents	S1
General information	S2
Addition of mercury (II) acetate to N-vinylpyrroles 2,4,6-8 (general procedure)	S2
NMR spectra of organomercury compounds	S2
Synthetic Procedure for 9	S3
Synthetic Procedure for 11	S3
Synthetic Procedure for 13.	S3
Synthetic Procedure for 17	S3
Synthetic Procedure for 19	S4
Spectral Characteristics and Elemental Analysis Data for 8-19	
Representative NMR Spectra	

General information

IR spectra were obtained on a "Bruker IFS-25" spectrometer (400-4000 cm⁻¹, KBr pellets or thin films on KBr plates). ¹H (400.1 MHz), ¹³C (100.6 MHz), ¹⁵N (40.5 MHz) and ¹⁹F (376.5 MHz) NMR spectra were recorded on a "Bruker Avance 400" instrument in CDCl₃. The assignment of signals in the ¹H NMR spectra was made using COSY and NOESY experiments. Resonance signals of carbon atoms were assigned based on ¹H-¹³C HSQC and ¹H-¹³C HMBC experiments. The values of the δ ¹⁵N were measured through the 2D ¹H-¹⁵N HMBC experiment. The ¹H and ¹³C chemical shifts were referenced to HMDS, ¹⁵N - CH₃NO₂, ¹⁹F - CFCl₃, respectively. The chemical shifts were recorded in ppm.

Elemental analyses (C, H, N) were performed on an EA FLASH 1112 Series (CHN Analyzer) instrument for liquid compounds. Solid examples were analyzed on TM3000 Tabletop Microscope with Bruker Quantex 50 EDX. Fluorine content was determined on a SPECOL 11 (Carl Zeiss Jena, Germany) spectrophotometer.

Melting points were uncorrected.

N-Vinylpyrroles were prepared on Trofimov reaction¹ and formylated by method.² Cyanopyrrole **6** was prepared according to procedure.³ Azopyrrole **3** was synthesized by method.⁴

Trifluoroacetylpyrrole **4** was prepared by reaction of 2-(4-bromophenyl)-1-vinylpyrrole with trifluoroacetic anhydride.⁵

Acetonitrile and dichloro methane were purified by distillation over P2O5.6

Addition of mercury (II) acetate to *N*-vinylpyrroles 2,4,6-8 (general procedure). A mixture of *N*-vinylpyrrole (1.0 mmol) and $Hg(OAc)_2$ (1.1 mmol) in dry acetonitrile (5 mL) was stirred up to full the pyrrole transformation (TLC) in conditions from Table. The solvent was removed in vacuo; the residue was stirred with dry dicloromethane (10 mL), filtered and washed by dry dicloromethane (5 mL). The solvent was removed off from combined solution to give mercuration product.

NMR spectra of organomercury compounds. The structures of the compounds synthesized were confirmed by 1D and 2D NMR spectra (COSY, NOESY, ¹H-¹³C HSQC, ¹H-¹³C HMBC). In the ¹H NMR spectra of the compounds, signals of the CH₂ group (former C_β position) are shown as doublets of doublets with heminal constant of 12.5 Hz and vicinal constants of 6.9 Hz and 7.3 Hz. The corresponding spin-spin coupling constants are observed for methyne proton (former C_α position), the resonance signal of which appears as doublet of doublets. These data are supported by the correlations manifested themselves in the 2D COSY spectrum.

(1) a) Mikhaleva, A. I.; Schmidt, E. Yu. In *Selected methods for synthesis and modification of heterocycles*; Kartsev, V. G., Ed.; IBS Press: Moscow, 2002, Vol. 1, pp 334-352. (b) *The Chemistry of Hydroxylamines, Oximes and Hydroxamic Acids*, Rappoport, Z.; Liebman, J. F., Eds.;. Wiley: Chichester, 2008, p 241. (c) Wang, Z. *Comprehensive Organic Name Reactions and Reagents*, Wiley: London; 2009, Part 3, pp 2793-2796.

(3) Trofimov B.A., Vasil'tsov A.M., Mikhaleva A.I., Ivanov A.V., Skital'tseva E.V., Schmidt E.Yu., Senotrusova E.Yu., Ushakov I.A., Petrushenko K.B. *Tetrahedron Lett.*, **2009**, *50*, 97-100.
(4)Trofimov, B.A.; Schmidt, E.Yu.; Mikhaleva, A.I.; Vasil'tsov, A.M.; Zaitsev, A.B.; Smolyanina, N. S.; Senotrusova, E. Yu.; Afonin, A. V.; Ushakov, I. A.; Petrushenko, K. B.;

⁽²⁾ Mikhaleva, A. I.; Ivanov, A. V.; Skitaltseva, E. V.; Ushakov, I. A.; Vasiltsov, A. M.; Trofimov, B. A. *Synthesis*, **2009**, 587-590.

Kazheva, O.N.; Dyachenko, O.A.; Smirnov, V.V., Schmidt, A.F.; Markova, M. V.; Morozova, L.V. *Eur. J. Org. Chem.*, **2006**, 4021-4033.

⁽⁵⁾Trofimov, B. A.; Mikhaleva, A. I.; Korostova, S. E.; Sobenina, L. N.; Vasil'ev, A. N.; Balashenko, L. V. *Zh. Org. Khim.* **1979**, *15*, 2042-2046; *Chem. Abstr.* **1980**, *92*, 76216.
(6) Gordon, A. G.; Ford, R. A. *The Chemist's Companion. A Handbook of Practical Data, Techniques, and Peferences.* Wiley: NY, 1972.

Besides, the ¹H NMR spectrum contains two singlets with intensity of three proton units and chemical shits of 2.0 and 2.1 ppm. These signals are assigned to two different Me groups of the acyl fragments.

In the ¹³C NMR spectrum, the characteristic signals of the carbonyl groups of two acyl fragments are present at 169.3 and 176.9 ppm. A signal of methyne carbon atom is observed at 78.3 ppm, while that of the CH₂-moiety appears at 29.2 ppm. Carbon atom of the CN group has chemical shift at 115.1 ppm. Resonance signals of the pyrrole ring are slightly shifted (~ 2.0 ppm) as compared to the vinyl derivatives.

The assignment of acyl fragment signals has been performed using the 2D 1 H- 13 C HMBC technique. So, Tax, the observed correlations of methyne proton (6.72 ppm) and methyl group (2.1 ppm) signals relative to a signal with chemical shift at 169.3 ppm allows the signals of the acyl fragment in α position to be assigned. Additionally, methyne proton correlates with signals at 98.3 and 134.6 ppm which correspond to resonances of C-2 and C-8 atoms of the pyrrole moiety.

In the NMR spectra, the expected satellites due to the coupling to mercury generally were not observable because of scarce solubility (CDCl₃) of the products examined. Only in some cases, satellites of very low intensity have been detected.

Fig. 1. Main correlations in the 2D ¹H-¹³C HMBC spectrum of 14.

Synthetic Procedure for 9. A mixture of *N*-vinylpyrrole **1** (169 mg, 1.0 mmol) and $Hg(OAc)_2$ (1272 mg, 4.0 mmol) in dry acetonitrile (5 mL) was stirred at 40 °C for 0.5 h. Precipitate was filtered off, washed by dry acetonitrile (5 mL) and dried in vacuo to give 1175 mg (93%) of tetramercuric acetate **9**.

Synthetic Procedure for 11. A mixture of azopyrrole **3** (225 mg, 1.0 mmol) and $Hg(OAc)_2$ (318 mg, 1.0 mmol) in dry acetonitrile (5 mL) was stirred at room temperature for 2-2.5 h. Precipitate was filtered off, washed by dry acetonitrile (5 mL) and dried in vacuo to give 431 mg (89%) of *N*-vinylpyrrolomercurodiazolinium acetate **11**.

Synthetic Procedure for 13. A mixture of *N*-vinyl-4,5,6,7-tetrahydroindole **5** (147 mg, 1.0 mmol) and Hg(OAc)₂ (953 mg, 3.0 mmol) in dry acetonitrile (5 mL) was stirred at room temperature for 2-3 h. Precipitate was filtered off, washed by dry acetonitrile (5 mL) and dried in vacuo to give 885 mg (90%) of trimercuric acetate **13**.

Synthetic Procedure for 17. A mixture of *N*-vinylpyrrole 4 (344 mg, 1.0 mmol) and Hg(OAc)₂ (954 mg, 3.0 mmol) in dry acetonitrile (5 mL) was stirred at 60 $^{\circ}$ C for 12 h. The solvent was removed in vacuo; the residue was stirred with dry dicloromethane (10 mL), filtered and washed by dry dicloromethane (5 mL). The solvent was removed off from combined solution to give 847 mg (92%) of dimercuric acetate 17.

Synthetic Procedure for 19.

A mixture of dimercuric acetate **17** (92 mg, 0.1 mmol) and NaBH₄ (19 mg 0.5 mmol) in aqueous (10%) acetonitrile (3.3 mL) was stirred at room temperature for 30 min. The mixture was diluted by water (6 mL) and extracted by dichloromethane (3 mL \times 3). Combined organic layers were washed by water and dried over Na₂SO₄. The solvent was removed off in vacuo to give 34 mg (96%) of 1-(5-(4-bromophenyl)-1-vinyl-1*H*-pyrrol-2-yl)-2,2,2-trifluoroethanol **19**.

3-Vinyl-4,5-dihydro-3H-benzo[*e*]indole-2-carbaldehyde 8 was prepared by formylation of 3-vinyl-4,5-dihydro-3H-benzo[*e*]indole ⁷ according to procedure² in 90% yield. Light-brown crystals, mp 94-96 °C. Light-brown crystals, mp 94-96 °C. IR (KBr) v/cm⁻¹: 3117, 3099, 3047, 3032, 3002, 2953, 2923, 2894, 2830, 1664, 1639, 1549, 1501, 1486, 1456, 1444, 1414, 1392, 1381, 1344, 1318, 1292, 1281, 1220, 1197, 1162, 1139, 1086, 1073, 1035, 964, 904, 887, 846, 831, 779, 757, 721, 706, 639, 580, 557, 526, 477, 445, 411. ¹H

NMR, δ, ppm: 9.56 (s, CHO), 7.48 (dd, 1H, H-X, ${}^{3}J_{X-B} = 15.9$ Hz, ${}^{3}J_{X-A} = 8.8$ Hz), 7.40 (m, 1H, H-9), 7.04-7.14 (m, 3H, H-6, H-7, H-8), 5.18 (dd, 1H, H_A, ${}^{2}J_{B-A} = 1.0$ Hz, ${}^{3}J_{X-A} = 8.8$ Hz), 5.08 (dd, 1H, H_B, ${}^{2}J_{B-A} = 1.0$ Hz, ${}^{3}J_{X-B} = 15.9$ Hz), 2.89 (m, 4H, 5,4-CH₂). 13 C NMR, δ, ppm: 178.69 (C=O), 139.73 (C-3a), 133.34 (C-5a), 132.25 (C-2), 131.56 (C_a), 131.01 (C-9a), 128.14 (C-6), 127.14 (C-8), 126.33 (C-7), 122.37 (C-9), 122.37 (C-9b), 119.02 (C-1), 109.31 (C_β), 29.24 (C-5), 21.77 (C-4). Anal. Calcd for C₁₅H₁₃NO: C, 80.69; H, 6.27; N, 6.27. Found: C, 80.76; H, 6.10; N, 6.12.

Tetramercuric acetate 9. Dark-red crystals with metal luster, stable up to 350 °C, insoluble in organic solvents.

IR (KBr) ν/cm^{-1} : 3409, 2929, 2853, 1695, 1578, 1405, 1368, 1090, 1047, 1016, 921, 799, 764, 690, 648, 612 cm⁻¹.

Anal. Calcd. for C₂₂H₂₃Hg₄NO₁₀: C, 20.91; H, 1.83; Hg, 63.49; N, 1.11; O, 12.66. Found: C, 21.00; Hg, 63.51; N, 1.12, O, 12.70.

2-Acetoxy-2-(2-formyl-5-phenyl-1H-pyrrol-1-yl)ethylmercury acetate 10. Light-yellow viscous oil.

IR v/cm⁻¹: 2932, 2848, 1750, 1714, 1660, 1599, 1503, 1453, 1424, 1370, 1311, 1226, 1140,1100, 1075, 1047, 1017, 958, 923, 830, 797, 763, 731, 697, 614, 508, 452.

¹H NMR, δ , ppm: 9.57 (s, 1H, CHO), 7.45-7.35 (m, 5H, Ph), 7.11 (d, H-3, ${}^{3}J_{4-3} = 3.9$ Hz), 7.19 (dd, 1H, H_{\alpha}, ${}^{3}J = 7.3$ Hz, ${}^{3}J = 6.7$ Hz), 6.28 (d, H-4, ${}^{3}J_{3-4} = 3.9$ Hz), 2.54 (dd, 1H, H_{\beta}, ${}^{2}J = 12.5$ Hz, ${}^{3}J = 6.7$ Hz), 2.45 (dd, 1H, H_{\beta}, ${}^{2}J = 12.5$ Hz, ${}^{3}J = 7.3$ Hz), 2.01 (s, 3H, OAc), 1.97 (s, 3H, HgOAc).

⁽⁷⁾ Vasil'tsov, A. M.; Ivanov, A. V.; Mikhaleva, A. I.; Trofimov, B. A. *Tetrahedron Lett.*, **2010**, *51*, 1690–1692.

¹³C NMR, δ, ppm: 179.09 (CHO), 176.83 (C=O, HgOAc), 169.23 (C=O, OAc), 144.61 (C-5), 133.25 (C_i), 131.980 (C_p), 129.77 (C_m), 128.66 (C_o), 127.90 (C-3), 124.24 (C-2), 112.71 (C-4), 80.50 (C_α), 29.22 (C_β), 22.50 (Me, HgOAc), 20.82 (Me, OAc). Anal. Calcd. for $C_{17}H_{17}NO_5$, %: C, 39.58; H, 3.32; N, 2.71. Found: %: C, 40.03; H, 3.35; N, 2.92.

N-Vinylpyrrolomercurodiazolinium acetate 11. Redbrown crystals with metal luster, decomposed at 278-280 °C, slightly soluble in organic solvents. IR (KBr) v/cm⁻¹: 3425, 3061, 2971, 2921, 2852, 1699, 1637, 1597, 1494, 1439, 1396, 1375, 1287, 1223, 1148, 1072, 1017, 908, 764, 728, 690, 615, 562 cm⁻¹.

¹H NMR, δ , ppm: 7.75 (m, 2H, Ph-o), 7.43 (m, 2H, Ph-m), 7.32 (m, 1H, Ph-p), 7.27 (dd, 1H, H_X, ${}^{3}J_{X-B} = 16.0$ Hz, ${}^{3}J_{X-A} = 9.1$ Hz), 5.46 (d, 1H, H_B, ${}^{3}J_{X-B} = 16.0$ Hz), 5.19 (d, 1H, H_A, ${}^{3}J_{X-A} = 9.1$ Hz), 2.32 (s, 3H, Me), 2.12 (s, 3H, Me), 2.05 (s, 3H, OAc)

Anal. Calcd. for C₁₆H₁₇HgN₃O₂: C, 39.71; H, 3.54; Hg, 41.45; N, 8.68; O, 6.61. Found: C, 39.90; Hg, 42.00; N, 8.21, O, 6.72.

2-Acetoxy-2-(2-(4-bromophenyl)-5-(2,2,2-trifluoroacetyl)-1*H*-pyrrol-1-yl)ethylmercury acetate 12.

¹H NMR, δ , ppm: 7.62 (m, 2H, Ph-m), 7.34 (m, 2H, Ph-o), 7.34 (m, 1H, H-4), 7.19 (dd, 1H, H_a, ${}^{3}J = 8.6$ Hz, ${}^{3}J = 6.8$ Hz), 6.29 (d, 1H, H-3, ${}^{3}J = 4.3$ Hz), 2.62 (dd, 1H, H_β, ${}^{2}J = 12.1$ Hz, ${}^{3}J = 8.6$ Hz), 2.37 (dd, 1H, H_β, ${}^{2}J = 12.1$ Hz, ${}^{3}J = 6.8$ Hz), 1.99 (s, 3H, HgOAc), 1.97 (s, 3H, OAc).

¹³C NMR, δ, ppm: 177.10 (C=O, HgOAc), 169.77 (q, <u>C</u>OCF₃, ${}^{2}J_{CF}$ = 35.7 Hz), 169.12 (C=O, OAc), 145.65 (C-2), 132.53 (Ph-i), 132.08 (Ph-m), 131.34 (Ph-o), 126.31 (C-4), 125.37 (C-5), 124.40 (Ph-p), 117.20 (q, CF₃, ${}^{1}J_{CF}$ = 290.0 Hz), 113.80 (C-3), 80.84 (C_α), 29.21 (C_β), 22.65 (Me, HgOAc), 20.87 (Me, OAc). ¹⁹F NMR, δ, ppm: -70.3. ¹⁵N NMR, δ, ppm: -198.4.

Trimercuric acetate 13. Dark-brown crystals with metal luster, stable up to 350 °C, insoluble in organic solvents. IR (KBr) ν/cm^{-1} : 3410, 2930, 2853, 1699, 1572, 1408, 1321, 1375, 1141, 1090, 1048, 1017, 923, 791, 754, 681, 649, 618 cm⁻¹. Anal. Calcd. for C₁₈H₂₃Hg₃NO₈: C, 21.99; H, 2.36; Hg, 61.21; N, 1.42; O, 13.02. Found: C, 22.12; Hg, 61.40; N, 1.37, O, 12.91.

2-Acetoxy-2-(2-cyano-4,5,6,7-tetrahydroindol-1-yl)ethylmercury acetate **14**. Light yellow viscous oil.

IR v/cm⁻¹: 2936, 2856, 2208, 1751, 1734, 1601, 1479, 1444, 1370, 1299, 1223, 1132, 1065, 1016, 952, 832, 814, 732, 693, 647, 612, 507, 451.

OAc ${}^{1}\text{H NMR, } \delta: 6.72 \text{ (dd, 1H, } H_{\alpha}, {}^{3}J = 7.3 \text{ Hz}, {}^{3}J = 6.9 \text{ Hz}\text{)}, 6.63 \text{ (s, 1H, H-3)}, 2.75 \text{ (m, 2H, 7-CH_2)}, 2.58 \text{ (dd, 1H, } H_{\beta}, {}^{3}J = 7.3 \text{ Hz}, {}^{2}J = 12.5 \text{ Hz}\text{)} 2.48 \text{ (dd, } H_{\beta}, {}^{3}J = 7.3 \text{ Hz}, {}^{2}J = 12.5 \text{ Hz}\text{)} 2.48 \text{ (dd, } H_{\beta}, {}^{3}J = 7.3 \text{ Hz}, {}^{2}J = 12.5 \text{ Hz}\text{)} 2.48 \text{ (dd, } H_{\beta}, {}^{3}J = 7.3 \text{ Hz}, {}^{2}J = 12.5 \text{ Hz}\text{)} 2.48 \text{ (dd, } H_{\beta}, {}^{3}J = 7.3 \text{ Hz}, {}^{2}J = 12.5 \text{ Hz}\text{)} 2.48 \text{ (dd, } H_{\beta}, {}^{3}J = 7.3 \text{ Hz}, {}^{2}J = 12.5 \text{ Hz}\text{)} 2.48 \text{ (dd, } H_{\beta}, {}^{3}J = 7.3 \text{ Hz}\text{)} 3.58 \text{ (dd, } H_{\beta}, {}^{3}J = 7.38 \text{ Hz}\text{)} 3.58 \text{ (dd, } H_{\beta}, {}^{3}J = 7.38 \text{ Hz}\text{)} 3.58 \text{ (dd, } H_{\beta}, {}^{3}J = 7.38 \text{ Hz}\text{)} 3.58 \text{ (dd, } H_{\beta}, {}^{3}J = 7.38 \text{ Hz}\text{)} 3.58 \text{ (dd, } H_{\beta}, {}^{3}J = 7.38 \text{ Hz}\text{)} 3.58 \text{ (dd, } H_{\beta}, {}^{3}J = 7.38 \text{ Hz}\text{)} 3.58 \text{ (d$

1H, H_β, ${}^{3}J = 6.9$ Hz, ${}^{2}J = 12.5$ Hz), 2.42 (m, 2H, 4-CH₂), 2.06 (s, 3H, OAc), 2.00 (s, 3H, HgOAc), 1.81 (m, 2H, 6-CH₂), 1.69 (m, 2H, 5-CH₂). ${}^{13}C$ NMR, δ : 176.86 (C=O, HgOAc),

169.25 (C=O, OAc), 134.56 (C-8), 122.02 (C-3), 119.72 (C-9), 115.12 (C=N), 98.31 (C-2), 78.33 (C_a), 29.22 (C_β), 22.74, 22.65, 22.62, 22.57 (C-4, C-5, C-6, C-7), 22.50 (Me, HgOAc), 20.82 (Me, OAc).

Anal. Calcd for C₁₅H₁₈N₂O₄: C, 36.70; H, 3.70; N, 5.71. Found: C, 36.36; H, 3.65; N, 5.84.

2-Acetoxy-2-(2-formyl-4,5-dihydrobenzo[g]indol-1-yl)ethylmercury acetate 15. Light yellow viscous oil.

IR (thin layer) v/cm⁻¹: 2937, 2898, 2840, 1747, 1651, 1547, 1496, 1469, 1405, 1372, 1342, 1321, 1304, 1289, 1223, 1139, 1119, 1049, 1017, 958, 924, 845, 765, 739, 712, 648, 622, 599, 520, 471. ¹H NMR, δ , ppm: 9.48 (s, 1H, CHO), 7.79 (dd, 1H, H_{\alpha}, ³J = 5.6 Hz, ³J = 9.1 Hz), 7.70 (m, 1H, H-9), 7.30-7.15 (m, 3H, H-6, H-7, H-8), 6.90 (s, 1H, H-3), 2.84 (m, 2H, H-

4), 2.65-2.55 (m, 4H, H-5, H_{β}), 2.01 (s, 3H, OAc), 1.99 (s, 3H, HgOAc). ¹³C NMR, δ : 178.55 (CHO), 177.18 (C=O, HgOAc), 169.33 (C=O, OAc), 139.60 (C-3a), 139.34 (C-5a), 132.48 (C-2), 129.17 (C-9a), 128.49 (C-6), 127.90 (C-8), 127.16 (C-7), 125.97 (C-9b), 125.93 (C-9), 125.35 (C-3), 80.20 (C_{α}), 30.80 (C-4), 28.67 (C_{β}), 23.03 (C-5), 22.07 (Me, HgOAc), 21.19 (Me, OAc).

Anal. Calcd for C₁₉H₁₉HgNO₅: C, 42.48; H, 3.42; N, 3.84. Found: C, 42.11; H, 3.53; N, 2.58.

2-Acetoxy-2-(2-formyl-4,5-dihydrobenzo[*e*]indol-3-yl)ethylmercury acetate 16. Light yellow viscous oil.

IR (thin layer) v/cm⁻¹: 2937, 2894, 2836, 1750, 1725, 1651, 1547, 1496, 1469, 1405, 1372, 1342, 1321, 1304, 1289, 1223, 1139, 1119, 1049, 1017, 958, 924, 845, 765, 739, 712, 648, 622, 599, 520, 471.

¹H NMR, δ, ppm: 9.47 (s, 1H, CHO), 7.65 (dd, 1H, H_α, ${}^{3}J$ = 5.6 Hz, ${}^{3}J$ = 9.1 Hz), 7.42 (m, 1H, H-9), 7.31 (s, 1H, H-1), 7.25-7.15 (m, 3H, H-6, H-7, H-8),

HgOAc 3.18 (m, 1H, H-4), 3.08 (m, 1H, H-4), 3.07 (m, 2H, H-5), 2.52 (dd, 1H, H_β, ${}^{3}J = 5.6$ Hz, ${}^{2}J = 12.2$ Hz), 2.48 (dd, 1H, H_β, ${}^{3}J = 9.1$ Hz, ${}^{2}J = 12.2$ Hz), 2.06 (s, 3H, OAc), 1.99 (s, 3H, HgOAc). ${}^{13}C$ NMR, δ , ppm: 179.45 (CHO), 176.88 (C=O, HgOAc), 168.77 (C=O, OAc), 140.46 (C-3a), 132.90 (C-5a), 131.27 (C-2), 130.63 (C-9a), 128.14 (C-6), 127.21 (C-8), 126.48 (C-7), 122.76 (C-9b), 122.39 (C-9), 120.16 (C-1), 80.35 (C_α), 28.84 (C-4), 28.70 (C_β), 22.98 (C-5), 22.32 (Me, HgOAc), 20.90 (Me, OAc). Anal. Calcd for C₁₉H₁₉HgNO₅: C, 42.11; H, 3.53; N, 2.58. Found: C, 42.16; H, 3.55; N, 2.64.

Dimercuric acetate 17. Yellow viscous oil. IR (thin layer) v/cm⁻¹: 2922, 2855, 1738, 1657, 1561, 1518, 1445, 1406, 1269, 1151, 1074, 1113, 972, 908, 834, 733, 659.

¹H NMR, δ , ppm: 7.61 (m, 2H, Ph-m), 7.34 (m, 2H, Ph-o), 7.35 (m, 1H, H-3), 7.09 (dd, 1H, H_a, ³*J* = 8.6 Hz, ³*J* = 6.9 Hz), 2.57 (dd, 1H, H_β, ²*J* = 12.0 Hz, ³*J* = 8.6 Hz), 2.32 (dd, 1H, H_β, ²*J* = 12.0 Hz, ³*J* = 6.9 Hz), 1.97 (s, 6H, HgOAc), 1.95 (s, 3H, OAc).

¹³C NMR, δ, ppm: 177.20 (C=O, HgOAc), 169.68 (q, <u>C</u>OCF₃, ²*J*_{CF} = 35.6 Hz), 169.13 (C=O, OAc), 149.58 (C-5), 132.47 (Ph-m), 132.34 (C-3), 132.03 (Ph-i), 131.39 (Ph-o), 126.08 (C-4), 125.78 (C-2), 124.92 (Ph-p), 117.01 (q, CF₃, ¹*J*_{CF} = 290.7 Hz), 81.23 (C_α), 28.98 (C_β), 22.61 (Me, HgOAc), 20.86 (Me, OAc). ¹⁹F NMR, δ, ppm: -70.4. ¹⁵N NMR, δ, ppm: -199.5. Anal. Calcd. for C₂₀H₁₇BrF₃Hg₂NO: C, 26.07; H, 1.86; Hg, 43.54; Br, 8.67; F, 6.19; N, 1.52.

Found: C, 25.86; H, 1.70; Hg, 40.61; F, 23.63; N, 1.81.

(5-Phenyl-1-vinyl-pyrrol-2-yl)methanol 18. Light-brown viscous oil. IR (thin layer) v/cm⁻¹: 3417, 3104, 3060, 3031, 2923, 2853, 1642, 1601, 1514, 1448, 1413, 1359, 1322, 1300, 1201, 1098, 1073, 1028, 972, 909, 759, 798, 661 cm⁻¹.

¹H NMR, δ , ppm: 7.35 (m, 5H, Ph), 6.83 (dd, 1H, H_X, ${}^{3}J_{X-B} = 15.9$ Hz, ${}^{3}J_{X-A} = 8.9$ Hz), 6.26 (d, 1H, H-4, ${}^{3}J_{3.4} = 3.9$ Hz), 6.20 (d, 1H, H-3, ${}^{3}J_{4.3} = 3.9$ Hz), 5.34 (d, 1H, H_B, ${}^{3}J_{X-B} = 15.9$ Hz), 4.99 (d, 1H, H_A, ${}^{3}J_{X-A} = 8.9$ Hz), 4.65 (s, 2H, CH₂), 1.63 (br s, 1H, OH). 13 C NMR, δ , ppm: 135.31 (C-5), 132.88 (Ph-i), 132.71 (C-2), 131.10 (C_a), 128.56 (Ph-m), 127.43 (Ph-o), 126.68 (Ph-p), 110.64 (C_b), 108.83 (C-4), 107.44 (C-3), 56.68 (CH₂).

Anal. Calcd. for C₁₃H₁₃NO: C, 78.36; H, 6.58; N, 7.03. Found: C, 78.55; H, 6.62; N, 6.96.

1-(5-(4-Bromophenyl)-1-vinyl-1*H***-pyrrol-2-yl)-2,2,2trifluoroethanol 19.** Colorless crystals; mp 59-60 °C. IR (KBr) v/cm⁻¹: 3584, 3400, 2932, 2853, 1641, 1557, 1518, 1469, 1437, 1382, 1281, 1177, 1136, 1098, 1044, 1011, 969, 909, 860, 829, 777,

735, 651 cm^{-1} .

¹H NMR, δ, ppm: 7.47 (m, 2H, Ph-m), 7.25 (m, 2H, Ph-o), 6.73 (dd, 1H, H_X, ${}^{3}J_{X-B} = 15.9$ Hz, ${}^{3}J_{X-A} = 8.6$ Hz), 6.51 (m, 1H, H-3), 6.27 (d, 1H, H-4, ${}^{3}J_{3-4} = 3.9$ Hz), 5.29 (d, 1H, H_B, ${}^{3}J_{X-B} = 15.9$ Hz), 5.24 (d, 1H, H_A, ${}^{3}J_{X-A} = 8.6$ Hz), 5.11 (q, 1H, CHCF₃, ${}^{3}J_{HF} = 6.7$ Hz), 2.96 (br s, 1H, OH). ¹³C NMR, δ, ppm: 134.78 (C-5), 131.55 (Ph-m), 130.37 (Ph-o), 131.58 (Ph-i), 131.12 (C_α), 127.17 (C-2), 124.41 (q, CF₃, ${}^{1}J_{CF} = 282.0$ Hz), 121.60 (Ph-p), 112.99 (C_β), 110.48 (C-3), 109.98 (C-4), 65.72 (q, <u>C</u>HCF₃, ${}^{2}J_{CF} = 33.2$ Hz). ¹⁹F NMR, δ, ppm: -76.16 (dd, $J_{HF} = 1.2$ Hz, $J_{HF} = 6.7$ Hz). ¹⁵N NMR, δ, ppm: -213.0.

Anal. Calcd. for C₁₂H₁₁BrF₃NO: C, 48.58; H, 3.20; Br, 23.08. Found: C, 48.31.75; H, 3.31; Br, 23.01.

Representative NMR Spectra

2D COSY spectrum of 17 (400.13 MHz, CDCl₃)

¹³C NMR spectrum of **17** (100.6 MHz, CDCl₃)

2D COSY spectrum of 14 (400.1 MHz, CDCl₃)

2D ¹H-¹⁵N HMBC spectrum of **19** (CDCl₃)

¹⁹F NMR spectrum of **19** (376.5 MHz, CDCl₃)

2D NOESY spectrum of 19 (400.1 MHz, CDCl₃)