Supporting Information

Sorption of small molecule vapours by single crystals of [Pt{4'-(Ph)trpy}(NCS)]SbF₆ where trpy = 2,2':6',2''-terpyridine: a porous material with a structure stabilised by extended π - π interactions

John S. Field,* Orde Q. Munro and Bradley P. Waldron

School of Chemistry, University of KwaZulu-Natal, Private Bag X01, Pietermaritzburg, 3201, South Africa.

Supporting Information Table of Contents

Title		S 1
Table of contents		S2
Figure S1	View down the [c]-axis showing the unit cell contents of $1 \cdot CH_3 CN$. The [b]-axis points downwards.	S3
Figure S2	View down the [c]-axis showing the unit cell contents of $1 \cdot CH_3OH$. The [b]-axis points downwards.	S4
Figure S3	View down the [c]-axis showing the unit cell contents of $1 \cdot (CH_3)_2 CO$. The [b]-axis points downwards.	S5
Figure S4	Comparison of the experimentally measured 295 K powder XRD spectrum of 1 (where the powder was obtained by crushing single crystals of 1) with the spectrum calculated from a single crystal structure determination of 1 also at 295 K. The 2θ ranges are 5-23° in (A) and 23-40° in (B).	S6
Figure S5	Solid state emission spectrum recorded at 77 K of 1·CH ₃ OH, deconvoluted into five constituent Gaussian bands ($r^2 = 0.9990$; fit std error = 35.29). Components due to ³ MLCT emission are shown in blue, light-blue and pink, to ³ MMLCT emission in green and to excimeric π - π^* emission in red. The observed spectrum is shown by the orange line and the calculated spectrum by the black line.	S7
CheckCIF report	Structural check for crystal of 1·(CH ₃) ₂ CO	S 8

obtained by exposure of 1 to vapours of acetone.

Figure S1 View down the [c]-axis showing the unit cell contents of **1**•CH₃CN. The [b]-axis points downwards.

S4

Field et al.

Figure S2 View down the [c]-axis showing the unit cell contents of 1·CH₃OH. The [b]-axis points downwards.

Figure S3 View down the [c]-axis showing the unit cell contents of $1 \cdot (CH_3)_2 CO$. The [b]-axis points downwards.

Figure S4 Comparison of the experimentally measured 295 K powder XRD spectrum of 1 (where the powder was obtained by crushing single crystals of 1) with the spectrum calculated from a single crystal structure determination of 1 also at 295 K: see 1_295K.cif in the Supplementary Data. The 2θ ranges are 5-23° in (A) and 23-40° in (B).

Figure S5 Solid state emission spectrum recorded at 77 K of **1**·CH₃OH, deconvoluted into five constituent Gaussian bands ($r^2 = 0.9990$; fit std error = 35.29). Components due to ³MLCT emission are shown in blue, light-blue and pink, to ³MMLCT emission in green and to excimeric π - π * emission in red. The observed spectrum is shown by the orange line and the calculated spectrum by the black line.

S7

Field et al.

checkCIF/PLATON report (basic structural check)

No syntax errors found. Please wait while processing report

Datablock: 1Me2CO exp

<u>CIF dictionary</u> Interpreting this

Bond precision: C-C = 0.0326 AWavelength=0.71073 Cell: a=9.8258(11) c=10.9263(12)b=25.4680(3)alpha=90 beta=98.527(9) gamma=90 Temperature: 200 K Calculated Reported 2704.0(4)2704.0(4)Volume Space group P 21/n P2(1)/n Hall group -P 2yn -P 2yn C22 H15 N4 Pt S, C3 H6 O, F6 C22 H15 N4 Pt S, C3 H6 O, F6 Moiety formula Sb Sb C25 H21 F6 N4 O Pt S Sb C25 H21 F6 N4 O Pt S Sb Sum formula Mr 856.37 856.36 Dx,g cm-3 2.104 2.104 Ζ 4 4 6.313 Mu (mm-1) 6.312 F000 1624.0 1624.0 F000' 1616.35 h,k,lmax 12,31,13 11,31,13 Nref 5393 5158 Tmin, Tmax 0.240,0.388 0.161,0.388 Tmin' 0.073 Correction method= AbsCorr=MULTI-SCAN Data completeness= Ratio = Theta(max) = 26.1300.956 R(reflections) = 0.1002(3484)wR2(reflections) = 0.2037(5158)S = 1.608Npar= 352

The following ALERTS were generated. Each ALERT has the format test-name_ALERT_alert-type_alert-level.
Click on the hyperlinks for more details of the test.

 PLAT211 ALERT 2 A
 ADP of Atom C17
 is NPD

 ?

Alert level B

SHFSU01_ALERT 2_B The absolute value of parameter shift to su ratio >
0.10

Absolute value of the parameter shift to su ratio given

Alert level C RFACG01 ALERT 3 C The value of the R factor is > 0.10 R factor given 0.100 PLAT029 ALERT 3 C _diffrn_measured_fraction theta full Low 0.97 PLAT213 ALERT 2 C Atom C15 has ADP max/min Ratio 3.30 prola PLAT214 ALERT 2 C Atom C25 (Anion/Solvent) ADP max/min Ratio 5.00 prola PLAT362 ALERT 2 C Short C(sp3)-C(sp2) Bond C23 C25 . . . 1.41 Ang. PLAT432 ALERT 2 C Short Inter X...Y Contact F6 .. Cl 2.89 Ang. PLAT244 <u>ALERT 4 C</u> Low 'Solvent' Ueg as Compared to Neighbors for C23 PLAT244 ALERT 4 C LOW 'Solvent' Ueg as Compared to Neighbors for Sb 1 ALERT level A = In general: serious problem 4 ALERT level B = Potentially serious problem 8 ALERT level C = Check and explain

0 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 8 ALERT type 2 Indicator that the structure model may be wrong or deficient 3 ALERT type 3 Indicator that the structure quality may be low 2 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Publication of your CIF in IUCr journals

A basic structural check has been run on your CIF. These basic checks will be run on all CIFs submitted for J IUCr journals (*Acta Crystallographica, Journal of Applied Crystallography, Journal of Synchrotron Radiatie* you intend to submit to *Acta Crystallographica Section C* or *E*, you should make sure that <u>full publication ch</u> the final version of your CIF prior to submission.

Publication of your CIF in other journals

Please refer to the Notes for Authors of the relevant journal for any special instructions relating to CIF submi

S10

Field et al.

PLATON version of 29/04/2008; check.def file version of 22/04/2008 Datablock 1Me2CO_exp - ellipsoid plot

Download CIF editor (publCIF) from the IUCr Download CIF editor (enCIFer) from the CCDC Test a new CIF entry