Supporting Information

Interception of a Rh^(I)-Rh^(III) Dinuclear Trihydride Complex Revealing the Dihydrogen Activation by [Rh(CO)₂{(*R*,*R*)-Ph-BPE}]⁺

Delphine Crozet^[a], David McKay^[b], Christian Bijani^[c], Aitor Gual^[d], Cyril Godard^[d], Carmen Claver^[d], Laurent Maron^[b], Martine Urrutigoïty^{*[a]}, and Philippe Kalck^{*[a]}

- [a] Laboratoire de Chimie de Coordination UPR CNRS 8241, composante ENSIACET, Université de Toulouse UPS-INP-LCC
 4 allée Emile Monso BP 44362, 31030 Toulouse Cedex 4, France E-mail : <u>Philippe.Kalck@ensiacet.fr</u>
- [b] LPCNO, UMR 5215, Université de Toulouse-CNRS, INSA, UPS, 135 avenue de Rangueil, F-31077 Toulouse Cedex 4, France
- [c] Laboratoire de Chimie de Coordination, CNRS UPR 8241, Université de Toulouse UPS-INP-LCC
 205, route de Narbonne, 31077 cedex 04, France
- [d] Departament de Quimica Fisica i Inoranica Universitat Rovira i Virgili, C/Marcel·li Domingo s/n 43007 Tarragona, Spain

Contents

SI.1 Experimental Section
SI.2 HP NMR experiments : 1 under 7 bar H_2 (THF-d ⁸)
Figure 1. ¹ H NMR spectrum of 1 under 7 bar H2 (THF-d8, 298K)
Figure 2. ${}^{31}P{}^{1}H$ NMR spectrum of 1 under 7 bar H2 (THF-d8)
SI.3. HP NMR experiment : reaction of 1 and 3 under 7 bar H_2 (CD ₂ Cl ₂ , 298K)
Figure 3. ¹ H NMR spectrum, reaction of 1 and 3 (CD ₂ Cl ₂ , 298K)
Figure 4. ${}^{1}H{}^{31}P$ spectrum, reaction of 1 and 4 (CD ₂ Cl ₂ , 298K)
Figure 5. ${}^{31}P{}^{1}H$ NMR spectrum, reaction of 1 and 4 (CD ₂ Cl ₂ , 298K)10
Figure 6. Zoom on ${}^{31}P{1H}$ spectrum : 2nd order spectrum for 3
SI.4. HP NMR experiment, behaviour of complex 2 in the presence of CO 12
Figure 7. Behaviour of 2 in the presence of (a) 7 bar H2, (b) 7 bar CO/H2, (c) 7 bar CO. Hydride zone corresponding to the hydride signal of 3 , 4 and of the bridging H of complex 2 (CD_2Cl_2 , 298K)
SI.5. Computational Details

SI.1 Experimental Section

General Comments : All reactions and manipulations were carried out under a dry oxygen-free nitrogen atmosphere by using standard Schlenk techniques. All solvents were carefully purified by appropriate procedures. THF-d⁸, CD₂Cl₂, toluene-d⁸, CD₃OD were stored over molecular sieves under nitrogen. Air sensitive compounds were stored under argon.

NMR data. Standard NMR spectra were recorded either on a Bruker AV400 spectrometer equipped with a 5 mm triple resonance inverse probe with dedicated ³¹P channel operating at 400.13 MHz for ¹H, 161.97 for ³¹P, and 100.61 MHz for ¹³C. All chemical shifts for ¹H and ¹³C are relative to TMS using ¹H (residual) or ¹³C chemical shifts of the solvent as a secondary standard. ³¹P chemical shifts were referenced to an external 85% H₃PO₄ sample.

HP NMR spectroscopic study. All high pressure NMR experiments were performed analogously, therefore only a typical procedure is described there. A 5 mm QPV NMR tube was charged under argon with 0.7 ml of a deuterated solvent solution of rhodium complex. Afterward, the NMR was charged with 7 bar H_2 (or with CO or CO/H₂) and HP-NMR spectra were recorded at room temperature or cooling the solution, according to the experiments carried out.

Synthesis {1,2-Bis[(*R*,*R*)-2,5-diphenylphospholano]ethane}(1,5-cyclooctadiene)rhodium(I) tetrafluoroborate.

A solution of $[RhCl(COD)]_2$ dimer complex (50 mg, 0.10 mmol) and AgBF₄ silver salt (39mg, 0.2 mmol) in de-gassed dry acetone (15 mL), under an atmosphere of nitrogen was stirred at room temperature during 1h. Then the solution was filtered to remove the white AgCl precipitate and 1,2-Bis[(*R*,*R*)-2,5-diphenylphospholano]ethane (102.7 mg, 0.2 mmol) was added to the filtered solution under nitrogen atmosphere, and the solution was stirred during 2 hours. Concentration in vacuo gave an orange powder (156 mg, 96%).

¹H NMR (300 MHz, CDCl₃): $\delta = 1.17$ -1.36 (m, 4H), 1.64-1.78 (m, 4H), 2.01-2.07 (m, 2H), 2.19-2.31 (m, 4H), 2.48-2.62 (m, 6H), 3.44-3.52 (m, 2H), 3.55-3.62 (m, 2H), 4.30 (m, 2H), 5.41 (m, 2H), 6.82 (d, *J* = 9 Hz, 4H), 7.10 (t, *J* = 9 Hz, 4H), 7.13 (t, *J* = 9 Hz, 2H), 7.35 (d, *J* = 9 Hz, 4H), 7.4 (t, *J* = 9 Hz, 2H), 7.52 ppm (t, *J* = 11.2 Hz, 4H). ³¹P NMR (121 MHz, CDCl₃): $\delta = 78.41$ ppm (d, ¹J_{Rh-P} = 153 Hz). ¹³C NMR (75.5 MHz, CDCl₃): $\delta = 24.22$ (m, bridge CH2), 26.91 (s), 31.37 (s), 31.57 (s), 32.96 (s), 47.06 (m, ring CH), 49.69 (m, ring CH), 94.21 (m), 101.43 (m), 126.94 (s), 127.45 (m), 127.88 (s), 128.62 (s), 128.67 (s), 129.36 (s), 135.33 (s), 139.06 ppm (s). ¹⁰³Rh NMR (15.8 MHz, CDCl₃): $\delta = - 8477$ ppm

Synthesis of (1), $\{1,2-Bis[(R,R)-2,5-diphenylphospholano]ethane\}(dicarbonyl)rhodium(I) tetrafluoroborate.$

CO was bubbled through a solution of $[Rh(COD)\{(R,R)-Ph-BPE\}]BF_4$ (50 mg, 0.062 mmol) in CH₂Cl₂ (15 mL) under stirring, at room temperature. After 30 min. the solution has turned from orange to yellow and was concentrated *in vacuo*. Adding Et₂O (10 mL) under nitrogen allowed to precipitate a yellow powder, which could be isolated after filtration of the remaining solution, and after being dried *in vacuo* (44 mg, 95%).

¹H NMR (500 MHz, THF-d⁸, 298 K): $\delta = 1.85$ (m, 2H, -P-CHH-CHH-P-), 2.02 (m, 2H, -P-CHH-CHH-P-), 2.36 (m, 2H, -CH₂-CHH- phospholane), 2.57 (m, 2H, -CH₂-CHH- phospholane), 2.63 (m, 2H, -CH₂-CHH- phospholane), 2.72 (m, 2H, -CH₂-CHH- phospholane), 3.93 (dd, 2H, -P-CHPh-CH₂), 4.04 (dd, 2H, -P-CHPh-CH₂-), 7.03 (m, 4H, -C₆H₅), 7.23 (m, 2H, -C₆H₅), 7.25 (m, 4H, -C₆H₅), 7.36 (m, 4H, -C₆H₅), 7.37 (m, 2H, -C₆H₅), 7.44 ppm (m, 4H, -C₆H₅). ³¹P NMR (202 MHz, THF-d⁸): $\delta = 94$ ppm (d, ¹J_{Rh-P} = 121 Hz). ¹³C NMR (125.8 MHz, THF-d⁸): $\delta = 23.40$ (-P-(CH₂)₂-P-), 31.87 (-(CH₂)₂- phospholane), 32.06 (-(CH₂)₂-phospholane), 48.0 (-P-CHPh-CH₂-), 48.7 (-P-CHPh-CH₂-), 126.64 (-C₆H₅), 127.53 (-C₆H₅), 127.7 (-C₆H₅), 128.30 (-C₆H₅), 128.58 (-C₆H₅), 129.15 (-C₆H₅), 134.31 (-C, Ph), 139.58 ppm (-C, Ph), 184.6 ppm (dd, CO ligands, ¹J_{Rh-C}=61 Hz, ²J_{Ptrans-CO}=72 Hz, assigned with the ¹³CO labeled complex). ¹⁰³Rh NMR (15.8 MHz, THF-d⁸): $\delta = -8855$ ppm. IR (v_{co}, cm⁻¹): 2096, 2045.

Synthesis of (2), [RhH(CO)₂{(*R*,*R*)-Ph-BPE}]BF₄

The rhodium precursor $[Rh(acac)(CO)_2]$ (0.024 mmol, 6.2 mg) and the diphosphine ligand (*R*,*R*)-Ph-BPE (0.0264 mmol, 13 mg) were introduced in solution (1.5 mL solvent = CD_2Cl_2 or THF-d₈) in the autoclave under inert atmosphere, and stirred during 30 min. under 30 bar CO/H₂ (1:2) before being transferred in the 5 mm NMR tube.

¹H NMR (500 MHz, THF-d⁸, 298 K): $\delta = -9.74$ (td, 1H, Rh-H), -0.5 (m, 2H, -P-CHH-CHH-P-), 1.73 (m, 2H, -P-CHH-CHH-P-), 2.13 (m, 2H, -CH₂-CHH- phospholane), 2.22 (m, 4H, -CH₂-CHH- phospholane), 2.28 (m, 2H, -CH₂-CHH- phospholane), 3.01 (dd, 2H, -P-CHPh-CH₂), 3.32 (dd, 2H, -P-CHPh-CH₂-), 7.04 (m, 4H, -C₆H₅), 7.09 (m, 4H, -C₆H₅), 7.22 (m, 2H, -C₆H₅), 7.26 (m, 2H, -C₆H₃), 7.28 (m, 4H, -C₆H₅), 7.32 ppm (m, 2H, -C₆H₅). ³¹P NMR (202 MHz, THF-d⁸): $\delta = 97.9$ ppm (dd, ¹J_{Rh-P} = 119 Hz, ²J_{H-P}=55 Hz). ¹³C NMR (125,8 MHz, THF-d⁸): $\delta = 27.63$ (-P-(CH₂)₂-P-), 31.78 (-(CH₂)₂- phospholane), 33.39 (-(CH₂)₂- phospholane), 50.82 (-P-CHPh-CH₂-), 57.87 (-P-CHPh-CH₂-), 125.95 (-C₆H₅), 126.18 (-C₆H₅), 127.66 (-C₆H₅), 127.77 (-C₆H₅), 128.15 (-C₆H₅), 128.82 (-C₆H₅), 136.8 (-C, Ph), 141.39 (-C, Ph), 196.85 ppm (dt, CO ligands, ¹J_{Rh-C} = 69.4Hz, assigned with the ¹³CO labeled complex). ¹⁰³Rh NMR (15.8 MHz, THF-d⁸): $\delta = -9041$ ppm. IR (THF, v_{CO}, cm⁻¹): 1987, 1943.

Reaction between equimolar amounts of 1 and 2 under H₂ pressure

In a batch reactor specially adapted for the experiments, the complex **2** was prepared at room temperature from $[Rh(acac)(CO)_2]$ and (R,R)-Ph-BPE under 30 bar CO/H₂ pressure in CD₂Cl₂. The monohydride complex is quantitatively obtained under these conditions, and is stable upon removal of the gas pressure. The pressure was then removed, and a solution containing an equimolar amount of the cationic complex **1** in CD₂Cl₂ was then added. The solution was transferred into the HP NMR tube, and pressurized under 7 bar H₂.

SI.2 HP NMR experiments: complex 1 under 7 bar H₂ (THF-d⁸)

Figure 1. ¹H NMR spectrum of 1 under 7 bar H₂ (THF-d⁸, 298K)

Figure 2. ³¹P{¹H} NMR spectrum of 1 under 7 bar H₂ (THF-d⁸)

SI.3. HP NMR experiment: reaction of 1 and 2 under 7 bar H₂ (CD₂Cl₂, 298K)

Figure 3. ¹H NMR spectrum, reaction of 1 and 2 under 7 bar H₂ (CD₂Cl₂, 298K)

Figure 4. ¹H{³¹P} spectrum, reaction of 1 and 2 under 7 bar H₂ (CD₂Cl₂, 298K)

Figure 5. $^{31}P\{^{1}H\}$ NMR spectrum, reaction of 1 and 2 under 7 bar H_{2} (CD₂Cl₂, 298K)

Figure 6. Zoom on ³¹P{1H} spectrum : 2nd order spectrum for 4

Selected region of the ${}^{31}P{}^{1}H$ NMR spectrum at ca. 54 ppm

SI.4. HP NMR experiment, behaviour of complex 4 in the presence of CO

Figure 7. Behaviour of 4 in the presence of (a) 7 bar H₂, (b) 7 bar CO/H₂, (c) 7 bar CO. Hydride zone corresponding to the signals of 2, 3 and of the bridging H of complex 4 (CD₂Cl₂, 298K).

SI.5. Computational Details

Comparison of computed geometries of 4a' and 4b'

Calculations were performed using Gaussian 03 Revision E.01,¹ adopting the B3PW91 functional.² 6-31G** basis sets³ were used to describe C, H and O atoms whilst the Stuttgart-Dresden pseudopotential and associated basis sets were adopted for Rh and P.⁴ For P, the basis sets were polarized with an additional d-function ($\zeta = 0.180$).⁵ Geometry optimisations were performed without constraints and minima confirmed as such through analytical frequency calculations. Polarized Continuum Model calculations⁶ were performed using THF as solvent ($\varepsilon = 7.58$) and UFF radii. Geometrical measurements were made using Mercury.⁷

In both species, the diphosphine ligand at each metal is inclined away from the respective terminal CO ligand. In **4a'** this inclination, $\theta = 100.8^{\circ}$ (where θ is defined as the C1-Rh1-*c* angle and *c* as the P…P centroid of the adjacent diphosphine). In **4b'**, $\theta = 96.2^{\circ}$, suggesting a less flexible structure. Distortion away from an octahedral geometry has the effect of rotating the diphosphine ligands in parallel in **4a'** but towards each other in **4b'**, leading to closer through-space contacts between carbon substituents of the diphosphine ligands in the latter. These steric effects are presumed to increasingly favour **4a** over **4b**, where (*R*,*R*)-Me-BPE is substituted for the larger (*R*,*R*)-Ph-BPE diphosphine ligand.

References

M. J. Frisch, G.W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J.M.Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L.Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M.

Challacombe, P.M.W. Gill, B. G. Johnson, W. Chen, M. W. Wong, C. Gonzalez and J. A. Pople, *GAUSSIAN 03 (Revision E.01)*, Gaussian, Inc., Wallingford, CT, 2004.

- (a) J. P. Perdew and Y. Wang, *Phys. Rev. B*, 1992, 45, 13244; (b) A. D. Becke, *J. Chem. Phys.*, 1993, 98, 5648; (c) K. Burke, J. P. Perdew and W. Yang, *Electronic Density Functional Theory: Recent Progress and New Directions*, Plenum, New York, 1998.
- 3. (a) W. J. Hehre, R. Ditchfield and J. A. Pople, *J. Chem. Phys.*, 1972, **56**, 2257; (b) P. C. Hariharan and J. A. Pople, *Theor. Chim. Acta*, 1973, **28**, 213.
- 4. (a) A. Bergner, M. Dolg, H. Kuechle, H. Stoll and H. Preuss, *Mol. Phys.*, 1993, 80, 1431; (b) M. Kaupp, P. v. R. Schleyer, H. Stoll and H. Preuss, *J. Chem. Phys.*, 1991, 94, 1360; (c) M. Dolg, H. Stoll, H. Preuss and R. M. Pitzer, *J. Phys. Chem.*, 1993, 97, 5852.
- 5. A. Höllworth, M. Böhme, S. Dapprich, A. W. Ehlers, A. Gobbi, V. Jonas, K. F. Köhler, R. Syegmann, A. Veldkamp and G. Frenking, *Chem. Phys. Lett.*, 1993, **208**, 237.
- 6. J. Tomasi, B. Mennucci, R. Cammi, Chem. Rev., 2005, 105, 2999.
- 7. Mercury, version 1.4.2, Cambridge Crystallographic Data Center, Cambridge, UK, 2006.

Computed Geometries

4a'

SCF (B3PW91) Energy = -1689.56890504				
Entl	halpy 0K =	-1	688.717100	
Entl	halpy 298K =	-1	688.665515	
Free	e Energy 298	3K = -1	688.806019	
PCN	M (THF) Fre	e Energy =	-1689.535684	4
Rh	-1.402964	-0.115333	-0.188208	
Rh	1.403159	-0.115238	0.188179	
С	-1.354678	0.054953	-2.122412	
0	-1.340946	0.179957	-3.264685	
Н	1.494300	-0.229053	-1.398328	
Н	0.000120	0.946014	-0.000124	
С	0.000119	-1.586404	0.000073	
0	0.000172	-2.772618	0.000161	
Н	-1.494190	-0.229019	1.398307	
С	1.354765	0.055474	2.122332	
Р	2.927182	1.730486	-0.267427	
Р	3.275546	-1.547941	0.039176	
С	4.796222	-0.431060	-0.145319	
С	4.491827	0.857493	-0.897325	
Н	5.606415	-0.984129	-0.628786	
Н	5.113698	-0.218684	0.881011	
Н	5.343713	1.542212	-0.862816	
Н	4.280389	0.645487	-1.950101	
С	3.845934	-2.766353	1.382597	
С	3.310941	-2.851439	-1.356830	
С	2.666547	3.058033	-1.618697	
С	3.466960	2.996138	1.081064	
С	3.387035	4.291678	-1.052351	
С	1.192900	3.295300	-1.931756	
Н	3.054519	5.204310	-1.560623	
Н	4.466026	4.208171	-1.230967	
С	3.117822	4.359075	0.453980	
С	4.926628	2.895970	1.516550	
Η	3.694342	5.160473	0.930071	
Η	2.059861	4.587952	0.627478	
С	3.902789	-4.126512	-0.710372	

С	4.032724	-2.387832	-2.618647
Н	3.090243	-4.815506	-0.458426
Н	4.549252	-4.652002	-1.421488
С	4.679415	-3.764722	0.563662
С	2.682837	-3.406087	2.135999
Н	5.642785	-3.311924	0.298263
Н	4.906978	-4.657925	1.157027
Н	4.476258	-2.207045	2.082682
Н	2.254284	-3.004979	-1.592322
Н	2.825705	2.795345	1.944091
Н	3.168275	2.687740	-2.518944
Н	5.112517	3.603423	2.332212
Н	5.185198	1.900300	1.889109
Н	5.620233	3.146966	0.707980
Н	3.065236	-4.156132	2.837139
Н	2.125452	-2.664382	2.713357
Н	1.974015	-3.897614	1.464653
Н	3.936153	-3.151082	-3.398133
Н	3.604607	-1.462494	-3.017333
Н	5.103318	-2.230836	-2.451728
Н	1.095046	4.053306	-2.717066
Н	0.709187	2.378723	-2.276877
Н	0.641627	3.648059	-1.054343
Р	-2.926819	1.730571	0.267250
Р	-3.275463	-1.547804	-0.039274
С	-4.796100	-0.430913	0.145499
С	-4.491487	0.857704	0.897317
Η	-5.606096	-0.983949	0.629338
Η	-5.113971	-0.218667	-0.880734
Η	-5.343336	1.542474	0.862889
Η	-4.279915	0.645736	1.950076
С	-3.845939	-2.766066	-1.382671
С	-3.311117	-2.851463	1.356417
С	-2.666260	3.058095	1.618510
С	-3.466676	2.996239	-1.081200
С	-3.387956	4.291251	1.052667
С	-1.192595	3.296394	1.930698

Н	-3.056241	5.204036	1.561192
Н	-4.466850	4.206668	1.231373
С	-3.118967	4.359363	-0.453673
С	-4.925979	2.895003	-1.517664
Η	-3.696421	5.160277	-0.929446
Н	-2.061288	4.589481	-0.627215
С	-3.906394	-4.125488	0.710862
С	-4.029595	-2.386533	2.619624
Н	-3.095717	-4.817125	0.460156
Н	-4 554782	-4 648360	1 422145
C	-4 681402	-3 763007	-0 564028
C	-2 682740	-3 407550	-2 134424
н	-5 644388	-3 308817	-0.299661
н	-4 909681	-4 656124	-1 157250
н	-4 474887	-2 206418	-2 083724
н	-2 25/306	-3.006005	1 580050
н Ц	-2.234300	-3.000393	1.303333
п	-2.024/10	2.790094	-1.943037
п	-5.10/1/9	2.08/330	2.319024
Н	-3.065211	-4.15/543	-2.835578
Н	-2.123823	-2.666805	-2./11535
Н	-1.9/5250	-3.899537	-1.462004
Н	-3.933386	-3.150140	3.398803
Н	-3.598636	-1.462240	3.017685
Н	-5.100125	-2.227061	2.454619
Η	-5.111909	3.602491	-2.333284
Η	-5.183501	1.899210	-1.890623
Η	-5.620301	3.145261	-0.709480
Н	-1.094812	4.054413	2.716004
Н	-0.708027	2.380137	2.275463
Н	-0.642094	3.649634	1.052994
0	1.340815	0.180968	3.264550
1h'			
40 SCI	$E(\mathbf{D}^2\mathbf{D}\mathbf{W}01)$	Enormy - 1	690 56169261
SCI Ent	(D31 W 91)	Ellergy1	699.30408301
Elli Ent	halpy OK -	-1	000./120/3
Ent.	naipy 298K -	l	088.001338
Free	e Energy 298	K = -1	1(90,522002
PUI	M (IHF) Fre	e Energy =	-1689.532002
Kn	0.000000	0.000000	0.00000
Kn	0.000000	0.000000	3.234000
C	2.499000	0.000000	0.000000
0	4.000000	0.000000	0.000000
C	2.499000	0.000000	3.234000
0	4.000000	0.000000	3.234000
Н	0.000000	1.169178	1.669759
С	0.000000	-1.767060	1.767060
0	0.000000	-3.167060	1.767061
Н	-2.038400	0.000000	0.000000
Н	-2.038400	0.000000	3.234000
Р	0.000000	2.009597	5.243597
Р	0.000000	-1.168460	5.803974
С	0.000000	0.033325	7.267051
С	0.645657	1.354808	6.892123
Н	0.524543	-0.426507	8.108574
Н	-1.046590	0.174613	7.551207
Н	0.476009	2.110984	7.663733
Н	1.724951	1.237560	6.747531
С	-1.346382	-2.433861	6.284501
Ċ	1.380387	-2.437547	6.164553
~			

~	1.0.1.(0 550 500	4.0.000
C	1.046648	3.5/3538	4.96/0/2
С	-1.641743	2.971060	5.582413
Ċ	0 200702	1 503148	5 856377
C	0.300793	4.393148	5.850577
C	1.213052	3.984959	3.586658
Η	0.643993	5.607494	5.630358
н	0 5/8316	1 100851	6 007508
П С	0.348310	4.4000004	0.907398
C	-1.210226	4.458799	5.630280
С	-2.368235	2.454078	6.725845
н	-1 771051	4 990879	6 403707
11	-1.//1051	4.020220	0.403707
Н	-1.4/0356	4.929228	4.6//883
С	0.846414	-3.273750	7.345949
С	2 706440	-1 861867	6 277134
11	1 172754	4 210074	7.212296
п	1.1/3/34	-4.3100/4	1.212380
Н	1.303237	-2.941050	8.281246
С	-0 700997	-3 186321	7 466778
C	1 746167	2 222925	5 1 4 2 4 2 6
	-1./4010/	-3.232833	5.142450
Н	-0.960252	-2.656573	8.388461
Η	-1.146871	-4.181739	7.553807
н	-2 204569	-1 844532	6 622410
11	1 252255	2 050512	5.255091
н	1.352255	-3.050513	5.255981
Η	-2.245753	2.788958	4.690011
Н	2 032082	3 352773	5 390528
TT I	2.052002	2 021022	6 967064
п	-5.280270	5.051952	0.80/904
Н	-2.623541	1.409829	6.551820
Н	-1.746514	2.532202	7.616509
н	-2 513081	-3 943415	5 447135
11	-2.515001	-3.7+3+13	1 2 (10 2 1
Н	-2.142928	-2.581/01	4.364924
Н	-0.882744	-3.773447	4.757520
Н	3 428508	-2.650883	6 482055
11	2 066972	1 264026	5 242792
п	2.9008/3	-1.504920	3.343/83
Η	2.719851	-1.137436	7.090117
Н	1.825209	4.884758	3.547331
н	1 701650	3 188762	3 026058
11	1.701050	J.100702	3.020938
Н	0.23/2/3	4.190348	3.148947
Р	0.000000	2.009597	-2.009597
Р	0 000000	-1 168460	-2 569975
C	0.000000	0.022225	4.022051
C	0.000000	0.033323	-4.033051
С	-0.645657	1.354808	-3.658123
Н	-0.524543	-0.426507	-4.874574
н	1.046590	0 174613	4 317208
11	0.47(000	2 110004	4 420722
п	-0.4/6009	2.110984	-4.429/33
Η	-1.724951	1.237560	-3.513531
С	1 346382	-2 433861	-3 050501
č	1 380387	2 /375/7	2 020552
C	-1.380387	-2.437347	-2.930333
C	-1.046648	3.5/3538	-1.733072
С	1.641743	2.971060	-2.348413
С	-0 300793	4 593148	-2 622377
C	1 212052	2 004050	0.252650
C	-1.213052	3.984959	-0.352659
Н	-0.643993	5.607494	-2.396359
Н	-0 548316	4 400854	-3 673598
\hat{C}	1 210226	1 158700	-2 306200
Č	1.210220	4.430/99	-2.390200
C	2.368235	2.454078	-3.491846
Η	1.771051	4.990879	-3.169707
н	1 470356	4 929228	-1 443883
C	0.046414	2 272750	4 111040
U	-0.846414	-3.2/3/30	-4.111949
С	-2.706440	-1.861867	-3.043134
Н	-1.173754	-4.310074	-3.978386
ц	1 302227	2 0/1050	-5 047246
	-1.505257	-2.941030	-5.04/240
C	0./00997/	-3.186321	-4.232779

С	1.746167	-3.232835	-1.908436
Η	0.960252	-2.656573	-5.154461
Н	1.146871	-4.181739	-4.319807
Н	2.204569	-1.844532	-3.388410
Η	-1.352255	-3.050513	-2.021981
Н	2.245753	2.788958	-1.456012
Н	-2.032082	3.352773	-2.156529
Η	2.513081	-3.943415	-2.213134
Η	2.142928	-2.581702	-1.130923
Η	0.882743	-3.773447	-1.523521
Η	-3.428508	-2.650883	-3.248055
Η	-2.966874	-1.364926	-2.109783
Н	-2.719851	-1.137436	-3.856118
Н	3.280270	3.031932	-3.633965
Н	2.623541	1.409829	-3.317821
Η	1.746514	2.532202	-4.382509
Н	-1.825209	4.884758	-0.313331
Н	-1.701650	3.188762	0.207041
Н	-0.237273	4.190348	0.085053

2'

SCF (B3PW91)	Energy = -9	901.617500649
Entha	lpy 0K =		901.183266
Enthal	lpy 298K -	=	901.156900
Free E	Energy 298	3K = -9	901.240328
PCM	(THF) Fre	e Energy =	-901.626509
C 0	.531000	-1.296000	-1.788000
C -0	.800000	-0.602000	-2.048000
H 1	.096000	-1.425000	-2.717000
Н 0	.379000	-2.286000	-1.348000
Н -0	.652000	0.372000	-2.524000
H -1	.444000	-1.199000	-2.701000
Rh -	0.049000	0.338000	1.160000
P 1.	568000	-0.303000	-0.556000
P -1	.707000	-0.282000	-0.422000
C -3	.158000	0.905000	-0.768000
Н -3	.266000	1.457000	0.173000
C -2	.816000	-1.803000	-0.100000
Н -2	.782000	-2.351000	-1.051000
C 2	.605000	0.900000	-1.631000
Н 2	.357000	0.619000	-2.663000
C 3	.054000	-1.398000	-0.087000
Н 3	.362000	-1.008000	0.891000
C -4	.361000	-0.034000	-0.932000
Н -5	.294000	0.517000	-0.778000
Н -4	.388000	-0.425000	-1.958000
C -4	.214000	-1.186000	0.062000
Н -4	.982000	-1.952000	-0.087000
Н -4	.333000	-0.813000	1.088000
C 4	.058000	0.491000	-1.336000
Н 4	.714000	0.816000	-2.150000
Н 4	.402000	1.005000	-0.428000
C 4	.120000	-1.021000	-1.124000
Н 3	.921000	-1.545000	-2.068000
Н 5	.112000	-1.341000	-0.787000
C -2	.945000	1.886000	-1.914000
Н -2	.846000	1.372000	-2.876000
Н -3	.810000	2.552000	-1.990000
Н -2	.064000	2.518000	-1.767000

С	-2.392000	-2.720000	1.037000
Н	-1.410000	-3.169000	0.862000
Н	-2.355000	-2.184000	1.990000
Н	-3.114000	-3.537000	1.137000
С	2.317000	2.379000	-1.421000
Н	1.288000	2.643000	-1.680000
Н	2 500000	2 680000	-0 384000
Н	2 977000	2 980000	-2 055000
C	2,756000	-2.886000	0.041000
н	2 476000	-3 329000	-0.920000
н	3 650000	-3 411000	0.392000
ц	1 958000	-3.085000	0.762000
C	1.938000	-3.085000	2 664000
C	0.277000	2 281000	2.004000
Ö	-0.277000	2.281000	2.599000
0	1.803000	0.3/4000	3.388000
0	-0.486000	3.401000	0.813000
Н	-0.088000	-1.209000	1.468000
Н	-1.251000	0.358000	2.182000
3'		-	
SC	F (B3PW91)	Energy = -9	901.212597110
En	thalpy $0K =$	-9	900.788550
En	thalpy 298K	= -9	900.762271
Fre	e Energy 29	8K = -9	900.845098
PC	M (THF) Fre	ee Energy =	-901.179883
С	0.174030	-0.934263	0.258926
С	1.323278	-0.028790	-0.169064
Н	-0.499334	-0.430689	0.961637
Н	0.556427	-1.839108	0.743015
Н	0.939894	0.884103	-0.636961
Н	1.944905	0.263396	0.684078
Rh	0.871422	-2.148621	-2.882271
Р	-0.793576	-1.506095	-1.273608
P	2 374463	-0 917578	-1 484772
Ċ	3 542351	0 434842	-2.165233
н	3 861184	0.012563	-3 126793
\hat{C}	3 772018	-1 731762	-0.436718
н	3 543738	-1.466947	0.603853
C	2.005836	0 103006	1 482427
U U	-2.095850	-0.103000	-1.402437
С	-1.900139	0.378127	-0.042346
U U	-2.0014/2	-2.747739	-0.00/005
П	-2.34/048	-3.320208	-1.301020
	4./304/3	0.441074	-1.20/939
п	5.598574	0.954/98	-1.031902
Н	4.4/53/0	0.992/94	-0.293680
C	5.060906	-1.013990	-0.868517
H	5.830275	-1.092534	-0.090907
Н	5.464006	-1.510939	-1.761665
С	-3.448583	-0.797147	-1.262259
Н	-4.218218	-0.067341	-0.983508
Н	-3.773870	-1.255831	-2.206026
С	-3.281246	-1.886291	-0.202960
Н	-3.094905	-1.430292	0.779802
Η	-4.187119	-2.496655	-0.101371
С	2.890404	1.785889	-2.418235
Н	2.601651	2.279318	-1.483990
Н	3.586175	2.454809	-2.937702
Н	1.998541	1.686595	-3.045846
С	3.833413	-3.245713	-0.578932

Н	2.905940	-3.721834	-0.249731
Η	3.988925	-3.534851	-1.623231
Η	4.658474	-3.655563	0.016408
С	-2.000504	0.666636	-2.790820
Η	-1.020880	1.135711	-2.917335
Η	-2.161680	0.009835	-3.650423
Η	-2.760495	1.456643	-2.823911
С	-1.570610	-3.701441	0.462717
Η	-1.319165	-3.173077	1.388165
Η	-2.340682	-4.441676	0.708462
Η	-0.685360	-4.249227	0.125796
С	0.687466	-4.017941	-2.640853
0	0.586829	-5.172343	-2.579036
С	0.319050	-1.256078	-4.466957
0	0.037642	-0.805277	-5.497488
Η	2.138222	-2.528165	-3.740960

СО

SCF (B3PW91) Energy = -113.258297204 Enthalpy 0K = -113.253238 Enthalpy 298K = -113.250878 Free Energy 298K = -113.272375 PCM (THF) Free Energy = -113.254923 C -0.033084 0.013350 2.235027 O -0.050778 0.017223 3.371896