Supporting Information: Synthesis and Computational Studies of Mg Complexes Supported by 2,2':6,2"-Terpyridine Ligands

Louise M. Guard,[‡] Julio L. Palma,[‡] William P. Stratton, Laura J. Allen, Gary W. Brudvig, Robert H. Crabtree, Victor S. Batista* and Nilay Hazari*

The Department of Chemistry, Yale University, P. O. Box 208107, New Haven, Connecticut, 06520, USA. e-mail: <u>victor.batista@yale.edu</u>; <u>nilay.hazari@yale.edu</u>. [‡]These authors had equal contribution.

Table of Contents

X-Ray Crystallography S2

Density Functional Theory S9

¹H NMR Spectra S34

X-Ray Crystallography X-Ray Data for 5a Table S1. Crystal data and structure refinement for 5a Empirical Formula Formula Weight Crystal Color, Habit Crystal Dimensions Crystal System Lattice Type Lattice Parameters

Space Group Zvalue D_{calc} $F_{000} \\$ μ (MoK α) Data Images ω oscillation Range (χ =54.0, ϕ =0.0) **Exposure Rate** Detector Swing Angle ω oscillation Range (χ =54.0, ϕ =120.0) **Exposure Rate** Detector Swing Angle **Detector Position** Pixel Size $2\theta_{max}$ No. of Reflections Measured

Corrections

Structure Solution Refinement Function Minimized Least Squares Weights

Anomalous Dispersion No. Observations (All reflections) No. Variables Reflection/Parameter Ratio Residuals: R1 (I>2.00 σ (I)) Residuals: R (All reflections) Residuals: wR2 (All reflections) Goodness of Fit Indicator Max Shift/Error in Final Cycle Maximum peak in Final Diff. Map Minimum peak in Final Diff. Map $Br_2MgN_3C_{25}H_{23}Cl_2$ 620.50 colorless, block 0.20 X 0.15 X 0.15 mm monoclinic C-centered a = 20.815(3) Åb = 15.326(3) Åc = 16.421(3) Å $\beta = 100.713(7)^{\circ}$ $V = 5147.3(15) \text{ Å}^3$ C2/c (#15) 8 1.601 g/cm^3 2480.00 34.099 cm^{-1} 350 exposures -120.0 - 60.0° 90.0 sec./° -28.40° -120.0 - 50.0° 90.0 sec./° -28.40° 49.90 mm 0.146 mm 55.0° Total: 17018 Unique: 5888 ($R_{int} = 0.0660$) Lorentz-polarization Absorption (trans. factors: 0.417 - 0.600) Direct Methods Full-matrix least-squares on F² $\Sigma \mathrm{w} (\mathrm{Fo}^2 - \mathrm{Fc}^2)^2$ $w = 1/[\sigma^2(Fo^2) + (0.0499 \cdot P)^2]$ + 13.7902 • P] where $P = (Max(Fo^2, 0) + 2Fc^2)/3$ All non-hydrogen atoms 5888 298 19.76 0.0613 0.1232 0.1390 1.039 0.001 $0.52 \text{ e}^{-}/\text{Å}^{3}$ -0.55 e⁻/Å³

atom	X	V	Z	Beg
Br(1)	0.37979(3)	0.47003(4)	0.03419(3)	4.251(15)
Br(2)	0.21975(3)	0.56219(4)	0.12415(4)	5.195(17)
Cl(1)	0.21160(12)	0.35873(15)	0.32362(14)	8.74(6)
Cl(2)	0.15628(13)	0.51521(14)	0.37126(18)	9.80(7)
Mg(1)	0.31798(8)	0.47145(10)	0.14851(9)	2.95(3)
N(1)	0.37946(19)	0.5578(3)	0.2359(2)	3.11(8)
N(2)	0.36302(18)	0.3927(2)	0.2473(2)	2.59(7)
N(3)	0.26983(18)	0.3455(3)	0.1299(2)	2.88(7)
C(1)	0.3819(3)	0.6433(3)	0.2286(3)	3.89(11)
C(2)	0.4226(3)	0.6938(4)	0.2829(4)	4.27(11)
C(3)	0.4628(3)	0.6557(4)	0.3476(4)	4.36(12)
C(4)	0.4608(2)	0.5673(3)	0.3559(3)	3.57(10)
C(5)	0.4184(2)	0.5201(3)	0.2999(3)	2.82(8)
C(6)	0.4094(2)	0.4252(3)	0.3067(3)	2.63(8)
C(7)	0.4411(2)	0.3738(3)	0.3692(3)	2.90(9)
C(8)	0.4252(2)	0.2870(3)	0.3727(3)	2.83(9)
C(9)	0.3764(2)	0.2545(3)	0.3114(3)	2.76(8)
C(10)	0.3467(2)	0.3086(3)	0.2497(3)	2.57(8)
C(11)	0.2920(2)	0.2830(3)	0.1835(3)	2.65(8)
C(12)	0.2642(2)	0.2016(3)	0.1800(3)	3.20(9)
C(13)	0.2120(3)	0.1851(4)	0.1187(3)	3.64(10)
C(14)	0.1886(3)	0.2489(4)	0.0636(3)	3.93(11)
C(15)	0.2184(2)	0.3277(4)	0.0716(3)	3.83(11)
C(16)	0.4555(2)	0.2297(3)	0.4411(3)	2.92(9)
C(17)	0.5144(3)	0.1898(3)	0.4392(3)	3.67(10)
C(18)	0.5396(3)	0.1324(4)	0.5018(3)	4.22(11)
C(19)	0.5077(3)	0.1151(4)	0.5654(3)	4.19(12)
C(20)	0.4502(3)	0.1564(3)	0.5663(3)	4.12(11)
C(21)	0.4223(3)	0.2133(3)	0.5045(3)	3.44(10)
C(22)	0.5505(3)	0.2084(5)	0.3719(4)	5.56(14)
C(23)	0.5362(4)	0.0533(4)	0.6332(4)	6.31(17)
C(24)	0.3589(3)	0.2574(4)	0.5074(4)	4.65(12)
C(25)	0.2185(5)	0.4419(6)	0.3936(6)	9.8(3)

Table S2. Atomic coordinates and Biso/Beq for 5a

	()			()	
2					
$B_{eq} = 8/3 \pi^2 (U_{11})$	$(aa^*)2 + U_{22}(bb^*)2 - U_{22}(bb^*)2$	$+ U_{33}(cc^*)^2 + 2U_{12}(aa^*)^2$	*bb*)cos γ + 2U ₁	$_3(aa^*cc^*)\cos\beta + 2$	$2U_{23}(bb*cc*)\cos\alpha$

Table 55.	Anisou opic dispi	acement parame	lers for Sa			
atom	U_{11}	U ₂₂	U ₃₃	U ₁₂	U_{13}	U ₂₃
Br(1)	0.0564(4)	0.0640(4)	0.0426(3)	-0.0135(3)	0.0132(2)	-0.0111(3)
Br(2)	0.0647(4)	0.0607(4)	0.0668(4)	0.0229(3)	-0.0011(3)	-0.0099(3)
Cl(1)	0.1292(18)	0.1109(16)	0.1097(17)	-0.0000(14)	0.0682(14)	-0.0230(13)
Cl(2)	0.142(2)	0.0714(13)	0.178(3)	-0.0021(14)	0.0767(19)	0.0021(14)
Mg(1)	0.0448(9)	0.0340(8)	0.0308(8)	0.0007(8)	0.0010(7)	-0.0016(7)
N(1)	0.052(3)	0.031(2)	0.034(2)	-0.0044(20)	0.0064(19)	-0.0014(17)
N(2)	0.035(2)	0.033(2)	0.0300(20)	-0.0029(18)	0.0072(16)	0.0006(16)
N(3)	0.036(2)	0.041(2)	0.030(2)	-0.0015(19)	-0.0022(17)	0.0004(17)
C(1)	0.062(4)	0.040(3)	0.044(3)	0.001(3)	0.004(3)	0.004(2)
C(2)	0.065(4)	0.035(3)	0.063(4)	-0.011(3)	0.013(3)	0.003(3)
C(3)	0.061(4)	0.042(3)	0.058(4)	-0.016(3)	-0.002(3)	-0.008(3)
C(4)	0.044(3)	0.042(3)	0.046(3)	-0.004(3)	0.001(2)	-0.003(2)
C(5)	0.039(3)	0.035(3)	0.032(2)	-0.005(2)	0.004(2)	-0.003(2)
C(6)	0.038(3)	0.031(3)	0.031(2)	-0.007(2)	0.008(2)	-0.0015(20)
C(7)	0.042(3)	0.036(3)	0.029(2)	-0.004(2)	-0.001(2)	-0.001(2)

Fable S3. Anisotropic	displacement	parameters	for 5a
-----------------------	--------------	------------	--------

C(8)	0.036(3)	0.042(3)	0.029(2)	-0.001(2)	0.0051(20)	0.001(2)
C(9)	0.040(3)	0.029(2)	0.036(3)	0.000(2)	0.007(2)	0.003(2)
C(10)	0.033(2)	0.033(3)	0.032(2)	-0.002(2)	0.0081(19)	-0.0039(20)
C(11)	0.037(3)	0.035(3)	0.029(2)	0.001(2)	0.0064(20)	-0.0064(20)
C(12)	0.045(3)	0.038(3)	0.035(3)	-0.002(2)	-0.001(2)	0.000(2)
C(13)	0.048(3)	0.046(3)	0.044(3)	-0.011(3)	0.009(2)	-0.011(3)
C(14)	0.045(3)	0.054(4)	0.045(3)	-0.009(3)	-0.005(2)	-0.011(3)
C(15)	0.048(3)	0.052(3)	0.039(3)	0.001(3)	-0.006(2)	0.001(2)
C(16)	0.041(3)	0.034(3)	0.031(3)	-0.011(2)	-0.005(2)	0.0022(20)
C(17)	0.046(3)	0.047(3)	0.043(3)	-0.003(3)	-0.000(2)	0.008(2)
C(18)	0.043(3)	0.056(4)	0.056(4)	-0.004(3)	-0.005(3)	0.006(3)
C(19)	0.061(4)	0.044(3)	0.046(3)	-0.015(3)	-0.012(3)	0.009(3)
C(20)	0.071(4)	0.047(3)	0.036(3)	-0.024(3)	0.004(3)	0.006(2)
C(21)	0.055(3)	0.038(3)	0.033(3)	-0.017(3)	-0.004(2)	-0.001(2)
C(22)	0.057(4)	0.095(5)	0.061(4)	0.018(4)	0.015(3)	0.015(4)
C(23)	0.102(5)	0.062(4)	0.063(4)	-0.009(4)	-0.017(4)	0.026(3)
C(24)	0.069(4)	0.059(4)	0.054(4)	-0.006(3)	0.025(3)	-0.001(3)
C(25)	0.118(7)	0.104(7)	0.132(8)	-0.023(6)	-0.019(6)	-0.036(6)

The general temperature factor expression: $exp(-2\pi^2(a^{*2}U_{11}h^2 + b^{*2}U_{22}k^2 + c^{*2}U_{33}l^2 + 2a^*b^*U_{12}hk + 2a^*c^*U_{13}hl + 2b^*c^*U_{23}kl))$

Table S	4. Bond	lengths (Å) for 5a						
atom	ato	om	distance			atom	6	atom	distance
Br(1)	Mg	g(1)	2.4653(18)			Br(2)	l	Mg(1)	2.4435(17)
Cl(1)	C(25)	1.704(9)			Cl(2)	(C(25)	1.701(9)
Mg(1)	N(1)	2.183(4)			Mg(1)	1	N(2)	2.098(4)
Mg(1)	N(3)	2.170(4)			N(1)	(C(1)	1.317(6)
N(1)	C(5)	1.333(5)			N(2)	(C(6)	1.335(5)
N(2)	C(10)	1.335(6)			N(3)	(C(11)	1.325(6)
N(3)	C(15)	1.325(6)			C(1)	(C(2)	1.354(7)
C(2)	C(3)	1.356(8)			C(3)	(C(4)	1.364(7)
C(4)	C(5)	1.359(6)			C(5)	(C(6)	1.474(6)
C(6)	C(7)	1.363(6)			C(7)	(C(8)	1.374(7)
C(8)	C(9)	1.382(6)			C(8)	(C(16)	1.472(6)
C(9)	C(10)	1.366(6)			C(10)	(C(11)	1.473(6)
C(11)	C(12)	1.372(7)			C(12)	(C(13)	1.361(6)
C(13)	C(14)	1.360(7)			C(14)	(C(15)	1.352(8)
C(16)	C(17)	1.375(7)			C(16)	(C(21)	1.376(7)
C(17)	C(18)	1.381(7)			C(17)	(C(22)	1.475(9)
C(18)	C(19)	1.364(9)			C(19)	(C(20)	1.357(9)
C(19)	C(23)	1.497(8)			C(20)	(C(21)	1.382(7)
C(21)	C(24)	1.491(8)						
Table S	5. Bond	angles (°) for 5a						
atom	atom	atom	angle	atom	atom	atom	angle		
Br(1)	Mg(1)	Br(2)	114.81(6)	Br(1)	Mg(1)	N(1)	100.41(13)		
Br(1)	Mg(1)	N(2)	111.22(13)	Br(1)	Mg(1)	N(3)	100.23(12)		
Br(2)	Mg(1)	N(1)	97.65(12)	Br(2)	Mg(1)	N(2)	133.96(14)		
Br(2)	Mg(1)	N(3)	97.62(12)	N(1)	Mg(1)	N(2)	73.60(15)		
N(1)	Mg(1)	N(3)	146.18(15)	N(2)	Mg(1)	N(3)	74.06(14)		
Mg(1)	N(1)	C(1)	124.8(3)	Mg(1)	N(1)	C(5)	116.8(3)		
C(1)	N(1)	C(5)	118.3(4)	Mg(1)	N(2)	C(6)	120.6(3)		
Mg(1)	N(2)	C(10)	119.9(3)	C(6)	N(2)	C(10)	119.4(4)		
Mg(1)	N(3)	C(11)	117.1(3)	Mg(1)	N(3)	C(15)	125.1(3)		

C(11)	N(3)	C(15)	117.8(4)	N(1)	C(1)	C(2)	122.6(5)
C(1)	C(2)	C(3)	119.4(5)	C(2)	C(3)	C(4)	118.7(5)
C(3)	C(4)	C(5)	119.3(5)	N(1)	C(5)	C(4)	121.7(4)
N(1)	C(5)	C(6)	114.9(4)	C(4)	C(5)	C(6)	123.4(4)
N(2)	C(6)	C(5)	113.4(4)	N(2)	C(6)	C(7)	121.2(4)
C(5)	C(6)	C(7)	125.3(4)	C(6)	C(7)	C(8)	120.3(4)
C(7)	C(8)	C(9)	118.0(4)	C(7)	C(8)	C(16)	122.4(4)
C(9)	C(8)	C(16)	119.5(4)	C(8)	C(9)	C(10)	119.4(4)
N(2)	C(10)	C(9)	121.7(4)	N(2)	C(10)	C(11)	113.7(4)
C(9)	C(10)	C(11)	124.5(4)	N(3)	C(11)	C(10)	115.0(4)
N(3)	C(11)	C(12)	122.5(4)	C(10)	C(11)	C(12)	122.4(4)
C(11)	C(12)	C(13)	118.2(4)	C(12)	C(13)	C(14)	119.7(5)
C(13)	C(14)	C(15)	118.5(5)	N(3)	C(15)	C(14)	123.3(5)
C(8)	C(16)	C(17)	120.4(4)	C(8)	C(16)	C(21)	118.8(4)
C(17)	C(16)	C(21)	120.7(4)	C(16)	C(17)	C(18)	118.9(5)
C(16)	C(17)	C(22)	120.8(5)	C(18)	C(17)	C(22)	120.3(5)
C(17)	C(18)	C(19)	121.5(5)	C(18)	C(19)	C(20)	118.3(5)
C(18)	C(19)	C(23)	120.7(6)	C(20)	C(19)	C(23)	121.0(6)
C(19)	C(20)	C(21)	122.5(5)	C(16)	C(21)	C(20)	118.0(5)
C(16)	C(21)	C(24)	120.9(4)	C(20)	C(21)	C(24)	121.1(5)
Cl(1)	C(25)	Cl(2)	112.6(5)				

X-Ray Data for 5b

Table S6. Crystal data and structure refinement for **5b**Empirical FormulaFormula WeightCrystal Color, HabitCrystal DimensionsCrystal SystemLattice TypeLattice Parameters

Space Group Z value Dcalc F_{000} μ(ΜοΚα) Data Images ω oscillation Range (χ =54.0, ϕ =0.0) Exposure Rate Detector Swing Angle ω oscillation Range (χ =54.0, φ=120.0) **Exposure Rate** Detector Swing Angle ω oscillation Range (χ =54.0, φ=240.0) Exposure Rate **Detector Swing Angle** Detector Position Pixel Size $2\theta_{max}$ No. of Reflections Measured

Br₂MgN₃C₂₇H₃₅ 585.71 colorless, prism 0.20 X 0.20 X 0.20 mm trigonal Primitive a = 12.5029(20) Åc = 15.991(3) Å $V = 2164.9(6) Å^3$ P3₂21 (#154) 3 1.348 g/cm^3 900.00 28.569 cm⁻¹ 540 exposures -120.0 - 60.0° 40.0 sec./° -28.40° -120.0 - 60.0° 40.0 sec./° -28.40° -120.0 - 60.0° 40.0 sec./° -28.40° 49.90 mm 0.146 mm 48.8° Total: 13546 Unique: 2392 ($R_{int} = 0.0590$) Friedel pairs: 1019

Corrections

	Absorption
	(trans. factors: 0.420 - 0.565)
Structure Solution	Direct Methods
Refinement	Full-matrix least-squares on F2
Function Minimized	$\Sigma \text{ w} (\text{Fo2} - \text{Fc2})2$
Least Squares Weights	$w = 1/[\sigma_2(Fo_2) + (0.0278 \cdot P)_2 + 0.0000 \cdot P]$
	where $P = (Max(Fo2,0) + 2Fc2)/3$
20max cutoff	53.5°
Anomalous Dispersion	All non-hydrogen atoms
No. Observations (All reflections)	2392
No. Variables	171
Reflection/Parameter Ratio	13.99
Residuals: R1 ($I > 2.00\sigma(I)$)	0.0424
Residuals: R (All reflections)	0.0510
Residuals: wR2 (All reflections)	0.0931
Goodness of Fit Indicator	1.088
Flack Parameter	0.038(16)
Max Shift/Error in Final Cycle	0.002
Maximum peak in Final Diff. Map	$0.41 \text{ e}^{-}/\text{Å}^{3}$
Minimum peak in Final Diff. Map	$-0.33 \text{ e}^{-}/\text{Å}^{3}$

Lorentz-polarization

Table S7.	Atomic coordinates	s and Biso/Beq for 5)
atom	v	V	

	ie coordinates and Di	50/ Deg 101 50			
atom	Х	у	Z	Beq	occ
Br(1)	0.26164(6)	0.17783(5)	1.21309(3)	4.821(17)	
Mg(2)	0.27942(17)	0.0000	1.1667	2.46(3)	1/2
N(1)	0.4482(3)	0.0000	1.1667	2.42(8)	1/2
N(2)	0.3634(3)	0.0716(4)	1.0467(2)	2.79(6)	
C(1)	0.5192(4)	0.0335(4)	1.0980(2)	2.51(7)	
C(2)	0.6280(4)	0.0298(4)	1.0951(3)	2.90(8)	
C(3)	0.6696(5)	0.0000	1.1667	3.17(11)	1/2
C(4)	0.4688(4)	0.0727(4)	1.0275(3)	2.55(8)	
C(5)	0.5259(4)	0.1158(5)	0.9525(3)	3.07(8)	
C(6)	0.4790(4)	0.1618(5)	0.8929(3)	3.62(9)	
C(7)	0.3720(5)	0.1608(5)	0.9141(3)	3.67(9)	
C(8)	0.3177(4)	0.1155(5)	0.9901(3)	3.75(9)	
C(9)	0.7928(6)	0.0000	1.1667	4.19(16)	1/2
C(10)	0.7754(17)	-0.1018(18)	1.1003(10)	7.3(4)	1/2
C(11)	0.8503(15)	0.018(2)	1.0863(9)	6.7(4)	1/2
C(12)	0.8902(10)	0.1199(16)	1.1302(10)	6.8(4)	1/2
C(13)	0.5422(6)	0.2123(7)	0.8092(3)	5.36(14)	
C(14)	0.5647(10)	0.1182(10)	0.7658(4)	10.0(3)	
C(15)	0.4698(9)	0.2476(13)	0.7527(5)	13.0(4)	
C(16)	0.6670(8)	0.3204(9)	0.8266(6)	10.6(3)	
$B_{eq} = 8/3 \pi^2 (U_1)$	$(aa^*)^2 + U_{22}(bb^*)^2 +$	$U_{33}(cc^*)^2 + 2U_{12}(aa^3)$	*bb*)cos γ + 2U ₁₃ (aa*	$cc^*)\cos\beta$	+ $2U_{23}(bb*cc*)\cos\alpha)$

Table S8.	Anisotropic	displacement	parameters :	for 5b

atom	U ₁₁	U ₂₂	U_{33}	U_{12}	U_{13}	U ₂₃
Br(1)	0.0909(5)	0.0561(4)	0.0556(3)	0.0512(4)	0.0044(3)	-0.0030(3)
Mg(2)	0.0296(7)	0.0377(11)	0.0291(9)	0.0188(5)	0.0010(4)	0.0020(8)
N(1)	0.0268(17)	0.040(3)	0.030(2)	0.0198(15)	-0.0002(12)	-0.000(2)
N(2)	0.033(2)	0.046(2)	0.0290(16)	0.0218(17)	-0.0013(16)	0.0047(17)
C(1)	0.032(2)	0.034(2)	0.029(2)	0.016(2)	-0.0007(17)	0.0029(20)
C(2)	0.034(3)	0.044(3)	0.036(2)	0.023(2)	0.006(2)	0.006(2)

C(3)	0.037(2)	0.054(4)	0.036(3)	0.027(2)	0.0062(16)	0.012(3)
C(4)	0.024(2)	0.034(2)	0.034(2)	0.0114(19)	0.0030(19)	-0.0001(19)
C(5)	0.031(2)	0.055(3)	0.035(2)	0.025(2)	-0.001(2)	0.003(2)
C(6)	0.035(3)	0.068(4)	0.034(2)	0.026(3)	0.008(2)	0.013(2)
C(7)	0.040(3)	0.069(3)	0.035(2)	0.030(3)	-0.003(2)	0.012(2)
C(8)	0.035(3)	0.073(3)	0.042(2)	0.033(2)	0.004(2)	0.008(3)
C(9)	0.042(3)	0.091(6)	0.043(4)	0.046(3)	0.0134(19)	0.027(4)
C(10)	0.102(12)	0.113(13)	0.109(11)	0.089(11)	0.017(10)	0.013(11)
C(11)	0.067(11)	0.145(17)	0.080(9)	0.080(12)	0.016(8)	0.025(11)
C(12)	0.033(6)	0.115(12)	0.103(11)	0.033(8)	0.012(7)	0.061(10)
C(13)	0.063(4)	0.122(5)	0.040(3)	0.062(4)	0.016(3)	0.034(3)
C(14)	0.162(9)	0.202(10)	0.053(4)	0.118(8)	0.048(5)	0.026(5)
C(15)	0.151(8)	0.354(17)	0.070(4)	0.187(10)	0.066(5)	0.121(7)
C(16)	0.078(6)	0.151(8)	0.119(7)	0.016(6)	0.046(5)	0.066(6)
The gener	al temperature fa	ctor expression:	$exp(-2\pi^2(a^{*2}U_{11}h))$	$a^{2} + b^{*2}U_{22}k^{2} + c^{*2}$	$U_{33}l^2 + 2a*b*U_{12}h$	$k + 2a*c*U_{13}hl +$
AL 4 4TT 1	-	-				

The general te $2b*c*U_{23}kl))$

Table S9. Bond lengths (Å) for 5b

atom	atom	distance	atom	atom	distance
Br(1)	Mg(2)	2.4571(14)	Mg(2)	N(1)	2.110(4)
Mg(2)	N(2)	2.156(3)	Mg(2)	$N(2)^{1}$	2.155(3)
N(1)	C(1)	1.342(4)	N(1)	$C(1)^{1}$	1.341(4)
N(2)	C(4)	1.347(7)	N(2)	C(8)	1.326(7)
C(1)	C(2)	1.384(8)	C(1)	C(4)	1.489(7)
C(2)	C(3)	1.385(6)	C(3)	C(9)	1.540(10)
C(4)	C(5)	1.362(6)	C(5)	C(6)	1.385(8)
C(6)	C(7)	1.375(9)	C(6)	C(13)	1.522(7)
C(7)	C(8)	1.370(6)	C(9)	C(10)	1.59(2)
C(9)	C(11)	1.434(16)	C(9)	C(12)	1.498(14)
C(13)	C(14)	1.508(16)	C(13)	C(15)	1.493(16)
C(13)	C(16)	1.493(9)			

Symmetry Operators: (1) X-Y,-Y,-Z+1/3+2

Table S10. Bond angles (°) for 5b

atom	atom	atom	angle	atom	atom	atom	angle
Br(1)	Mg(2)	$Br(1)^1$	114.24(8)	Br(1)	Mg(2)	N(1)	122.88(4)
Br(1)	Mg(2)	N(2)	97.97(13)	Br(1)	Mg(2)	$N(2)^{1}$	99.48(9)
$Br(1)^1$	Mg(2)	N(1)	122.88(4)	$Br(1)^1$	Mg(2)	N(2)	99.44(9)
$Br(1)^1$	Mg(2)	$N(2)^{1}$	97.99(13)	N(1)	Mg(2)	N(2)	73.79(14)
N(1)	Mg(2)	$N(2)^{1}$	73.78(14)	N(2)	Mg(2)	$N(2)^{1}$	147.57(11)
Mg(2)	N(1)	C(1)	120.4(3)	Mg(2)	N(1)	$C(1)^{1}$	120.4(3)
C(1)	N(1)	$C(1)^{1}$	119.2(3)	Mg(2)	N(2)	C(4)	118.5(3)
Mg(2)	N(2)	C(8)	123.9(4)	C(4)	N(2)	C(8)	117.6(4)
N(1)	C(1)	C(2)	121.7(4)	N(1)	C(1)	C(4)	113.6(4)
C(2)	C(1)	C(4)	124.7(4)	C(1)	C(2)	C(3)	119.3(4)
C(2)	C(3)	$C(2)^{1}$	118.5(4)	C(2)	C(3)	C(9)	120.7(3)
$C(2)^{1}$	C(3)	C(9)	120.7(3)	N(2)	C(4)	C(1)	113.4(4)
N(2)	C(4)	C(5)	121.4(5)	C(1)	C(4)	C(5)	124.9(5)
C(4)	C(5)	C(6)	121.6(5)	C(5)	C(6)	C(7)	116.0(4)
C(5)	C(6)	C(13)	122.5(6)	C(7)	C(6)	C(13)	121.5(6)
C(6)	C(7)	C(8)	120.1(6)	N(2)	C(8)	C(7)	123.3(6)
C(3)	C(9)	C(10)	105.3(8)	C(3)	C(9)	$C(10)^{1}$	105.3(8)
C(3)	C(9)	C(11)	114.9(9)	C(3)	C(9)	$C(11)^{1}$	114.9(9)

C(3)	C(9)	C(12)	108.3(8)	C(3)	C(9)	$C(12)^{1}$	108.3(8)
C(10)	C(9)	$C(10)^{1}$	149.3(5)	C(10)	C(9)	C(11)	52.1(11)
C(10)	C(9)	$C(11)^{1}$	113.0(11)	C(10)	C(9)	C(12)	105.0(9)
C(10)	C(9)	$C(12)^{1}$	64.9(9)	$C(10)^{1}$	C(9)	C(11)	113.0(11)
$C(10)^{1}$	C(9)	$C(11)^{1}$	52.1(11)	$C(10)^{1}$	C(9)	C(12)	64.9(9)
$C(10)^{1}$	C(9)	$C(12)^{1}$	105.0(9)	C(11)	C(9)	$C(11)^{1}$	130.1(5)
C(11)	C(9)	C(12)	53.1(11)	C(11)	C(9)	$C(12)^{1}$	109.7(13)
$C(11)^{1}$	C(9)	C(12)	109.7(13)	$C(11)^{1}$	C(9)	$C(12)^{1}$	53.1(11)
C(12)	C(9)	$C(12)^{1}$	143.5(5)	C(9)	C(10)	C(11)	58.0(11)
C(9)	C(10)	$C(12)^{1}$	55.0(7)	C(11)	C(10)	$C(12)^{1}$	106.1(14)
C(9)	C(11)	C(10)	69.9(11)	C(9)	C(11)	C(12)	66.0(11)
C(10)	C(11)	C(12)	135.6(15)	C(9)	C(12)	$C(10)^{1}$	60.1(10)
C(9)	C(12)	C(11)	61.0(9)	$C(10)^{1}$	C(12)	C(11)	115.8(15)
C(6)	C(13)	C(14)	110.0(6)	C(6)	C(13)	C(15)	112.9(6)
C(6)	C(13)	C(16)	107.6(5)	C(14)	C(13)	C(15)	109.2(7)
C(14)	C(13)	C(16)	105.9(8)	C(15)	C(13)	C(16)	111.0(8)

Symmetry Operators: (1) X-Y,-Y,-Z+1/3+2

Density Functional Theory

Figure S1: Energy profile for rotation of a single aromatic ring in bipy in different solvents (lowest energy structure assigned as being at 0 kcal/mol).

Figure S2: Energy profile for rotation of a single aromatic ring in terpy in different solvents (lowest energy structure assigned as being at 0 kcal/mol).

Figure S3: Energy profile for rotation of a single aromatic ring in terpy (solid lines) and mesitylterpy (pointed lines) when the other ring is fixed at a torsion angle of 0° (syn conformation) blue line, 180° (anti conformation) red line and 90° black line, in gas phase. These results show that the use of terpy as a model is sufficient to describe mesitylterpy. Lowest energy structure for each individual scan assigned as being at 0 kcal/mol.

Figure S4: Energy profile for rotation of a single aromatic ring in terpy when the other ring is fixed at a torsion angle of 0° (syn conformation) blue line, 180° (anti conformation) red line and 90° black line, in gas phase (solid lines) and in diethyl ether (dashed lines). These results show how the choice of solvent can lower the energy barriers but the rotation of a second ring is still more difficult. Lowest energy structure for each individual scan assigned as being at 0 kcal/mol.

Figure S5: Enthalpies of dimerization in gas phase (black bars) and Free energies of dimerization (red bars) for different Grignard reagents. It can be seen that dimerization is highly unfavorable in all cases except for Me_2Mg where it is slightly favorable but not enough to influence our results in relation to mesitylterpy binding to Grignard reagents.

Optimized Structures and SCF Energies (B3LYP/TZV) Bipy SCE energy = 405 286047

energy = -4	95.386947	
-1.062443	3.062150	-1.147253
1.038127	1.776331	-1.558153
-0.941992	2.057768	-0.765395
0.228835	1.337240	-0.992754
-1.984708	1.565219	-0.068799
1.214549	-0.544964	-0.628472
0.322119	0.045778	-0.473274
-1.890202	0.308883	0.434812
-0.745908	-0.477282	0.248309
-0.720766	-1.469724	0.669018
-3.057610	-0.201083	1.196631
-2.963096	-1.457410	1.700259
-4.227062	1.577510	0.962387
-4.201911	0.585077	1.383117
	energy = -4 -1.062443 1.038127 -0.941992 0.228835 -1.984708 1.214549 0.322119 -1.890202 -0.745908 -0.720766 -3.057610 -2.963096 -4.227062 -4.201911	energy = -495.386947-1.0624433.0621501.0381271.776331-0.9419922.0577680.2288351.337240-1.9847081.5652191.214549-0.5449640.3221190.045778-1.8902020.308883-0.745908-0.477282-0.720766-1.469724-3.057610-0.201083-2.963096-1.457410-4.2270621.577510-4.2019110.585077

С	-4.005813	-1.949961	2.396852	
Η	-3.885358	-2.954338	2.778722	
С	-5.269937	0.062019	2.104701	
С	-5.176647	-1.229439	2.624195	
Η	-6.162372	0.652755	2.259898	
Η	-5.985940	-1.668530	3.189592	

Terpy

SCI	F energy = -	742.485642	
Η	-1.666352	5.889146	-3.690035
Η	-3.612829	4.954667	-2.416691
С	-1.564428	4.999045	-3.086150
С	-2.644437	4.474945	-2.375632
Η	0.529382	4.710165	-3.531767
С	-0.337851	4.343643	-3.000019
С	-2.464509	3.326575	-1.611602
Η	-3.270677	2.887365	-1.046966
Ν	-0.148766	3.231077	-2.264411
С	-1.200954	2.723301	-1.574212
Η	1.117654	1.347532	-1.313639
С	-0.950592	1.495648	-0.775502
С	0.317082	0.901699	-0.746032
Ν	-1.994242	0.982592	-0.084216
С	0.498341	-0.246971	0.017790
С	-1.813362	-0.134514	0.657185
С	-0.572029	-0.778228	0.730391
Η	-0.477152	-1.665775	1.334642
С	-2.990518	-0.657986	1.397473
Ν	-2.800207	-1.778674	2.138520
Η	-4.340974	0.865089	0.730260
С	-4.237264	-0.022955	1.332131
С	-3.844858	-2.282652	2.823638
Η	-3.644356	-3.175877	3.399081
С	-5.306602	-0.555075	2.045035
С	-5.113692	-1.707094	2.807646
Η	-6.276692	-0.078564	2.006764
Η	-5.920541	-2.148907	3.374339
Н	1.467539	-0.725068	0.057455

Mesitylterpy (MT)

SCF	⁷ energy = -1	091.495943	
С	5.678051	4.891519	1.512704
С	5.616346	4.255784	2.759409
Ν	4.874637	3.135768	2.951409
С	4.185185	2.633456	1.908745
С	4.197405	3.209816	0.640248
С	4.960849	4.361026	0.445439
С	6.362698	4.778742	3.933845
Ν	7.107825	5.891625	3.747369
С	7.801661	6.397005	4.792195
С	7.771034	5.801640	6.057332
С	7.002948	4.651811	6.260585
С	6.288803	4.137813	5.174709
С	6.946697	3.990291	7.603483
С	6.005792	4.420513	8.561411

С	5.968474	3.787960	9.807348
С	6.839513	2.745090	10.132072
С	7.760000	2.332579	9.167112
С	7.831019	2.936478	7.907267
С	5.037443	5.545563	8.261659
С	8.849597	2.448692	6.898370
С	6.799971	2.099167	11.499289
С	8.607005	7.621771	4.544727
Ν	9.296819	8.127203	5.598359
С	10.037084	9.236969	5.410643
С	10.128310	9.891991	4.184254
С	9.418060	9.370494	3.102740
С	8.649437	8.224961	3.281159
Η	10.568342	9.601571	6.279042
Η	10.735740	10.779847	4.083541
Η	9.462954	9.850018	2.134378
Η	8.084642	7.787620	2.474045
Η	8.344421	6.243515	6.856944
Η	5.677921	3.254086	5.270927
Η	6.280843	5.778835	1.407789
Η	4.996345	4.838181	-0.524481
Η	3.627329	2.769271	-0.164945
Η	3.609367	1.740743	2.110685
Η	8.440223	1.521134	9.396819
Η	5.240959	4.117925	10.539565
Η	8.371350	2.053109	5.999651
Η	9.463431	1.656511	7.326203
Η	9.515110	3.252137	6.575770
Η	5.777619	2.019326	11.872560
Η	7.367724	2.684081	12.228812
Η	7.230614	1.097440	11.477329
Н	4.421779	5.326450	7.386726
Н	5.558439	6.483138	8.055867
Н	4.370866	5.712630	9.107325
р.	0.150		

Diethyl Ether

SCF	energy = -	233.669833	
Н	1.728854	1.379948	-1.625720
С	2.106378	1.233773	-0.614625
Н	3.404699	-2.188049	-0.566347
Н	3.199885	1.288289	-0.654495
Н	4.398811	-0.759985	-0.255705
0	1.676917	-0.113432	-0.244619
Н	1.831867	3.296275	-0.021649
С	3.707293	-1.472048	0.197678
Н	0.455951	2.242854	0.346917
С	1.544126	2.299902	0.322926
С	2.480236	-0.775402	0.781435
Н	4.246378	-2.008820	0.982246
Н	1.809677	-1.504090	1.234834
Н	1.915444	2.178575	1.341841
Н	2.771812	-0.060048	1.558331

(Et₂O)₂MgBr₂ SCF energy = -5815.958204

Н	4.268040	-1.701842	1.237009
С	3.676547	-1.203930	0.465595
Η	3.339536	-1.960770	-0.240657
Η	4.326820	-0.498150	-0.052381
Н	1.834448	-1.250251	1.586396
Н	2.785686	0.226015	1.851914
C	2 484935	-0 519349	1 114086
Br	0 191237	-3 077123	-0.040896
Н	-2 129294	-0.218951	3 418262
н	0.646277	0 247301	2 581080
н Ц	1 704672	1 612947	2.381080
П	-1./940/2	-1.01364/	1.551/59
0	1.0308/0	0.109092	0.110024
П	5.1859//	1.527740	-0.234472
C	-1./33189	0.228107	2.504110
Н	1.7/3366	2.462177	1.660038
Mg	0.064058	-0.739978	-0.817802
С	-2.175620	-0.596546	1.305919
С	2.095222	1.525306	-0.279483
Η	-2.095202	1.255620	2.448756
Η	-3.261108	-0.636731	1.219193
С	1.488849	2.594469	0.615314
0	-1.642488	-0.034937	0.038238
Η	1.791920	1.645644	-1.316620
Η	0.401141	2.584390	0.548517
Н	1.838540	3.577690	0.293712
Br	0.052582	0.260592	-3.071850
C	-2.523523	0.965125	-0.621430
Ĥ	-2.943489	1 596905	0 162719
Н	-1.861181	1 559090	-1 245078
н	-4 254533	-0.336881	-0.870472
н	-3 144113	-0.296699	-2 254231
C	-3 598275	0.290774	-1 464843
с u	-3.398273	1 060053	1 025255
11	-4.213336	1.009955	-1.955555
(Et ₂	O)2MeMgB	r	
SCF	energy = -3	281.635889	
Н	-0.732084	-0.330844	-3.532263
Н	0.988739	-0.018922	-3.413706
Н	-0.164237	1.227478	-2.948253
С	0.030573	0.146355	-2.903486
H	-3.222179	-0.277695	-2.213845
Н	-4.240672	1.127285	-1.878197
Н	1 754709	1 617864	-1 374553
C	-3 642736	0.336662	-1 419460
н	-1 872281	1 557509	-1 209135
Mσ	0.058194	-0 700612	-0.969374
иg	1 310230	0.280363	0.817516
C	2 522102	-0.280505	-0.817510
с и	2 206220	1 171605	0.270526
п	5.200229 2.116562	1.4/1083	-0.3/9320
U D	2.110303	1.300033	-0.333302
ы	0.230/90	-3.000309	-0.121491
H	3.343383	-1.9534/6	-0.133118
H	1.96/240	3.58/500	0.1000/5
U	-1.656501	-0.063349	0.02/150
Ο	1.619047	0.184791	0.081832

Η	4.325411	-0.487150	0.069958	
Η	-2.926992	1.589011	0.213595	
С	1.609536	2.626603	0.542737	
Η	0.519959	2.647891	0.552764	
С	3.646252	-1.179274	0.569740	
Η	-3.251505	-0.756714	1.195318	
С	2.421749	-0.478943	1.138257	
С	-2.168092	-0.665460	1.281086	
Н	-1.737627	-1.663540	1.305492	
Η	4.196139	-1.657893	1.383156	
Η	1.961815	2.518135	1.569137	
Η	1.745713	-1.202144	1.585411	
Η	2.686391	0.276519	1.880345	
С	-1.765553	0.153341	2.498647	
Η	-2.186002	1.159995	2.475342	
Η	-0.680929	0.232786	2.566836	
Η	-2.127642	-0.339512	3.403462	

(Et₂O)₂PhMgBr SCF energy = -3473.378488

SCF	e^{-3} energy = -3	4/3.3/8488	
Η	-1.419844	1.950463	-4.814876
Η	-2.314871	2.558866	-2.540715
Н	-0.559712	2.722621	-2.615050
С	-1.381374	2.013695	-2.674693
С	-1.357101	1.242352	-3.986068
Н	-4.049848	1.419386	-1.676183
Br	1.664335	3.280711	-1.067334
Н	-2.193212	0.548526	-4.083069
Н	-0.425603	0.685739	-4.089816
0	-1.184796	1.138477	-1.493782
С	-3.591776	0.934978	-0.814200
Η	-3.423777	1.682428	-0.039622
Η	2.811557	1.022203	-2.472174
Η	-2.430274	-0.472285	-1.995882
Η	-4.305976	0.204981	-0.428221
Η	-0.658016	-0.862703	5.249573
С	-2.294574	0.217548	-1.161438
Mg	0.548600	1.146915	-0.348943
С	-0.455087	-0.518359	4.243382
Η	-2.248285	0.661299	4.103370
Η	5.079312	0.353181	-1.635274
Η	4.028334	0.894553	-0.326575
С	2.990476	0.052101	-2.017728
Η	1.415340	-1.567661	4.079415
Η	-1.925521	-0.337617	-0.302144
С	-1.348400	0.335112	3.595118
Η	3.127270	-0.693763	-2.801836
С	4.176996	0.112035	-1.069160
С	0.707298	-0.915059	3.581977
0	1.730458	-0.272701	-1.299418
С	-1.076184	0.777581	2.296990
Η	4.345330	-0.836844	-0.557956
Η	-0.088015	-1.863605	-2.597593
С	0.961999	-0.462302	2.283653
Η	-1.791613	1.453919	1.837497

Н	1.511303	-2.314395	-3.201647
С	1.471973	-1.715297	-1.105193
Η	1.887436	-0.784641	1.813638
С	0.082248	0.394417	1.580449
С	0.848184	-2.356403	-2.337124
Η	0.808333	-1.770290	-0.245171
Η	2.412919	-2.197012	-0.835312
Η	0.636000	-3.407754	-2.131497

$(Et_2O)_2MgCl_2$

SCF	energy = -1	588.1128/3	
Н	4.204104	-1.701205	1.304363
С	3.629542	-1.222783	0.508107
Н	3.241900	-2.004257	-0.142953
Н	4.309286	-0.586568	-0.059984
Н	1.806282	-1.099889	1.652096
Н	2.834035	0.340466	1.806111
С	2.484747	-0.435761	1.123764
Cl	0.271375	-2.868313	0.019221
Н	-2.301953	-0.447250	3.430105
Н	-0.800111	0.116524	2.693389
Н	-1.811439	-1.714938	1.312846
0	1.650036	0.227020	0.086559
Н	3.250431	1.487684	-0.387205
С	-1.880578	0.062327	2.561054
Н	1.961525	2.587021	1.508257
Mg	0.060297	-0.696530	-0.769785
С	-2.232977	-0.712856	1.301120
С	2.161639	1.536946	-0.390362
Η	-2.278764	1.077666	2.541842
Η	-3.310892	-0.789240	1.159102
С	1.643236	2.679412	0.469032
0	-1.664005	-0.065644	0.091787
Н	1.819767	1.618739	-1.419164
Н	0.554464	2.721153	0.442723
Н	2.026755	3.626290	0.083273
Cl	-0.048397	0.292540	-2.865888
С	-2.530660	0.966153	-0.537594
Η	-2.996471	1.535974	0.267671
Η	-1.850525	1.610990	-1.087245
Η	-4.229596	-0.333979	-0.957379
Η	-3.052142	-0.187758	-2.279598
С	-3.553772	0.347519	-1.475425
Н	-4.155663	1.141648	-1.922771

(Et₂O)₂MeMgCl

SCI	F energy = -1	167.713201	
Н	-0.753824	-0.214773	-3.525872
Н	0.972819	0.071627	-3.426506
Η	-0.156093	1.328304	-2.929593
С	0.023899	0.244192	-2.901878
Η	-3.208385	-0.443420	-2.204045
Η	-4.340038	0.881468	-1.907844
Η	1.841769	1.662929	-1.338921
С	-3.676964	0.158749	-1.427177

Н	-2.013786	1.530262	-1.261611
Mg	0.059881	-0.621343	-0.977856
Η	-4.288955	-0.493127	-0.803366
С	-2.620797	0.898695	-0.618294
Η	3.272522	1.445217	-0.326938
С	2.184671	1.521656	-0.316552
Cl	0.222448	-2.839562	-0.158454
Η	3.217515	-2.004465	-0.184553
Η	2.107481	3.599319	0.233630
0	-1.663128	-0.028556	0.023290
0	1.632521	0.214263	0.095049
Η	4.300812	-0.613539	0.046753
Η	-3.066027	1.517618	0.162844
С	1.708733	2.647504	0.591196
Н	0.620741	2.710621	0.587719
С	3.580472	-1.272112	0.534280
Η	-3.191348	-0.801830	1.229657
С	2.409780	-0.508364	1.132383
С	-2.117240	-0.626541	1.300778
Н	-1.614019	-1.589033	1.351887
Η	4.102716	-1.809173	1.329264
Н	2.043401	2.510650	1.620151
Н	1.700258	-1.197192	1.581335
Н	2.729392	0.221609	1.878561
С	-1.768444	0.263361	2.484846
Н	-2.264180	1.233811	2.429081
Н	-0.692449	0.427891	2.537498
Η	-2.084986	-0.221447	3.410839

(Et₂O)₂PhMgCl SCF energy = -1359.457194

С	0.399177	0.325053	1.694127
С	-0.878111	0.355524	2.305423
С	-1.109414	-0.118111	3.600560
С	-0.059393	-0.649423	4.350566
С	1.217491	-0.701236	3.791402
С	1.430258	-0.222422	2.494297
Mg	0.625182	1.095085	-0.269083
Õ	1.996791	2.640058	-0.257107
С	2.959875	2.787611	0.856896
С	4.336830	2.261156	0.478456
Cl	-0.984692	2.003800	-1.739008
0	1.437047	-0.371098	-1.481529
С	1.732275	-1.723182	-0.950521
С	0.508306	-2.625988	-0.979773
С	1.493939	-0.247574	-2.957200
С	2.895240	0.111021	-3.428692
С	1.956268	3.777770	-1.210369
С	1.096440	4.921114	-0.696221
Н	2.895803	0.228653	-4.514466
Η	1.151716	-1.188913	-3.388518
Н	0.766555	0.522324	-3.203883
Η	0.131918	-2.773267	-1.992450
Н	3.621904	-0.662406	-3.175452
Н	3.223229	1.050400	-2.984025

Η	-0.288753	-2.207186	-0.367409
Η	1.531550	3.366286	-2.121571
Η	2.559351	-2.134949	-1.531571
Η	0.770951	-3.604828	-0.572505
Η	-0.233498	-1.016933	5.354010
Н	-2.105708	-0.072446	4.024151
Н	1.083618	5.722409	-1.438541
Н	0.073450	4.579784	-0.549850
Н	2.041834	-1.111489	4.363360
Н	2.066612	-1.561418	0.070425
Н	2.986143	4.086373	-1.399744
Н	1.475749	5.337141	0.238060
Н	4.284918	1.208565	0.199989
Н	-1.722249	0.761802	1.757014
Н	4.770202	2.817214	-0.353876
Н	2.444659	-0.283380	2.103603
Н	2 528443	2 227357	1 682797
Н	2,994366	3 840364	1 138085
Н	5 011800	2 355019	1 331740
	2.011000	2.5555017	1.551710
(Et ₂	O),Me,Mg		
Š CF	F energy = -7	747.304402	
Н	3.675172	2.449789	-0.293712
Н	-0.114678	-1.691829	0.247117
Н	4.273443	0.899747	-0.867856
Н	1.254969	-2.161189	-0.753999
С	3.648562	1.367554	-0.093169
Mg	1.716092	0.437037	-0.028308
C	0.973211	-1.569867	0.129724
Ĥ	4 186141	1 217534	0 854733
Н	1 430579	-2.081330	0.989190
Н	-0 496081	-0 429984	-1 822417
Н	-1 866869	1 451237	-0 891899
C	-0.489015	0 550106	-2 291633
н	-2 627696	0 786348	-2 343545
C	2 175207	1 735785	-3 696539
н	-0.362188	0 417842	-3.367813
C	1 757370	1 330021	1 060316
õ	0.715310	1.330021	-1.751267
C	1 288944	2 282219	-2 585362
ч	0.470005	2.202217	2.080302
ц	1 759/80	2.007434	2.980432
и П	1 870156	2.319134	1 805000
н Ц	1.670130	2.000237	-1.893909
н ц	2 001012	1.10/133	-4.373333
п	2.991912	1.133110	-3.2/3/33
п	2.003493	2.303288	-4.203829
н	-0.6/2885	-0.332528	4.089594
H C	-1.086913	1.050329	2.000001
U	0.15/312	0.133310	5.555/86
H	0.00/548	0.803013	4.24/249
H	0.849805	-0.649604	5.249201
C	-0.3/4233	0.869/62	2.331549
H	1.248995	2.759390	3.111817
H	-0.860255	0.17/595	1.649550
0	0.707085	1.484095	1.55/224

С	1.198046	2.787984	2.021712
Η	-0.690021	3.876913	1.912199
Η	2.209579	2.859195	1.631175
С	0.330568	3.940650	1.532096
Η	0.754062	4.888632	1.871325
Η	0.292345	3.953098	0.443109

(Et₂O)₂Ph₂Mg

SCF	energy = -1	130.792524	
Н	1.159582	3.681368	-2.762830
Н	2.816517	3.284991	-2.320318
С	1.791996	2.907578	-2.327581
Н	-0.893993	2.823663	-2.374914
Н	1.765101	2.026750	-2.967830
Н	1.351036	3.434240	-0.265473
С	1.392329	2.548697	-0.902875
С	-1.088550	2.551819	-1.337545
Н	-0.716766	4.549890	-0.531651
Н	-2.401597	4.188581	-0.894117
Н	-1.870333	1.797741	-1.326234
С	-1.474098	3.765459	-0.502936
Н	2.100841	1.839640	-0.481715
0	0.096275	1.843003	-0.809158
Н	-5.495846	-2.323699	-1.689791
Н	-5.393792	-0.298924	-0.254350
Н	2.294490	-1.654092	1.596873
С	-4.539145	-1.917733	-1.385666
С	-4.478325	-0.780259	-0.579866
С	2.685203	-1.593004	0.584276
С	1.921601	-0.948198	-0.418609
Н	4.475167	-2.661754	1.142640
С	3.932423	-2.177512	0.338589
С	2.514517	-0.949879	-1.705445
Η	-3.385549	-3.409810	-2.420392
С	-3.351171	-2.525299	-1.794771
Н	1.986075	-0.492382	-2.538168
С	-3.235989	-0.264984	-0.193910
Н	-3.239808	0.623652	0.435658
С	4.476782	-2.145245	-0.945632
С	3.759278	-1.529319	-1.972161
Η	5.440498	-2.597133	-1.144662
Η	4.166109	-1.507666	-2.976824
Η	-1.644822	3.482497	0.535971
С	-2.118849	-1.995566	-1.398096
С	-2.002423	-0.842969	-0.582244
Н	-1.219151	-2.501135	-1.736752
Mg	-0.038365	-0.135447	-0.064745
Η	0.342631	2.859519	2.284797
0	-0.105271	0.172898	2.028522
Н	-2.001873	-0.568055	2.228481
Н	1.829639	0.839922	2.078771
С	0.599223	2.267689	3.162730
С	0.981444	0.849738	2.759898
Η	1.441745	2.746210	3.666812
Н	-0.249701	2.281487	3.847153

С	-1.130355	-0.486214	2.871120
Н	-1.365565	0.179916	3.703445
Η	-0.469785	-2.511227	2.506127
Η	1.245581	0.244846	3.628714
С	-0.680028	-1.858343	3.352333
Η	-1.478850	-2.313819	3.941659
Η	0.209606	-1.805787	3.981297

MTMgBr₂

SCI	F energy = -6	440.1174824	40
Br	2.586835	-0.038359	2.547731
Br	4.412113	0.017626	-1.512431
Mg	2.437020	-0.001846	0.038203
N	1.868580	2.110452	-0.204554
Ν	0.314392	0.004343	-0.237103
Ν	1.863808	-2.105533	-0.265428
С	2.753114	3.125275	-0.231954
С	2.346446	4.457135	-0.253013
С	0.983245	4.740213	-0.251838
С	0.064993	3.691792	-0.236018
С	0.535266	2.378103	-0.212247
С	-0.344295	1.180712	-0.211244
С	-1.739268	1.209335	-0.179401
С	-2.456319	0.006568	-0.179641
С	-1.741924	-1.197151	-0.218866
С	-0.346887	-1.170762	-0.248377
С	0.529935	-2.369579	-0.285336
С	0.056599	-3.680728	-0.351367
С	0.972375	-4.730454	-0.396250
С	2.336238	-4.450856	-0.383769
С	2.745998	-3.121269	-0.320641
С	-3.952456	0.006352	-0.129610
С	-4.609419	-0.082283	1.115382
С	-6.007031	-0.078608	1.139767
С	-6.767272	0.005189	-0.029425
С	-6.092873	0.096195	-1.248953
С	-4.696597	0.097821	-1.323080
С	-3.835193	-0.174635	2.413847
С	-8.277949	-0.026608	0.024051
С	-4.017147	0.198007	-2.673247
Η	3.794663	2.840335	-0.245405
Η	3.083938	5.244854	-0.270411
Η	0.635374	5.763386	-0.266153
Η	-0.993707	3.900302	-0.242705
Η	-2.277661	2.143931	-0.145680
Η	-2.282679	-2.130987	-0.218638
Η	-1.002567	-3.886264	-0.368446
Η	0.622129	-5.751823	-0.443520
Η	3.071918	-5.239504	-0.422657
Η	3.788258	-2.838679	-0.321827
Η	-6.511839	-0.141869	2.095995
Η	-6.664435	0.167955	-2.166162
Η	-3.222309	-1.077469	2.461200
Η	-4.515611	-0.193289	3.263943
Η	-3.158121	0.671360	2.548381

Η	-8.648913	-1.055458	0.035545
Η	-8.717208	0.468836	-0.842269
Η	-8.654785	0.464368	0.922197
Η	-3.349554	-0.646516	-2.857401
Η	-3.413026	1.104110	-2.759926
Н	-4.756236	0.216813	-3.472997

MTMeMgBr

SCF	energy = -3	905.788179	
Н	-0.869616	5.761749	-0.028324
Н	-3.320607	5.262414	0.082191
С	-1.223232	4.742101	0.031931
С	-2.588448	4.469368	0.096673
Η	0.745507	3.887650	-0.023394
С	-0.313277	3.687557	0.037351
С	-3.001937	3.142234	0.176641
Н	2.011759	2.132816	0.004344
Н	8.380916	1.056805	-0.218002
С	-0.791979	2.376733	0.114613
Н	-4.044732	2.862770	0.212769
Ν	-2.124697	2.119637	0.194558
Н	3.105591	0.720537	2.642031
С	1.471544	1.198654	0.024315
С	8.008561	0.028976	-0.254150
С	0.076813	1.173328	0.088547
Н	6.406588	-0.116007	1.947224
Η	4.506144	-0.147683	3.265074
С	5.830043	-0.066208	1.031605
Η	2.925675	1.006509	-2.680145
С	6.498086	-0.003816	-0.193465
С	3.762459	-0.134603	2.469441
Н	8.452463	-0.507449	0.585251
С	4.434369	-0.066675	1.113733
Η	8.379434	-0.419229	-1.176626
С	5.731445	0.051110	-1.359779
Н	6.230918	0.092112	-2.320080
С	3.682467	-0.004771	-0.077487
С	4.333720	0.053912	-1.326576
Η	-3.396839	0.863386	3.109057
С	2.186391	-0.004406	-0.015029
Η	4.229344	0.129920	-3.476526
С	3.552806	0.113997	-2.623079
Ν	-0.588730	-0.001684	0.123381
Н	3.147479	-1.030993	2.575582
С	-2.850834	-0.017306	2.747773
Н	-1.865772	-0.018716	3.234092
Mg	-2.711330	-0.002724	0.608513
Br	-4.764743	0.012139	-0.929505
Н	2.889690	-0.745889	-2.739836
C	1.468155	-1.205947	0.001913
C	0.073517	-1.177744	0.067884
H	-3.393945	-0.904224	3.097985
H	2.005410	-2.141199	-0.037395
N	-2.130563	-2.119683	0.160925
С	-0.798656	-2.378992	0.074426

-4.052545	-2.858025	0.170994
-3.010559	-3.139555	0.128300
-0.323668	-3.689656	-0.025083
0.734438	-3.891626	-0.091164
-2.600780	-4.466327	0.026233
-1.236448	-4.741562	-0.045725
-3.335091	-5.257096	0.000552
-0.885664	-5.761022	-0.123203
	-4.052545 -3.010559 -0.323668 0.734438 -2.600780 -1.236448 -3.335091 -0.885664	-4.052545 -2.858025 -3.010559 -3.139555 -0.323668 -3.689656 0.734438 -3.891626 -2.600780 -4.466327 -1.236448 -4.741562 -3.335091 -5.257096 -0.885664 -5.761022

MTPhMgBr

SCF	energy = -4	097.534696	
Η	8.923618	-0.424302	-1.241958
Н	8.942659	-0.498250	0.522026
С	8.524929	0.031430	-0.334791
Н	8.896442	1.059462	-0.295807
Н	6.811742	0.120356	-2.452718
С	7.013293	-0.000501	-0.319854
С	6.282956	0.068872	-1.508677
Н	-0.359446	-5.759895	-0.404235
Н	6.856676	-0.137629	1.815347
Н	4.845205	0.171170	-3.669057
С	6.308223	-0.076593	0.883362
Н	1.251559	-3.882994	-0.446483
Н	3.480921	-0.706626	-2.981591
С	4.885108	0.073002	-1.517686
С	4.143453	0.149477	-2.836319
Н	2.518579	-2.135650	-0.294451
С	-0.712275	-4.741843	-0.318452
С	4.910447	-0.077068	0.923865
С	0.196089	-3.685151	-0.340070
С	4.196533	0.000010	-0.289717
Н	4.915347	-0.172991	3.075432
Н	3.588139	-1.064892	2.338601
Н	3.522171	1.045548	-2.902925
С	1.981050	-1.200108	-0.274913
С	4.196896	-0.161774	2.257046
Н	-2.803115	-5.268750	-0.173902
С	-2.073045	-4.473918	-0.190828
С	2.699621	0.000608	-0.271263
С	-0.280806	-2.377878	-0.221904
С	0.585856	-1.171659	-0.237882
Н	3.524526	0.683560	2.416197
С	-2.484422	-3.147493	-0.082252
Ν	-1.608736	-2.125614	-0.091602
С	1.983706	1.202483	-0.236645
Н	2.523501	2.136850	-0.224176
Ν	-0.078752	0.002562	-0.197926
Н	-3.524516	-2.871859	0.010500
С	0.588475	1.176033	-0.201504
Mg	-2.224102	-0.001446	0.251822
С	-0.275549	2.383114	-0.148772
Br	-2.012420	-0.042573	2.804833
Н	1.260300	3.890932	-0.325737
С	0.204268	3.692356	-0.226574
Ν	-1.604159	2.129912	-0.027403

С	-2.477690	3.152931	0.011998
С	-0.701868	4.749869	-0.173733
Η	-3.518477	2.876848	0.095258
Η	-0.346775	5.769307	-0.227933
С	-2.063381	4.481125	-0.055888
Η	-2.791764	5.276665	-0.015602
С	-4.120114	0.014948	-0.749486
С	-5.346268	-0.002272	-0.039601
С	-6.593412	0.007793	-0.675463
С	-6.668404	0.035908	-2.068825
С	-5.487183	0.053771	-2.812979
С	-4.249939	0.043421	-2.159947
Η	-5.329481	-0.024055	1.046088
Η	-7.503622	-0.006155	-0.086395
Η	-7.630330	0.043828	-2.566814
Η	-5.532185	0.075479	-3.896396
Η	-3.355490	0.058078	-2.779256

MTMgCl₂

SCF	energy = -2	212.269937	
Cl	2.899191	-0.028637	2.542389
Cl	4.962585	0.005458	-1.095289
Mg	2.978707	-0.004588	0.179189
Ν	2.429641	2.098595	-0.140573
Ν	0.869260	0.002250	-0.194371
Ν	2.423650	-2.099514	-0.183284
С	3.322260	3.105301	-0.180474
С	2.924508	4.438931	-0.248319
С	1.563410	4.729825	-0.280195
С	0.637293	3.687976	-0.253440
С	1.098310	2.373072	-0.183438
С	0.213148	1.178850	-0.174065
С	-1.181672	1.208784	-0.137163
С	-1.898392	0.005457	-0.127255
С	-1.185031	-1.199332	-0.164780
С	0.209875	-1.172641	-0.199743
С	1.091568	-2.368966	-0.233803
С	0.626629	-3.680706	-0.331733
С	1.549555	-4.724677	-0.378157
С	2.911472	-4.438727	-0.337801
С	3.313215	-3.107993	-0.242144
С	-3.393954	0.005679	-0.061742
С	-4.036450	-0.066123	1.191847
С	-5.433823	-0.062475	1.232134
С	-6.207428	0.005442	0.070831
С	-5.547103	0.080173	-1.157624
С	-4.151860	0.080757	-1.247636
С	-3.247111	-0.141043	2.482284
С	-7.717429	-0.026187	0.141532
С	-3.487725	0.162591	-2.606634
Η	4.361312	2.810387	-0.165899
Η	3.667017	5.221708	-0.274703
Н	1.222708	5.754320	-0.330425
Н	-0.419726	3.902501	-0.289068
Н	-1.719831	2.143656	-0.103298

Н	-1.726133	-2.133056	-0.154727
Η	-0.430977	-3.891146	-0.373760
Η	1.205798	-5.746857	-0.450038
Η	3.651617	-5.223120	-0.378739
Н	4.353140	-2.816696	-0.219795
Н	-5.927506	-0.113048	2.194878
Н	-6.129161	0.139776	-2.069124
Н	-2.629571	-1.040488	2.532435
Н	-3.917716	-0.153042	3.340270
Н	-2.571746	0.708801	2.599797
Н	-8.088851	-1.054946	0.147243
Н	-8.166583	0.477721	-0.714875
Н	-8.083413	0.456287	1.048648
Н	-2.828199	-0.688531	-2.789763
Н	-2.878295	1.063414	-2.709396
Н	-4.236006	0.178351	-3.397908
MT	MeMgCl		
SCI	F energy = -1	791.864073	
Η	-1.281461	5.752825	-0.321725
Н	-3.731125	5.239374	-0.277553
С	-1.630175	4.732871	-0.241094
С	-2.995146	4.452318	-0.213430
Η	0.345561	3.891718	-0.208184
С	-0.713427	3.685956	-0.173965
С	-3.402802	3.125185	-0.103675
Η	1.624731	2.134681	-0.061944
Η	7.999911	1.049029	0.031254
С	-1.186039	2.374965	-0.071323
Η	-4.443862	2.836549	-0.092029
Ν	-2.519128	2.111521	-0.024295
Н	2.638712	0.989283	2.602616
С	1.084059	1.200548	-0.047312
С	7.626720	0.022009	-0.016536
С	-0.312066	1.175003	-0.039270
Η	5.928023	0.073839	2.113310
Η	3.970481	0.107479	3.344682
С	5.392632	0.040405	1.172188
Η	2.621349	0.741367	-2.724825
С	6.114942	-0.007143	-0.022798
С	3.262926	0.097165	2.516713
Η	8.031652	-0.510753	0.844975
С	3.995008	0.044956	1.191857
Η	8.036789	-0.432539	-0.918843
С	5.401439	-0.059888	-1.221951
Η	5.943384	-0.103986	-2.158762
С	3.296922	-0.004346	-0.032725
С	4.003235	-0.058473	-1.251240
Η	-3.770008	0.907728	2.933553
С	1.799420	-0.003224	-0.035887
Н	3.994854	-0.128151	-3.404111
С	3.281110	-0.117030	-2.581433
Ν	-0.977187	0.000221	-0.009972
Н	2.603720	-0.762733	2.652832
С	-3.231735	0.018332	2.582117

Η	-2.245507	0.014402	3.065672
Mg	-3.107950	0.005788	0.439016
Cl	-5.039021	-0.000681	-0.993426
Н	2.659784	-1.011143	-2.669037
С	1.081280	-1.205362	-0.028933
С	-0.314804	-1.176440	-0.022232
Н	-3.781448	-0.860442	2.942461
Н	1.619736	-2.140895	-0.027681
Ν	-2.524166	-2.107158	0.003329
С	-1.191676	-2.374603	-0.038053
Η	-4.450650	-2.828137	-0.057448
С	-3.410315	-3.119557	-0.063600
С	-0.722264	-3.688087	-0.121771
Η	0.336252	-3.896991	-0.151310
С	-3.005901	-4.449092	-0.154574
С	-1.641605	-4.733480	-0.176075
Н	-3.743792	-5.235074	-0.209183
Н	-1.295386	-5.755334	-0.242075

MTPhMgCl

SCI	F energy = -1	983.611032	
Η	-8.279936	-0.571747	1.719034
Н	-8.594406	-0.371232	-0.006585
С	-8.027165	0.020253	0.838257
Η	-8.374965	1.040865	1.021769
Η	-5.978477	-0.024390	2.634255
С	-6.540706	-0.006409	0.563198
С	-5.618268	-0.014471	1.612737
Н	0.719670	-5.754391	-0.958279
Н	-6.749956	-0.003222	-1.571662
Н	-3.832149	-0.020559	3.500549
С	-6.050767	-0.002621	-0.744399
Η	-0.872132	-3.898807	-0.575057
Η	-2.635953	-0.899736	2.552757
С	-4.239245	-0.011115	1.385300
С	-3.283212	-0.020071	2.559991
Η	-2.122394	-2.139631	-0.250186
С	1.070107	-4.731888	-0.959129
С	-4.679641	0.000818	-1.020558
С	0.173257	-3.687648	-0.740560
С	-3.769511	-0.002686	0.055322
Η	-5.051239	0.006648	-3.142205
Η	-3.594017	-0.872958	-2.687743
Η	-2.627330	0.853155	2.558603
С	-1.590087	-1.204703	-0.336513
С	-4.203510	0.004004	-2.458445
Η	3.132658	-5.231020	-1.366479
С	2.414829	-4.445840	-1.183971
С	-2.295830	-0.001825	-0.210067
С	0.647971	-2.374359	-0.745144
С	-0.213165	-1.176088	-0.568060
Η	-3.592469	0.881054	-2.683101
С	2.827085	-3.115156	-1.169999
Ν	1.965169	-2.105240	-0.946461
С	-1.591578	1.202190	-0.333993

Η	-2.125040	2.136255	-0.245528
Ν	0.440937	0.000346	-0.662320
Η	3.851544	-2.821386	-1.347148
С	-0.214638	1.175759	-0.565743
Mg	2.608353	0.001717	-0.609372
С	0.644940	2.375464	-0.740669
Cl	4.356164	0.004328	-2.243284
Η	-0.877110	3.897611	-0.567474
С	0.168523	3.688124	-0.733562
Ν	1.962444	2.108425	-0.942744
С	2.823000	3.119876	-1.164578
С	1.063967	4.733934	-0.950368
Η	3.847810	2.827770	-1.342455
Η	0.712206	5.755979	-0.947563
С	2.409012	4.450049	-1.176010
Η	3.125784	5.236496	-1.357212
С	3.096036	0.000604	1.488345
С	4.442658	0.001619	1.924087
С	4.799413	0.001102	3.276945
С	3.811190	-0.000479	4.263125
С	2.469319	-0.001552	3.879986
С	2.131319	-0.001022	2.521869
Η	5.238848	0.002856	1.185855
Η	5.845570	0.001930	3.562042
Η	4.082529	-0.000873	5.311855
Η	1.692017	-0.002799	4.636688
Η	1.072238	-0.001933	2.269872

MTMe₂Mg

SCI	F energy = -1	371.450994	
Η	7.828330	-0.490007	0.905395
Η	7.841993	-0.453976	-0.859809
С	7.427444	0.021912	0.029496
Η	5.718801	0.071555	2.152002
Η	7.800378	1.049906	0.054169
Η	3.755611	0.105433	3.373935
С	5.187757	0.038749	1.208309
С	5.915586	-0.007979	0.016811
Η	2.392868	-0.766332	2.674651
С	3.051792	0.094430	2.542636
С	3.789865	0.043295	1.221038
С	5.207478	-0.060039	-1.185627
Η	5.753669	-0.103662	-2.120085
Η	-1.363113	-5.783985	-0.023109
Η	0.207379	-3.876614	-0.036325
Η	2.425857	0.985663	2.624981
Η	1.415133	-2.137682	0.000145
С	3.096588	-0.005035	-0.006164
С	3.809415	-0.058437	-1.221128
С	-1.740437	-4.771064	-0.014990
С	-0.856652	-3.696895	-0.022036
С	0.877892	-1.201769	-0.011924
С	1.599139	-0.003590	-0.017333
Н	2.471412	-1.009635	-2.644293
Н	3.810268	-0.127086	-3.374228

С	3.093104	-0.116103	-2.554396	
С	-3.114676	-4.526560	0.001089	
Η	-3.828665	-5.336470	0.005948	
С	-1.365524	-2.391795	-0.011391	
С	-0.518754	-1.175395	-0.018500	
Η	-3.359520	0.019881	2.823891	
Η	2.433854	0.742328	-2.699354	
С	0.881451	1.196681	-0.029668	
Η	1.421567	2.131005	-0.033034	
С	-3.554430	-3.207402	0.010212	
Ν	-2.704381	-2.161601	0.004787	
Η	-4.796982	-0.865971	2.283686	
Ν	-1.193527	0.000522	-0.027641	
С	-4.174667	0.017453	2.087525	
С	-0.515257	1.174421	-0.034916	
Η	-4.604880	-2.956911	0.020383	
Η	-4.793251	0.905639	2.273713	
Mg	-3.410987	0.004374	0.045256	
Η	0.219167	3.872833	-0.091029	
С	-1.358290	2.393399	-0.043500	
С	-0.845387	3.696645	-0.072290	
Ν	-2.697817	2.167630	-0.021994	
С	-4.492029	-0.004336	-1.843079	
С	-1.725791	4.773590	-0.077529	
С	-3.544594	3.216083	-0.028587	
Η	-1.345330	5.785128	-0.099610	
Η	-4.595803	2.969068	-0.013334	
С	-3.100745	4.533632	-0.055594	
Η	-3.812201	5.345772	-0.059827	
Η	-3.802982	-0.005474	-2.699007	
Η	-5.138595	0.878336	-1.942611	
Н	-5.134719	-0.890420	-1.937145	
MTPh ₂ Mg				
SCF	energy = -1	754.944381		
Н	-0.342212	-5.640766	-1.347049	

JOI	energy	1/51.711501	
Н	-0.342212	-5.640766	-1.347049
Н	-2.790976	-5.169135	-1.121692
С	-0.695315	-4.639725	-1.142999
С	-2.059085	-4.382350	-1.018034
Н	1.271481	-3.780433	-1.119489
С	0.214153	-3.592701	-1.011919
С	-2.469725	-3.077303	-0.757287
Н	-3.511713	-2.808275	-0.664331
Н	-3.343646	-2.093373	4.780497
Н	-1.702899	-0.776355	6.102265
С	-0.263075	-2.306029	-0.746658
С	-2.707630	-1.366976	4.286472
С	-1.787427	-0.628288	5.032564
Ν	-1.593614	-2.064130	-0.617839
Н	-3.543444	-1.762427	2.364463
С	-2.810952	-1.168348	2.905060
С	-0.981290	0.306709	4.381579
Н	-0.265676	0.891443	4.949938
С	-2.014611	-0.234531	2.200410
С	-1.101672	0.490813	2.999191

Η	-0.456618	1.235251	2.536050
Η	2.533745	-2.088992	-0.667632
С	0.607703	-1.112016	-0.606640
С	2.003115	-1.152796	-0.585360
Н	-7.477395	0.487457	-0.364773
Н	-7 601385	0.428823	-2 845624
C	-6 570669	0.384341	-0.950887
C	6 644354	0.350626	2 244151
	-0.044334 5.216002	0.330020	-2.344131
П	-3.310002	0.310802	0.774001
C	-5.328/84	0.283480	-0.31165/
C	-5.46/42/	0.214164	-3.083268
Н	3.630461	-0.373692	-3.154327
Н	-5.511071	0.187109	-4.166849
С	-4.105574	0.144953	-1.015125
С	-4.236116	0.114393	-2.426079
Н	3.490468	-1.332529	2.090267
Н	-3.345980	0.009418	-3.042472
Mg	-2.209846	0.023749	0.036097
N	-0.052051	0.060604	-0 480895
C	2 731044	0.033582	-0.438714
C	4 313693	0.033302	-2 895301
C	4.227145	0.014268	0.281257
	4.227143	0.014208	-0.381237
П	3.038403	0.311924	-3.080//0
C	4.982003	0.20/992	-1.555543
C	4.090801	-0.420955	2.130033
Н	8.919367	-0.723793	0.556654
С	4.875126	-0.203452	0.852782
Н	4.763609	-0.505785	2.982276
Η	8.996398	-0.288656	-1.152705
С	6.377868	0.180644	-1.473965
Н	6.956854	0.323596	-2.378251
С	6.272507	-0.220521	0.886200
С	7.042407	-0.027436	-0.263509
Н	6.769355	-0.389435	1.833844
С	8 552815	-0.021304	-0 193118
н	3 727588	1 359816	-2 904539
C	0.626839	1 222170	-0.357184
ч	3 300/52	0.300626	2 330834
C	2 023376	1 235371	0.328873
U N	2.023370	2 1 97 4 96	-0.328873
	-1.338278	2.18/480	-0.144930
Н	8.930160	0.969110	0.077292
C	-0.225391	2.432502	-0.240052
Н	-3.464553	2.951895	-0.005100
Н	2.568650	2.158895	-0.207266
С	-2.419507	3.219486	-0.060554
С	0.269934	3.740170	-0.247069
Η	1.328898	3.930718	-0.331206
С	-1.990643	4.544167	-0.057476
С	-0.624106	4.803520	-0.149481
Н	-2.710746	5.345305	0.012922
Н	-0.257879	5.820546	-0.152063

THF₂MeMgBr SCF energy = -3279.216116 H 4.328116 2.775481 1.189704

3.279820	2.542739	1.369490
3.211191	1.728121	-0.685427
3.834469	0.541404	2.041167
2.813361	3.418219	1.824074
3.190857	1.555153	3.339057
3.098941	1.309772	2.281886
2.557491	2.153079	0.070946
1.981384	2.965092	-0.366657
2.043049	0.060641	-2.885554
1.598638	1.073988	0.460528
1.697011	0.827353	1.921681
1.518906	-0.232184	2.076977
0.921124	1.410515	2.420760
-0.307289	1.655181	-3.104262
0.636694	-0.236623	-0.808911
-1.230158	2.756712	-2.038563
0.918812	-2.466589	0.716296
-1.194410	1.762255	-2.487279
-1.071934	0.764670	-1.390278
0.053993	-1.930394	0.303705
-0.606957	-1.696053	1.150442
-2.929499	2.228542	-3.727198
-2.349112	0.563823	-3.859400
-2.507092	1.393649	-3.169790
-0.480622	-2.659215	-0.319274
-2.428727	0.260447	-1.024124
-2.604298	0.499464	0.022136
-2.408143	-0.819385	-1.148445
-3.400476	0.962246	-1.985836
-3.845546	1.838108	-1.511299
-4.208233	0.300226	-2.293983
	3.279820 3.211191 3.834469 2.813361 3.190857 3.098941 2.557491 1.981384 2.043049 1.598638 1.697011 1.518906 0.921124 -0.307289 0.636694 -1.230158 0.918812 -1.194410 -1.071934 0.053993 -0.606957 -2.929499 -2.349112 -2.507092 -0.480622 -2.428727 -2.604298 -2.408143 -3.400476 -3.845546 -4.208233	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

THF₂PhMgBr

SCF	energy = -3	470.960937	
С	-4.080953	-2.903866	3.203444
С	-3.245723	-2.968447	2.062241
С	-2.844052	-4.272827	1.686889
С	-3.240009	-5.416881	2.387057
С	-4.064718	-5.302790	3.507065
С	-4.486689	-4.037176	3.915882
Mg	-2.621828	-1.266708	0.963966
Br	-1.134738	-1.144968	-1.064087
0	-1.667895	0.024474	2.243200
С	-0.782015	1.153688	1.821259
С	0.077429	1.482288	3.051407
С	0.013773	0.197165	3.906028
С	-1.411026	-0.293745	3.673529
0	-4.284037	-0.248530	0.315079
С	-5.668405	-0.704858	0.652898
С	-6.580060	-0.077142	-0.414034
С	-5.619098	0.276086	-1.570323
С	-4.346039	0.687004	-0.840483
Н	-2.906385	-6.394844	2.060628
Η	-4.374021	-6.185811	4.052125
Н	-2.202428	-4.404263	0.821336

Η	-5.127448	-3.935398	4.784417
Η	-4.434261	-1.937532	3.558635
Η	-1.421648	1.976683	1.509211
Η	-5.892131	-0.371301	1.663666
Η	-5.653560	-1.791046	0.627776
Η	-0.207386	0.793493	0.972108
Η	-7.365650	-0.764612	-0.723221
Η	-0.343228	2.323349	3.604638
Η	1.096370	1.741215	2.768497
Η	-3.429245	0.547563	-1.405328
Η	-7.055388	0.826637	-0.030097
Η	-1.559486	-1.362437	3.792241
Η	-2.137968	0.250605	4.278524
Η	-5.424399	-0.596703	-2.194150
Н	-4.405334	1.704472	-0.449713
Η	0.729107	-0.542231	3.544468
Н	0.216186	0.386362	4.959310
Η	-6.005514	1.073213	-2.203898

THF₂MeMgCl

SCF	energy = -1	165.292918	
Η	4.421725	2.617423	1.147887
С	3.358863	2.488161	1.345283
Η	3.189111	1.699928	-0.719276
Η	3.748494	0.462064	2.061905
Η	2.985243	3.411187	1.791219
Η	3.188583	1.553405	3.335424
С	3.078004	1.293030	2.283581
С	2.583047	2.151520	0.060279
Η	2.043315	3.001387	-0.351497
Cl	1.923836	0.170401	-2.751073
0	1.575804	1.121101	0.461876
С	1.642812	0.916570	1.929176
Η	1.377386	-0.119449	2.115974
Η	0.915928	1.578532	2.403851
Η	-0.312912	1.686072	-3.052986
Mg	0.630755	-0.211560	-0.796475
Η	-1.257950	2.752554	-1.970779
Η	0.985167	-2.421770	0.743309
С	-1.210509	1.772058	-2.447754
0	-1.099874	0.745167	-1.375485
С	0.105736	-1.931504	0.305205
Η	-0.590634	-1.731616	1.132071
Η	-2.933139	2.269024	-3.693154
Η	-2.336557	0.615573	-3.879872
С	-2.510814	1.417390	-3.161542
Η	-0.372982	-2.686236	-0.332066
С	-2.451787	0.193696	-1.069099
Η	-2.651947	0.364025	-0.013970
Η	-2.410028	-0.876282	-1.259799
С	-3.416324	0.933640	-2.007628
Η	-3.867854	1.787274	-1.499750
Η	-4.219137	0.283669	-2.352265

THF₂PhMgCl

SCF	energy = -1	357.037933	
С	-4.078096	-2.923287	3.215793
С	-3.246071	-2.968752	2.071469
С	-2.840510	-4.266541	1.677160
С	-3.229880	-5.421798	2.362291
С	-4.051826	-5.326296	3.486130
С	-4.477242	-4.068074	3.913618
Mg	-2.630622	-1.255615	0.990651
Cl	-1.212951	-1.077637	-0.893280
0	-1.696241	0.040341	2.277628
С	-0.819828	1.172331	1.842049
С	0.070956	1.487744	3.053375
С	0.029376	0.193666	3.895604
С	-1.402075	-0.292626	3.696523
0	-4.281245	-0.249317	0.300294
С	-5.673851	-0.648596	0.667211
С	-6.576372	-0.027360	-0.409942
С	-5.620688	0.232295	-1.595358
С	-4.319769	0.625050	-0.904446
Н	-2.893202	-6.393827	2.021476
Η	-4.356132	-6.217980	4.019811
Η	-2.200255	-4.383632	0.808463
Η	-5.115650	-3.980870	4.785452
Η	-4.433449	-1.963257	3.585575
Η	-1.466754	1.998717	1.555078
Η	-5.875442	-0.274323	1.668442
Η	-5.696279	-1.735312	0.676581
Η	-0.270308	0.816978	0.974339
Η	-7.397546	-0.691138	-0.675602
Η	-0.336808	2.321862	3.626481
Η	1.082265	1.750799	2.747813
Н	-3.415510	0.417589	-1.468496
Н	-7.003693	0.912965	-0.058392
Н	-1.549248	-1.362417	3.807950
Н	-2.110834	0.246757	4.327053
Н	-5.473068	-0.675612	-2.181036
Η	-4.329947	1.663312	-0.568014
Η	0.733909	-0.542392	3.507141
Н	0.260353	0.371902	4.944929
Η	-5.985365	1.014533	-2.259628

THF₂Me₂Mg

SCI	F energy = -	744.883694	
Н	-1.153529	-3.545162	-0.921365
С	-1.518456	-2.509529	-0.983665
Н	-2.615630	-2.576693	-0.938444
Н	3.492677	-2.487583	0.954720
Н	1.504185	-2.578302	-1.325647
Н	-0.062923	-2.231406	3.108146
Η	-1.269376	-2.155634	-1.996363
Н	3.907838	-2.364735	-1.449706
С	3.564418	-1.481074	0.540320
С	3.405728	-1.511417	-0.996083
С	1.884205	-1.566503	-1.207269
Н	4.513110	-1.047414	0.854221

Mg	-0.732996	-1.304737	0.608593
C	-0.648549	-1.371045	2.751541
Н	-1.650332	-1.490143	3.189531
Н	2.001728	-0.854334	1.983885
0	1.288740	-1.022568	0.044083
С	2.368233	-0.642095	0.984577
Н	-2.460228	0.071738	-1.558160
Н	1.538781	-0.955669	-2.038164
Н	-0.209997	-0.478178	3.224087
Н	3.822816	-0.603336	-1.434744
Н	-4.221136	1.215378	-0.316825
0	-1.540944	0.614012	0.219573
С	-2.200318	0.995434	-1.050993
Н	2.559030	0.427801	0.877795
Н	-2.379875	1.038947	2.079278
С	-3.386791	1.852005	-0.614330
Н	-1.488159	1.562997	-1.653642
Н	-3.728675	2.518783	-1.404986
С	-1.894907	1.595806	1.281231
С	-2.823089	2.616759	0.603877
Н	-0.972557	2.031156	1.658806
Η	-3.606045	2.960740	1.278189
Η	-2.258311	3.489271	0.271090

THF₂Ph₂Mg

SCF	energy = -1	128.372650	
Н	-3.058265	-6.694142	3.283436
Н	-2.758340	-6.692373	0.818521
С	-2.971238	-5.758619	2.744864
С	-2.803678	-5.753788	1.359092
Н	-3.151305	-4.532921	4.504609
С	-3.023929	-4.542578	3.427627
Н	-2.552912	-4.583541	-0.406656
С	-2.690056	-4.541575	0.670015
С	-2.909167	-3.340741	2.720218
С	-2.739564	-3.281822	1.315057
Н	-2.954426	-2.415584	3.292612
Н	-3.215226	-2.458243	-2.728337
Mg	-2.549612	-1.425694	0.252252
Η	-2.541786	-1.941519	-5.021732
С	-2.494580	-1.659206	-2.883309
С	-2.117050	-1.375880	-4.200128
С	-1.975210	-0.962141	-1.764134
С	-1.186380	-0.368192	-4.458623
С	-1.033228	0.046776	-2.079738
Н	-0.888398	-0.144568	-5.475447
Н	-0.579970	0.624104	-1.276900
С	-0.642221	0.345044	-3.389699
Н	-4.916992	1.511983	-0.134178
Н	0.085444	1.126780	-3.577628
Н	-7.045580	0.748631	-1.088787
Н	1.249648	0.909647	1.942078
С	-4.954491	0.488649	-0.513444
С	-6.387098	-0.010923	-0.669471
Η	-4.331233	0.394327	-1.397312

Η	-6.409131	-0.883586	-1.323182
Η	0.442805	-1.250269	1.269676
Η	-7.115872	0.484581	1.320258
С	0.600804	0.439506	2.682297
0	-4.373064	-0.413188	0.514955
Η	1.208733	0.171199	3.544848
С	-0.105415	-0.780570	2.082693
С	-6.775120	-0.397192	0.775384
Η	-0.249047	2.423321	3.132419
0	-1.380144	-0.248860	1.518789
Η	-7.571055	-1.139487	0.806576
С	-0.563544	1.383853	3.050399
С	-5.470157	-0.939740	1.382407
Η	-0.370632	-1.530605	2.824584
Η	-1.314601	1.789412	1.035211
С	-1.551560	1.171252	1.902112
Η	-5.290820	-0.592715	2.398077
Η	-5.392613	-2.023250	1.355862
Н	-1.011990	1.085539	3.999186
Η	-2.594001	1.310003	2.176513

¹H NMR spectra

Figure S6: ¹H NMR spectrum of (mesitylterpy)MgBr₂(5a)

Figure S7: ¹H NMR spectrum of (tri-^tButerpy)MgBr₂ (**5b**)

Figure S8: ¹H NMR spectrum of (phenylterpy)MgBr₂ (5c) (peaks which are not picked, represent impurities)

Figure S9: ¹H NMR spectrum of (mesitylterpy)MgCl₂(6a)

Figure S10: ¹H NMR spectrum of (tri-^tButerpy)MgCl₂ (6b)

