Ruthenium Cryptates with an Unusual Selectivity for Nitrate

Naomi A. C. Baker, Nicholas C. Fletcher, Peter N. Horton and Michael B. Hursthouse

Supplementary Data

10 Table S1: Selected angles and bond lengths [A	Å and °] for	$[Ru(L3)](PF_6)_2$
--	--------------	--------------------

N5–Ru1	2.050(7)	N9-Ru1-N10	78.7(3)	
N6–Ru1	2.057(9)	N9-Ru1-N5	95.4(3)	
N7–Ru1	2.053(8)	N10-Ru1-N5	172.2(3)	
N8–Ru1	2.079(9)	N9-Ru1-N7	93.1(3)	
N9–Ru1	2.021(8)	N10-Ru1-N7	92.4(3)	
N10-Ru1	2.032(7)	N5-Ru1-N7	93.1(3)	
		N9-Ru1-N6	91.5(3)	
		N10-Ru1-N6	96.7(3)	
		N5-Ru1-N6	78.1(4)	
		N7–Ru1–N6	170.4(3)	
		N9–Ru1–N8	170.7(4)	
		N10-Ru1-N8	97.9(3)	
		N5-Ru1-N8	88.7(3)	
		N7–Ru1–N8	78.2(4)	
		N6-Ru1-N8	97.5(4)	

Table S2: Hydrogen bonds [Å and °] for [Ru(L3)](PF₆)₂

1	5	

5

10					
	$D-\mathrm{H}\cdots A$	<i>d</i> (<i>D</i> –H)	$d(\mathbf{H}^{\cdot\cdot\cdot}A)$	$d(D \cdots A)$	$\angle(DHA)$
	N3-H3F16	0.88	2.00	2.850(14)	161.9
	N3-H3F113	0.88	2.50	3.14(4)	130.4
20	N4-H4O2	0.88	2.11	2.967(12)	163.4

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is O The Royal Society of Chemistry 2012

Ru1-N2	2.033(6)	N2-Ru1-N61	174.0(2)	
Ru1-N61	2.046(6)	N61-Ru1-N32	88.4(2)	
Ru1-N32	2.049(6)	N2-Ru1-N1	78.8(3)	
Ru1-N1	2.061(6)	N61-Ru1-N1	96.4(2)	
Ru1-N62	2.061(6)	N32-Ru1-N1	172.9(2)	
Ru1-N31	2.063(6)	N2-Ru1-N62	97.9(2)	
		N61-Ru1-N62	78.6(2)	
		N32-Ru1-N62	94.2(2)	
		N1-Ru1-N62	92.0(2)	
		N2-Ru1-N31	92.2(2)	
		N61-Ru1-N31	91.8(2)	
		N32-Ru1-N31	78.6(3)	
		N1-Ru1-N31	95.9(2)	

Table S3: Bond lengths [Å] and angles [°] for [Ru(L4)](Br)_{2.}

5

Table S4: Hydrogen bonds [Å and °] for [Ru(L4)](Br)2.

	$D-\mathrm{H}\cdots A$	<i>d</i> (<i>D</i> –H)	$d(\mathbf{H}\cdots A)$	$d(D \cdots A)$	$\angle(DHA)$	
10	N1-H1O91 ⁱ	0.883(10)	2.05(5)	2.835(9)	148(7)	
	N2-H2A····O1 ⁱⁱ	0.882(10)	2.08(3)	2.938(9)	166(8)	
	N31-H31O92	0.878(10)	2.11(5)	2.882(8)	147(8)	
	N32-H32Br2	0.880(10)	2.45(2)	3.318(6)	169(8)	
	N51–H51…Br2 ⁱⁱⁱ	0.880(10)	2.46(4)	3.270(6)	153(7)	
15	N52-H52-Br1	0.878(10)	2.535(14)	3.410(7)	175(8)	
	O91-H91ABr1	0.85(3)	2.43(3)	3.275(6)	173(9)	
	O91-H91BO51	0.83(3)	1.94(3)	2.758(7)	168(10)	
	O92–H92A…Br2 ⁱⁱⁱ	0.85(3)	2.61(6)	3.402(7)	157(11)	
	O92-H92BO52	0.85(3)	2.00(6)	2.796(8)	155(11)	
20	O93–H93A…O32	0.87(3)	1.93(4)	2.777(8)	163(9)	
	O93-H93BO1	0.86(3)	2.12(6)	2.895(9)	150(11)	_

Symmetry transformations used to generate equivalent atoms: (i) -x,-y+1,-z (ii) -x,-y,-z (iii) -x,-y+1,-z+1

30 **Figure S1a-c**: X-ray crystallographic determination of the three cavity faces illustrating the hydrogen bonding networks and location of the bromide anions.

Figure S2a: UV/Vis spectroscopy characterisation of $[Ru(L3)](PF_6)_2$ (red) and $[Ru(L4)](PF_6)_2$ (blue) 15 in CH₃CN with respective concentrations of 1.55 x10⁻⁵ M and 1.43x10⁻⁵ M respectively at room temperature.

35 Figure S2b: : Luminescence characterisation of $[Ru(L3)](PF_6)_2$ (red) and $[Ru(L4)](PF_6)_2$ (blue) in CH₃CN at room temperature excited at 450 nm with an absorption of 0.1.

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is $\ensuremath{\mathbb{O}}$ The Royal Society of Chemistry 2012

- 10 Figure S3: Luminescence characterisation of [Ru(L3)](PF₆)₂ on the sequential addition of tetrabutylammonium (a) chloride, (b) bromide, (c) nitrate, (d) hydrogensulfate and (e) dihydrogenphosphate (approx. 5×10⁶ M, CH₃CN, 25 °C, excited at 450 nm).
 - * Spectrum run at reduced detection slit widths to avoid saturation of the detector.

15

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is $\ensuremath{\mathbb{C}}$ The Royal Society of Chemistry 2012

10

Figure S4: Luminescence characterisation of $[Ru(L4)](PF_6)_2$ on the sequential addition of tetrabutylammonium (a) chloride, (b) bromide, (c) nitrate, (d) hydrogensulfate and (e) dihydrogenphosphate (approx. 5×10^{-6} M, CH₃CN, 25 °C, excited at 450 nm).

Figure S5: ¹H NMR spectroscopic titration of NEt₄H₂PO₄ with [Ru(L4)](PF₆)₂ (300 MHz, CD₃CN, initial metal complex concentration 5×10^4 M at 25 C) - similar loss of resolution observed with [Ru(L3)](PF₆)₂ (not shown) along with observed precipitation.

Figure S6: ¹H NMR spectroscopic titration of NEt₄HSO₄ with $[Ru(L3)](PF_6)_2$ (300 MHz, CD₃CN, initial metal complex concentration 5×10^4 M at 25 C) - similar spectrum observed with complex $[Ru(L4)](PF_6)_2$ (not shown).

(a)

15

ŇΛ,

8.50

Figure S7: ¹H NMR spectroscopic titration of NEt₄Cl with (a) $[Ru(L3)](PF_6)_2$ and (b) $[Ru(L4)](PF_6)_2$ 20 (300 MHz, CD₃CN, initial metal complex concentration 5×10^4 M at 25 C)

7.50

ا 8.00 ۸۹. ۸۸ 1.25 1.00 0.75

0.50

0.25

0

ppm

Figure S8: ¹H NMR spectroscopic titration of NEt₄NO₃ with (a) $[Ru(L3)](PF_6)_2$ and (b) $[Ru(L4)](PF_6)_2$ (300 MHz, CD₃CN, initial metal complex concentration 5×10^4 M at 25 C)

Figure S9: ¹H-NMR spectroscopy titration showing the movement of the principle amide peak of (a) [Ru(L3)](PF₆)₂ and (b) [Ru(L4)](PF₆)₂, on the sequential addition of tetrabutylammonium ions. (NB 5 stability constants were calculated for a range of protons, not just the highlighted amides – the data for the amide shift observed with the addition of TBABr to [Ru(L4)](PF₆)₂ was not used in the determination of stability constants due to inadequate data arising from overlapping peaks).