

Electronic Supplementary Information

Reaction of $\text{N}\equiv\text{W}(\text{O}^t\text{Bu})_3$ with $\sigma^3\lambda^5$ -phosphoranes. The [2+2] Cycloaddition Across the $\text{W}\equiv\text{N}$ Triple Bond Resulting in First Representative of Inorganic Four-membered Metallacycle with Conjugated Endo- and Exocyclic Double Bonds.

Oleksandr O. Kovalenko,^a Vasyl Kinzhylalo,^b Tadeusz Lis,^b Oleksiy V. Khavryuchenko,^a Eduard B. Rusanov,^c Anatoliy I. Brusilovets^a

^a Department of Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska 64, 01601 Kyiv, Ukraine. E-mail: ai.brusilovets@gmail.com

^b Faculty of Chemistry, University of Wrocław, Joliot-Curie 14, 50-383 Wrocław, Poland. Tel: +48 71 3757338; E-mail: tlis@wchuwr.pl

^c Institute of Organic Chemistry, Murmanska 5, 02094 Kyiv, Ukraine

Experimental Section

General Procedures. All procedures were carried out under a dry argon atmosphere using standard Schlenk and glovebox techniques. Aromatic and aliphatic hydrocarbon solvents were dried and distilled from sodium benzophenone ketyl and stored over 4 Å molecular sieves before use. *tert*-Butyl alcohol was dried and distilled from CaO immediately before use. $(\text{Me}_3\text{Si})_2\text{NP}(\text{NSiMe}_3)_2$ (**I**), 3 and $(\text{Me}_3\text{Si})_2\text{NPS}(\text{N}^t\text{Bu})$ (**II**) 4 were prepared according to established procedures. $\text{N}\equiv\text{W}(\text{tBuO})_3$ was prepared by reaction of $\text{N}\equiv\text{WCl}_3$ 14 with LiO^tBu in toluene. LiO^tBu was prepared from *tert*-butyl alcohol and lithium metal in hexane.

^1H , ^{13}C , ^{31}P NMR spectra were recorded at 400, 100 and 162 MHz, respectively, using a Varian Mercury spectrometer (Palo Alto, CA). Benzene- d_6 and toluene- d_8 were used as internal standards for the proton (benzene- d_6 7.16 ppm, toluene- d_8 7.00 ppm) and carbon (benzene- d_6 128.06 ppm, toluene- d_8 137.50 ppm) NMR spectra, while 85 % H_3PO_4 was used as an external standard for the ^{31}P NMR spectra.

Preparation of $[(\text{Me}_3\text{Si})_2\text{N-P}(\text{NSiMe}_3)_2(\text{O-tBu})]\{(\text{tBuO})_2\text{W}\equiv\text{N}\}$ (**1**)

In a Schlenk flask $(\text{tBuO})_3\text{W}\equiv\text{N}$ (0.41 g, 0.98 mmol) was dissolved in 2 mL of benzene, and the solution was cooled to 10 °C. A solution of (**I**) (0.36 g, 0.98 mmol) in 2 mL of benzene was slowly added dropwise. The mixture was stirred for 1.5 h at room temperature, produced a pale-yellow solution. Removal of solvent in *vacuo* resulted in a pale-yellow solid. The residue was dissolved in 1 mL of hexane and kept at -30 °C for crystallization. Yield: 0.54 g, (70%) of white crystals, mp 134 °C (with decomposition).

^1H NMR (400 MHz, benzene- d_6 , 26 °C, ppm) δ = 0.35 (s, 9H, NSiMe_3), 0.41 (s, 9H, NSiMe_3), 0.55 (s, 18H, $\text{N}(\text{SiMe}_3)_2$), 1.42 (s, 9H, PO^tBu), 1.67 (s, 18H, O^tBu).

$^{13}\text{C}\{^1\text{H}\}$ NMR (100 MHz, benzene- d_6 , 26 °C, ppm) δ = 5.18 (d, $^3J_{\text{PC}}=2.0$ Hz, $\text{N}(\text{SiMe}_3)_2$), 6.21 (d, $^3J_{\text{PC}}=2.0$ Hz, NSiMe_3), 6.94 (d, $^3J_{\text{PC}}=1.0$ Hz, NSiMe_3), 31.37 (d, $^3J_{\text{PC}}=4.0$ Hz, POCMe_3), 31.55 (s, OCMe_3), 81.07 (s, OCMe_3), 83.30 (d, $^2J_{\text{PC}}=9.0$ Hz, POCMe_3).

$^{31}\text{P}\{^1\text{H}\}$ NMR (162 MHz, benzene- d_6 , 26 °C, ppm) δ = 8.10 (s, satellite $^2J_{\text{WP}}=8.1$ Hz).

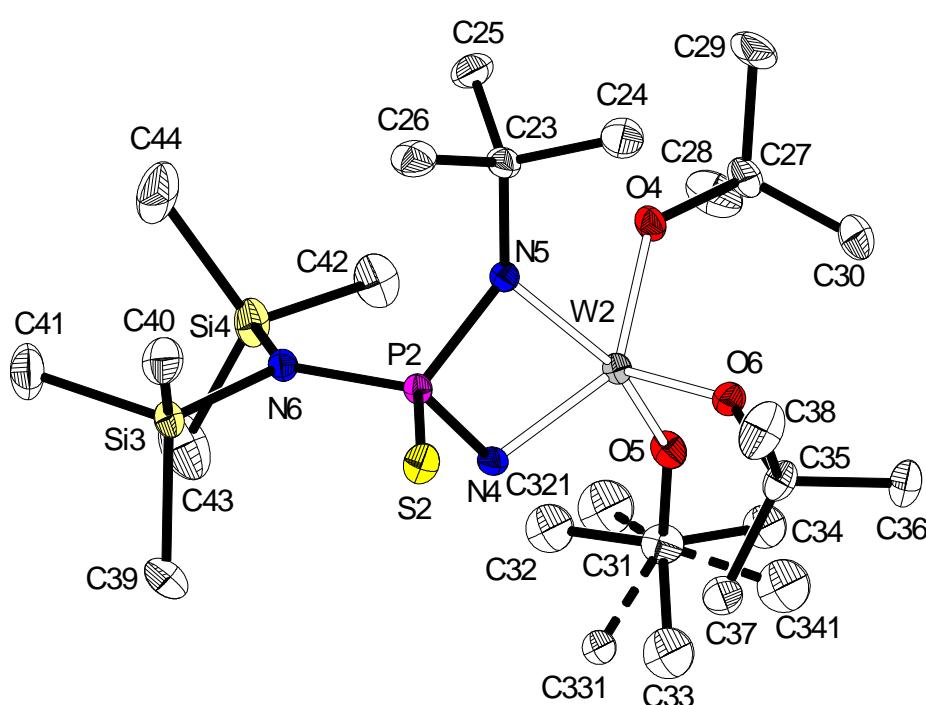
Anal. Calcd for $\text{C}_{24}\text{H}_{63}\text{N}_4\text{O}_3\text{PSi}_4\text{W}$: C, 36.82; H, 8.11; N, 7.16. Found: C, 36.71; H, 7.99; N, 7.09.

Preparation of $[(\text{Me}_3\text{Si})_2\text{N-PS}(\text{N}^t\text{Bu})]\{(\text{tBuO})_3\text{W}\equiv\text{N}\}$ (**2**)

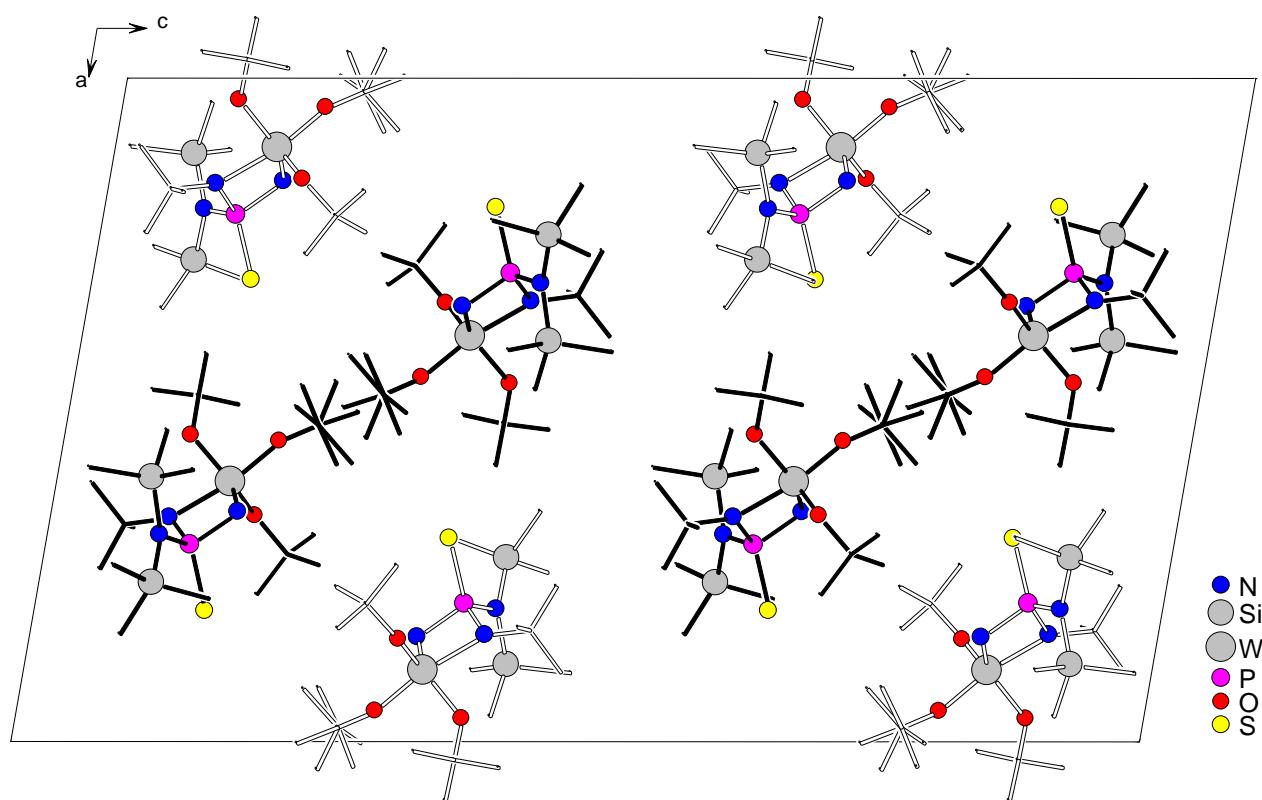
In a Schlenk flask, $(\text{tBuO})_3\text{W}\equiv\text{N}$ (0.36 g, 0.86 mmol) was dissolved in 2.0 mL of toluene, and the solution was cooled down to -25 °C. (0.25 g, 0.86 mmol) of (**II**) was dissolved in 1.5 mL of toluene thereafter slowly added dropwise. The mixture was stirred for 40 minutes at -25 °C, resulting in a deep-red solution. Maintaining the low temperature (-25 °C), the solvent was removed in *vacuo* (10^{-4} mm Hg), yielding a dark red solid. The residue was dissolved in 1 mL of hexane and cooled down to -60 °C in order to induce further crystallization.

Yield: 0.37 g, 61% of red crystals.

^1H NMR (400 MHz, toluene- d_8 , -25 °C, ppm) δ = 0.62 (br. s, 18H, SiMe_3), 1.44 (s, 27H, O^tBu), 1.75 (s, 9H, N^tBu).


$^{13}\text{C}\{^1\text{H}\}$ NMR (100 MHz, toluene- d_8 , -25 °C, ppm) δ = 7.72 (br. s, SiMe_3), 31.36 (s, OCMe_3), 33.80 (d, $^3J_{\text{PC}}=8.0$ Hz, NCMe_3), 57.47 (d, $^2J_{\text{PC}}=5.0$ Hz, NCMe_3), 87.08 (s, OCMe_3).

$^{31}\text{P}\{^1\text{H}\}$ NMR (162 MHz, toluene- d_8 , -25 °C, ppm) δ = 29.02 (s).


Anal. Calcd for $\text{C}_{22}\text{H}_{54}\text{N}_3\text{O}_3\text{PSSi}_2\text{W}$: C, 37.13; H, 7.65; N, 5.90. Found: C, 37.21; H, 7.72; N, 5.78.

Computational methods

Quantum-chemical calculations were performed for the molecules of Mo- and W-containing compounds in vacuum in the framework of density-functional theory (DFT). Becke'88 exchange with Perdew'86 correlation (BP86)¹⁹ and with the hybrid three-parameter Becke Lee-Yang-Parr (B3LYP)²⁰ functionals as defined in TurboMole program system²¹ together with Ahlrichs' triple-zeta split-valence basis set augmented by Coulomb fitting (def2-TZVPP/J)²² using Zeroth Order Regular Approximation (ZORA) scalar relativistic Hamiltonian²³ were applied. The ORCA *ab initio*, DFT and semiempirical SCF-MO package²⁴ was used for all calculations. The geometries of molecules were fully optimized. For the geometries optimized within BP86 functional the vibrational frequencies were calculated using central finite difference approximation for derivatives evaluation with 0.005 Bohr increment for differentiation. Thermochemical properties at 213.15 and 298.15 K were derived using vibrational data in approximation of ideal gas and harmonic vibrations, as given by ORCA output.

Figure S1. The molecular structure of second independent molecule of (2). Thermal ellipsoids are drawn at the 25% probability level. Hydrogen atoms are omitted for clarity. The minor disorder components are shown with the broken bonds. Selected bond distances (Å) and angles (°) for (2): W2-N4 1.824(4), W2-N5 2.059(4), P2-N4 1.660(4), P2-N5 1.667(4), P2-N6 1.676(4), P2-S2 1.953(2), W2-O4 1.905(3), W2-O5 1.851(3), W2-O6 1.817(3), N4-W2-N5 73.9(2), W2-N4-P2 102.3(2), N4-P2-N5 89.5(2), W2-N5-P2 93.0(2).

Figure S2. The [010] projection of the crystal packing of structure (2). The molecules containing W1 atoms are shown with full bonds, while the ones that contain W2 atoms with empty bonds.