ELECTRONIC SUPPLEMENTARY INFORMATION (ESI)

Temperature and solvent structure dependence of VO²⁺ complexes of pyridine-*N*-oxide derivatives and their interaction with human serum transferrin

Daniele Sanna,^a Valeria Ugone,^b Giovanni Micera^b and Eugenio Garribba*^b

^a Istituto CNR di Chimica Biomolecolare, Trav. La Crucca 3, I-07040 Sassari, Italy

^b Dipartimento di Chimica e Farmacia, and Centro Interdisciplinare per lo Sviluppo della Ricerca Biotecnologica e per lo Studio della Biodiversità della Sardegna, Università di Sassari, Via Vienna 2, I-07100 Sassari, Italy. Fax: +39 079 229559; Tel: +39 079 229487; E-mail: garribba@uniss.it

Complex	Software	$A_{\rm iso}^{\rm calcd}$	$A_{\rm iso}^{\rm exptl}$	$A_{\rm x}^{\rm \ calcd}$	$A_{ m y}^{ m \ calcd}$	$A_{\rm z}^{\rm \ calcd}$	$A_{\rm z}^{\rm exptl}$	$\left\ A_{z}\right\ ^{b}$
$[VO(mpo)_2]^c$	Gaussian	-84.5	-79.6 ^d	-55.2	-48.0	-150.5	-144.3 ^d	4.3
$[VO(mpo)_2]^e$	Gaussian	-85.8	-79.6 ^d	-55.9	-49.7	-151.8	-144.3 ^d	5.2
cis-[VO(mpo) ₂ (H ₂ O)] ^f	Gaussian	-92.4	g	-60.7	-57.7	-158.7	-154.3	2.9
cis-[VO(mpo) ₂ (H ₂ O)] ^h	Gaussian	-90.8	g	-60.1	-55.1	-157.1	-154.3	1.8
cis-[VO(mpo) ₂ (H ₂ O)] ⁱ	Gaussian	-95.8	g	-65.2	-59.6	-162.4	-154.3	5.3
cis-[VO(mpo) ₂ (H ₂ O)] ^l	Gaussian	-94.4	g	-63.7	-58.2	-161.4	-154.3	4.6
cis-[VO(mpo) ₂ (1-MeIm)] ^m	Gaussian	-85.5	_	-53.7	-51.5	-151.3	-149.7	1.1
cis-[VO(mpo) ₂ (1-MeIm)] ⁿ	Gaussian	-84.1	_	-53.2	-49.3	-149.8	-149.7	0.0
cis-[VO(mpo) ₂ (1-MeIm)] ^o	Gaussian	-89.8	_	-58.6	-54.7	-156.2	-149.7	4.3
<i>cis</i> -[VO(mpo) ₂ (1-MeIm)] ^{<i>p</i>}	Gaussian	-88.6	_	-56.6	-53.9	-155.4	-149.7	3.8
$[VO(mpo)_2]^c$	ORCA	-76.3	-79.6 ^d	-39.7	-47.9	-141.4	-144.3 ^d	-2.0
$[VO(mpo)_2]^e$	ORCA	-77.8	-79.6 ^d	-41.4	-49.2	-142.9	-144.3 ^d	-0.9
cis-[VO(mpo) ₂ (H ₂ O)] ^f	ORCA	-88.8	g	-53.6	-57.6	-155.1	-154.3	0.5
cis-[VO(mpo) ₂ (H ₂ O)] ^h	ORCA	-87.3	g	-51.6	-56.6	-153.7	-154.3	-0.4
cis-[VO(mpo) ₂ (H ₂ O)] ⁱ	ORCA	-91.7	g	-54.7	-61.8	-158.7	-154.3	2.9
cis-[VO(mpo) ₂ (H ₂ O)] ^l	ORCA	-91.5	g	-54.5	-61.2	-158.8	-154.3	2.9
cis-[VO(mpo) ₂ (1-MeIm)] ^m	ORCA	-81.9	_	-48.0	-50.8	-146.8	-149.7	-1.9
cis-[VO(mpo) ₂ (1-MeIm)] ⁿ	ORCA	-80.5	_	-46.3	-50.0	-145.3	-149.7	-2.9

Table S1 EPR parameters of VO^{2+} species formed by Hmpo, calculated at the level of theory BHandHLYP/6-311g(d,p) with Gaussian and PBE0/VTZ with ORCA.^{*a*}

<i>cis</i> -[VO(mpo) ₂ (1-MeIm)] ^o	ORCA	-86.5	_	-51.4	-55.7	-152.4	-149.7	1.8
cis-[VO(mpo) ₂ (1-MeIm)] ^{p}	ORCA	-85.7	_	-51.1	-54.2	-151.8	-149.7	1.4

^{*a*} All the values are in 10^{-4} cm⁻¹. ^{*b*} Percentage deviation respect to the absolute experimental value calculated as: $(|A_z|^{calcd} - |A_z|^{exptl})/|A_z|^{exptl}$. ^{*c*} SPY-5-21 structure. ^{*d*} Measured in CHCl₃/toluene 60/40 v/v. ^{*e*} SPY-5-23 structure. ^{*f*} Coordination mode (S⁻, O_{N-ox}); (S⁻, O_{N-ox}^{ax}); H₂O, with H₂O in *trans* to S⁻. ^{*g*} *cis*-octahedral species with an equatorial water is not formed at room temperature; A_{iso}^{calcd} can be compared with that of *cis*-[VO(mpo)₂(DMSO)] of 87.1x10⁻⁴ cm⁻¹. ^{*h*} Coordination mode (S⁻, O_{N-ox}); (S⁻, O_{N-ox}); (S⁻ ax, O_{N-ox}); H₂O, with H₂O in *trans* to O_{N-ox}. ^{*i*} Coordination mode (S⁻, O_{N-ox}); (S^{- ax}, O_{N-ox}); H₂O, with H₂O in *trans* to O_{N-ox}. ^{*i*} Coordination mode (S⁻, O_{N-ox}); (S^{- ax}, O_{N-ox});

Fig. S1 X-and isotropic EPR spectrum recorded at RT on a solution obtained dissolving $[VO(hpo)_2]$ in CH₂Cl₂. The spectrum belongs to $[VO(hpo)_2]$.

Fig. S2 X-band anisotropic EPR spectrum recorded at 120 K obtained dissolving $[VO(hpo)_2]$ in CH₂Cl₂: (a) experimental spectrum and (b) simulated spectrum. The spectrum belongs to square pyramidal specie and was simulated with $g_x = 1.991$, $g_y = 1.981$, $g_z = 1.953$, $A_x = -41.0 \times 10^{-4}$ cm⁻¹, $A_y = -51.0 \times 10^{-4}$ cm⁻¹, $A_z = -150.6 \times 10^{-4}$ cm⁻¹. The marked *x*,*y* anisotropy is observable in the region denoted by the asterisk.

Fig. S3 X-band isotropic EPR spectrum recorded at RT on a solution obtained dissolving $[VO(mpo)_2]$ in a mixture CHCl₃/toluene 60:40 v/v. The spectrum belongs to $[VO(mpo)_2]$.

Fig. S4 Electronic absorption spectrum of [VO(mpo)₂] recorded in CH₂Cl₂.

Fig. S5 Optimised structure of the possible isomers of $[VO(mpo)_2]$ (a-b) and of *cis*- $[VO(mpo)_2(H_2O)]$ (c-f).

Fig. S6 X-band anisotropic EPR spectrum of $[V(mpo)_3]^+$ recorded at 120 K: (a) experimental and (b) simulated. The spectrum was simulated with $g_x = 1.961$, $g_y = 1.963$, $g_z = 1.999$, $A_x = -104.0 \times 10^{-4}$ cm⁻¹, $A_y = -93.0 \times 10^{-4}$ cm⁻¹, $A_z = 2.6 \times 10^{-4}$ cm⁻¹.

Fig. S7 X-band isotropic EPR spectrum recorded at RT and pH 7.4 on a solution DMSO/H₂O 50:50 v/v with ratio VO²⁺/Hhpo 1:2 and concentration of VO²⁺ ion 1x10⁻³ M. With I and II are indicated the resonances $M_{\rm I} = -7/2$ of *cis*-[VO(hpo)₂(H₂O)] and [VO(hpo)₂], respectively.

Fig. S8 X-band anisotropic EPR spectrum recorded at 120 K and pH 7.4 on a solution DMSO/H₂O 50:50 v/v with ratio VO²⁺/Hhpo = 1:2 and concentration of VO²⁺ = 1x10⁻³ M: (a) experimental and (b) simulated. The spectrum belongs to *cis*-[VO(hpo)₂(H₂O)] and was simulated with $g_x = 1.980$, $g_y = 1.976$, $g_z = 1.940$, $A_x = -59.0x10^{-4}$ cm⁻¹, $A_y = -60.0x10^{-4}$ cm⁻¹, $A_z = -168.2x10^{-4}$ cm⁻¹.

Fig. S9 X-band isotropic EPR spectrum recorded at RT and pH 7.4 on a solution DMSO/H₂O 50:50 v/v with ratio $VO^{2+}/Hmpo$ 1:2 and concentration of VO^{2+} ion 1×10^{-3} M. The spectrum belongs to $[VO(mpo)_2]$.

Fig. S10 X-band anisotropic EPR spectrum recorded at 120 K and pH 7.4 on a solution DMSO/H₂O 50:50 v/v with ratio VO²⁺/Hmpo 1:2 and concentration of VO²⁺ 1x10⁻³ M: (a) experimental and (b) simulated. The spectrum belongs to *cis*-[VO(mpo)₂(H₂O)] and was simulated with $g_x = 1.980$, $g_y = 1.980$, $g_z = 1.955$, $A_x = -52.0x10^{-4}$ cm⁻¹, $A_y = -52.0x10^{-4}$ cm⁻¹, $A_z = -154.3x10^{-4}$ cm⁻¹.

Fig. S11 Anisotropic EPR spectrum recorded at 120 K and pH 7.4 on a solution DMSO/H₂O 50:50 with ratio VO²⁺/Hhpo/1-MeIm 1:2:4 and concentration of VO²⁺ 1x10⁻³ M: (a) experimental and (b) simulated. The spectrum belongs to *cis*-[VO(hpo)₂(1-MeIm)] and was simulated with $g_x = 1.984$, $g_y = 1.982$, $g_z = 1.947$, $A_x = -55.0 \times 10^{-4}$ cm⁻¹, $A_y = -58.0 \times 10^{-4}$ cm⁻¹, $A_z = -163.7 \times 10^{-4}$ cm⁻¹.

Fig. S12 X-band isotropic EPR spectrum recorded at RT and pH 7.4 on a solution DMSO/H₂O 50:50 v/v with ratio VO^{2+} /Hhpo/1-MeIm 1:2:4 and concentration of VO^{2+} ion 1×10^{-3} M.

Fig. S13 Anisotropic EPR spectrum recorded at 120 K and pH 7.4 on a solution DMSO/H₂O 50:50 with ratio VO²⁺/Hmpo/1-MeIm 1:2:4 and concentration of VO²⁺ 1x10⁻³ M: (a) experimental and (b) simulated. The spectrum belongs to *cis*-[VO(mpo)₂(1-MeIm)] and was simulated with $g_x = 1.985$, $g_y = 1.984$, $g_z = 1.960$, $A_x = -47.0 \times 10^{-4}$ cm⁻¹, $A_y = -50.0 \times 10^{-4}$ cm⁻¹, $A_z = -149.7 \times 10^{-4}$ cm⁻¹.

Fig. S14 X-band isotropic EPR spectrum recorded at RT and pH 7.4 on a solution DMSO/H₂O 50:50 v/v with ratio VO²⁺/Hmpo/1-MeIm 1:2:4 and concentration of VO²⁺ ion 1×10^{-3} M. The spectrum belongs to [VO(mpo)₂].

Fig. S15 Optimised structure of the possible isomers of cis-[VO(hpo)₂(1-MeIm)], calculated with DFT methods at the level of theory B3P86/6-311g.

Fig. S16 Optimised structure of the possible isomers of cis-[VO(mpo)₂(1-MeIm)], calculated with DFT methods at the level of theory B3P86/gen (the basis set 6-311+g(d) for S and 6-311g for the other atoms was used).