A Novel Decanuclear Co(II) Cluster with Adamantane-like Metallic Skeleton Supported by 8-Hydroxyquinoline and *In-situ* Formed CO_3^{2-} Anions

Lei Wang, Yi Li, Yu Peng, Zhiqiang Liang,* Jihong Yu and Ruren Xu

State Key Lab of Inorganic Synthesis and Preparative Chemistry, Jilin University,

Changchun, 130012, P. R. China

Email: liangzq@jlu.edu.cn

Tel: +86-431-85168609, Fax: +86-431-85168609

Contents:

Figure S1. The Optical micrographs of $[Co_{10}(Q)_{12}(\mu_6-CO_3)_4] \cdot 2.5DMF(1)$.

Figure S2. Experimental polycrystalline (black) and calculated from the single-crystal

data X-ray powder diffraction (red) of 1.

Figure S3. FT-IR spectrum of 1.

Figure S4. TG analysis of **1** under Air atmosphere.

Table S1. Selected Bond Lengths [Å] and Angles [°] for **1**.

Figure S1. The Optical micrographs of $[Co_{10}(Q)_{12}(\mu_6-CO_3)_4] \cdot 2.5DMF$ (1).

Figure S2. Experimental polycrystalline (black) and calculated from the single-crystal data X-ray powder diffraction (red) of **1**.

Figure S3. FT-IR spectrum of **1**.

Figure S4. TG analysis of **1** under Air atmosphere.

Co(1)-O(5)	2.085(3)	Co(3)-O(4)#2	2.054(3)
Co(1)-N(1)	2.086(5)	Co(3)-O(4)	2.054(3)
Co(1)-O(7)	2.108(3)	Co(3)-O(4)#1	2.054(3)
Co(1)-N(2)	2.116(4)	Co(3)-O(6)#2	2.158(3)
Co(1)-O(1)	2.116(3)	Co(3)-O(6)#1	2.158(3)
Co(1)-O(2)	2.127(3)	Co(3)-O(6)	2.158(3)
Co(2)-O(8)	2.079(3)	Co(4)-O(1)	2.049(3)
Co(2)-O(4)	2.080(4)	Co(4)-O(3)	2.055(3)
Co(2)-N(3)	2.083(3)	Co(4)-O(2)#1	2.079(3)
Co(2)-O(3)	2.088(3)	Co(4)-O(7)#1	2.129(3)
Co(2)-N(4)	2.099(4)	Co(4)-O(5)	2.138(3)
Co(2)-O(6)#1	2.115(3)	Co(4)-O(8)	2.188(3)
O(5)-Co(1)-N(1)	152.71(18)	O(4)#2-Co(3)-O(4)	104.55(10)
O(5)-Co(1)-O(7)	84.33(12)	O(4)#2-Co(3)-O(4)#1	104.55(10)
N(1)-Co(1)-O(7)	97.84(16)	O(4)-Co(3)-O(4)#1	104.55(10)
O(5)-Co(1)-N(2)	89.44(15)	O(4)#2-Co(3)-O(6)#2	77.48(12)
N(1)-Co(1)-N(2)	101.70(17)	O(4)-Co(3)-O(6)#2	85.37(12)
O(7)-Co(1)-N(2)	148.27(16)	O(4)#1-Co(3)-O(6)#2	168.76(12)
O(5)-Co(1)-O(1)	74.62(13)	O(4)#2-Co(3)-O(6)#1	168.76(12)
N(1)-Co(1)-O(1)	78.60(18)	O(4)-Co(3)-O(6)#1	77.48(12)
O(7)-Co(1)-O(1)	105.16(13)	O(4)#1-Co(3)-O(6)#1	85.37(12)

Table S1. Selected Bond Lengths [Å] and Angles [°] for **1**.

N(2)-Co(1)-O(1)	103.06(16)	O(6)#2-Co(3)-O(6)#1	91.77(12)
O(5)-Co(1)-O(2)	110.92(13)	O(4)#2-Co(3)-O(6)	85.37(12)
N(1)-Co(1)-O(2)	95.81(18)	O(4)-Co(3)-O(6)	168.76(12)
O(7)-Co(1)-O(2)	75.09(13)	O(4)#1-Co(3)-O(6)	77.48(12)
N(2)-Co(1)-O(2)	78.25(16)	O(6)#2-Co(3)-O(6)	91.77(12)
O(1)-Co(1)-O(2)	174.40(14)	O(6)#1-Co(3)-O(6)	91.77(12)
O(8)-Co(2)-O(4)	156.22(16)	O(1)-Co(4)-O(3)	107.11(13)
O(8)-Co(2)-N(3)	105.86(12)	O(1)-Co(4)-O(2)#1	103.72(13)
O(4)-Co(2)-N(3)	97.61(15)	O(3)-Co(4)-O(2)#1	106.03(13)
O(8)-Co(2)-O(3)	77.34(13)	O(1)-Co(4)-O(7)#1	165.13(13)
O(4)-Co(2)-O(3)	79.13(16)	O(3)-Co(4)-O(7)#1	87.10(13)
N(3)-Co(2)-O(3)	176.64(13)	O(2)#1-Co(4)-O(7)#1	75.66(12)
O(8)-Co(2)-N(4)	94.20(15)	O(1)-Co(4)-O(5)	74.86(13)
O(4)-Co(2)-N(4)	93.89(17)	O(3)-Co(4)-O(5)	165.32(13)
N(3)-Co(2)-N(4)	79.29(15)	O(2)#1-Co(4)-O(5)	87.25(13)
O(3)-Co(2)-N(4)	101.65(15)	O(7)#1-Co(4)-O(5)	90.28(12)
O(8)-Co(2)-O(6)#1	83.09(12)	O(1)-Co(4)-O(8)	86.25(12)
O(4)-Co(2)-O(6)#1	98.40(15)	O(3)-Co(4)-O(8)	75.64(13)
N(3)-Co(2)-O(6)#1	77.82(12)	O(2)#1-Co(4)-O(8)	168.60(13)
O(3)-Co(2)-O(6)#1	101.76(13)	O(7)#1-Co(4)-O(8)	93.28(12)
N(4)-Co(2)-O(6)#1)	155.22(15)	O(5)-Co(4)-O(8)	90.11(12)
Co(4)-O(1)-Co(1)	99.59(14)	Co(1)-O(5)-Co(4)	97.74(13)

Co(4)#2-O(2)-Co(1)	96.64(13)	Co(2)#2-O(6)-Co(3)	94.03(12)
Co(4)-O(3)-Co(2)	99.37(14)	Co(1)-O(7)-Co(4)#2	95.70(13)
Co(3)-O(4)-Co(2)	98.15(13)	Co(2)-O(8)-Co(4)	95.51(13)

Symmetry transformations used to generate equivalent atoms: #1 -y+3/2, -z+1, x-1/2,

#2 z+1/2, -x+3/2, -y+1.