Functional Tolerance in an Isoreticular Series of Highly Porous Metal-Organic Frameworks

Min Kim, Jake A. Boissonnault, Corinne A. Allen, Phuong V. Dau and Seth M. Cohen*

SUPPORTING INFORMATION

* To whom correspondence should be addressed. E-mail: <u>scohen@ucsd.edu</u> Telephone: (858) 822-5596.

General Methods for Metal-Organic Frameworks Experiments.

Starting materials and solvents were purchased and used without further purification from commercial suppliers (Sigma-Aldrich, Alfa Aesar, EMD, TCI, Cambridge Isotope Laboratories, Inc., and others). Proton nuclear magnetic resonance spectra (¹H NMR and ¹³C NMR) were recorded by a Varian FT-NMR spectrometer (400 MHz for ¹H/ 100 MHz for ¹³C). Carbon nuclear magnetic resonance spectroscopy was fully decoupled by broad band decoupling. Chemical shifts were quoted in parts per million (ppm) referenced to the appropriate solvent peak or 0 ppm for TMS. The following abbreviations were used to describe peak patterns when appropriate: br = broad, s = singlet, d= doublet, t = triplet, q = quartet, and m = multiplet. Coupling constants, *J*, were reported in Hertz unit (Hz).

Ligand Synthesis

AllyIO BDC-(3) synthesis. Dimethyl 2-hydroxyterephthalate (2 g, 9.5 mmol) and K₂CO₃ (2.6 g, 19 mmol) were dissolved in *N*,*N*-dimethylformaldehyde (DMF, 85 mL). Allyl bromide (1.4 g, 11.4 mmol) was added and the reaction was heated at 85 °C for 1 h. The mixture was cooled to room temperature, the K₂CO₃ was filtered off and water was added until a white solid precipitated. This was isolated by filtration, and obtained dimethyl 2-(allyloxy)terephthalate (1.8 g, 77%). ¹H NMR (CDCl₃, 400 MHz, 25 °C): δ 3.92 (d, 6H; CO₂CH₃), 4.68 (s, 2H, CH₂), 5.32 (d, 1H; CH), 5.53 (d, 1H; CH), 6.06 (m, 1H; Allyl CH), 7.63 (m, 2H; ArH) 7.82 (d, 1H; ArH). ESI-MS(+): m/z 250.88 [M+H]⁺, 272.91 [M+NH₄]⁺. Dimethyl 2-(allyloxy)terephthalate (1.8 g, 7.4 mmol) was dissolved in THF (30 mL) and a 4% KOH solution (30 mL) was added. This was stirred at room temperature for 1 h. Water (50 mL) was added and the mixture was washed twice with ether (2x30 mL). The aqueous layer was acidified to around pH 1 with conc. HCl to precipitate a white solid. After filtration the solid was dried under vacuum with heat. (1.5 g, 93%). ¹H NMR (*d*₆-DMSO, 400 MHz, 25 °C): δ 4.71 (s, 2H; CH₂), 5.27 (d, 1H; CH), 5.47 (d, 1H;

CH), 6.04 (m, 1H; Allyl CH), 7.55 (m, 2H; ArH), 7.69 (d, 1H, ArH). ESI-MS(+): m/z 222.80 [M-H]⁺.

 $OBnB(OH)_2 BDC$ (4) synthesis. Dimethyl 2-hydroxyterephthalate (0.293 g, 1.4 mmol) and Cs₂CO₃ (2.28 g, 7 mmol) were dissolved in THF (30 mL). (4-(bromomethyl)phenyl)boronic acid (0.350 g, 164 mmol) was added and the reaction was heated to reflux at 70 °C overnight. The mixture was cooled to room temperature, and solvent was removed by evaporation. H₂O (20 mL) was added to mixture and extracted with CH₂Cl₂ (20 mL) three times. The combined organic layer was dried with MgSO₄, after filtration and evaporation, the white solid ((4-((2,5-bis(methoxycarbonyl)phenoxy)methyl)phenyl)boronic acid) was isolated by column chromatography (0.420 g, 88%). ¹H NMR (CDCl₃, 400 MHz, 25 °C): δ 3.92 (d, 6H; CO₂CH₃), 5.18 (s, 2H, OCH₂), 7.39 (d, 2H; ArH) 7.52 (d, 2H; ArH), 7.65 (m, 2H; ArH), 7.85 (d, 1H; ArH).

(4-((2,5-Bis(methoxycarbonyl)phenoxy)methyl)phenyl)boronic acid (0.420 g, 1.2 mmol) was dissolved in THF (30 mL) and a 4% KOH solution (30 mL) was added. This was stirred at room temperature overnight. The organic layer was separated, and the aqueous layer was acidified to around pH 1 with 1M aqueous HCl solution to precipitate a white solid. After filtration the solid was dried under vacuum with heat (0.280 g, 89%). ¹H NMR (d_6 -DMSO, 400 MHz, 25 °C): δ 5.23 (s, 2H; OCH₂), 7.44 (d, 2H; ArH), 7.55 (m, 2H; ArH), 7.59 (d, 2H; ArH), 7.70 (d, 1H; ArH). ¹³C NMR (d_6 -DMSO, 100 MHz, 25 °C): δ 167.6, 157.0, 137.0, 135.1, 132.0, 129.9, 129.1, 127.7, 127.7, 126.8, 122.1, 121.5, 114.7, 69.6.

Dioxole BDC (5) synthesis. Dimethyl 2,3-dihydroxyterephthalate (1 g, 4.4 mmol) and CsF (2.98 g, 19.6

mmol) were dissolved in DMF (20 mL). CH_2Cl_2 (3 mL, excess) was added and the reaction was heated to reflux at 110 °C overnight. The mixture was cooled to room temperature, and water (50 mL) was added and then extracted with ethyl acetate (50 mL) three times. The organic layer was collected and dried with MgSO₄. The beige solid (dimethyl benzo[1,3]dioxole-4,7-dicarboxylate) was obtained by evaporation (0.9 g, 97%). ¹H NMR (*d*₆-DMSO, 400 MHz, 25 °C): δ 3.82 (s, 6H; CO₂CH₃), 6.28 (s, 2H, OCH₂O), 7.32 (s, 2H; ArH). ESI-MS(+): m/z 239.01 [M+H]⁺, 255.85 [M+NH₄]⁺.

Dimethyl benzo[1,3]dioxole-4,7-dicarboxylate (0.85 g, 3.6 mmol) was dissolved in THF (50 mL) and a 4% KOH solution (50 mL) was added. This was stirred at room temperature overnight. The organic layer was separated, and the aqueous layer was acidified to around pH 1 with conc. HCl to precipitate a white solid. After filtration the solid was dried under vacuum with heat (0.605 g, 80%). ¹H NMR (d_6 -DMSO, 400 MHz, 25 °C): δ 6.25 (s, 2H; OCH₂O), 7.27 (s, 2H; ArH). ¹³C NMR (d_6 -DMSO, 100 MHz, 25 °C): δ 165.3, 150.2, 122.3, 116.3, 103.6. ESI-MS(-): m/z 209.44 [M-H]⁻.

NH₂X BDC derivatives. 2-Amino-3-chloro-1,4-benzenedicarboxlyic acid, 2-Amino-5-chloro-1,4benzenedicarboxlyic acid, 2-Amino-3-bromo-1,4-benzenedicarboxlyic acid, 2-Amino-5-bromo-1,4benzenedicarboxlyic acid, and 2-Amino-5-iodo-1,4-benzenedicarboxlyic acid were prepared using a method previously described.¹

UMCM Synthesis

The UMCM-1 series was prepared and activated using a modified method from what has been previously described.²

UMCM-1-Br. Bromo-1,4-benzene dicarboxylic acid (Br-BDC, 66 mg, 0.27 mmol), 4,4',4"-benzene-1,3,5-triyl-tribenzoic acid (BTB, 39 mg, 0.09 mmol), and Zn(NO₃)₂•6H₂O (321 mg, 1.08 mmol) were dissolved in 10 mL of *N*,*N*-diethylformamide (DEF) in a scintillation vial. This was placed in a sand bath and placed into an isothermal oven at 85 °C. After 48 h, the vial was removed from the oven and left to cool to room temperature. Crystalline needle clusters formed in the vial. The mother liquid was decanted, and crystals were washed with 10 mL DMF (three times) and soaked with 10 mL CHCl₃ for 24 h. The crystal left to soak for 3 d with fresh CHCl₃ added every 24 h. After 3 days of soaking, the crystals were stored in the last CHCl₃ solution until needed.

UMCM-1-OAllyl. 2-(Allyloxy)-1,4-benzene dicarboxylic acid (**3**, 60 mg, 0.3 mmol), BTB (39 mg, 0.09 mmol), and Zn(NO₃)₂•6H₂O (321 mg, 1.08 mmol) were dissolved in *N*,*N*-dimethylformamide (DMF, 10 mL) in a scintillation vial. This was placed in a sand bath and placed into an isothermal oven at 85 °C. After 48 h, the vial was removed from the oven and left to cool to room temperature. Crystalline needle clusters formed in the vial. The mother liquid was decanted, and crystals were washed with 10 mL DMF (three times) and soaked with 10 mL CHCl₃ for 24 h. The crystal left to soak for 3 days with fresh CHCl₃ added every 24 h. After 3 d of soaking, the crystals were stored in the last CHCl₃ solution until needed.

*UMCM-1-OBnB(OH)*₂. 2-((4-boronobenzyl)oxy)terephthalic acid (4, 85 mg, 0.27 mmol), BTB (39 mg, 0.09 mmol), and Zn(NO₃)₂•6H₂O (321 mg, 1.08 mmol) were dissolved in DMF (10 mL) in a scintillation vial. This was placed in a sand bath and placed into an isothermal oven at 85 °C. After 48 h, the vial was removed from the oven and left to cool to room temperature. Crystalline needle clusters formed in the vial. The mother liquid was decanted, and crystals were washed with 10 mL DMF (three times) and soaked with 10 mL CHCl₃ for 24 h. The crystal left to soak for 3 d with fresh CHCl₃ added every 24 h. After 3 days of soaking, the crystals were stored in the last CHCl₃ solution until needed.

UMCM-1-Dioxole. Benzo[d][1,3]dioxole-4,7-dicarboxylic acid (**5**, 57 mg, 0.27 mmol), BTB (39 mg, 0.09 mmol), and Zn(NO₃)₂•6H₂O (321 mg, 1.08 mmol) were dissolved in DMF (10 mL) in a scintillation vial. This was placed in a sand bath and placed into an isothermal oven at 85 °C. After 48 h, the vial was removed from the oven and left to cool to room temperature. Crystalline needle clusters formed in the vial. The mother liquid was decanted, and crystals were washed with 10 mL DMF (three times) and soaked with 10 mL CHCl₃ for 24 h. The crystal left to soak for 3 d with fresh CHCl₃ added every 24 h. After 3 days of soaking, the crystals were stored in the last CHCl₃ solution until needed.

UMCM-1-[2,5-NH₂Cl]. 2-Amino-5-chloro-1,4-benzenedicarboxlyic acid (42 mg, 0.194 mmol), BTB (28 mg, 0.065 mmol), and Zn(NO₃)₂•6H₂O (230 mg, 0.776 mmol) were dissolved in DMF (10 mL). The vial was placed in a sand bath, and the sand bath was transferred to an isothermal oven heated at 85 °C. After 48 h, the vial was removed from the oven and left to cool to room temperature. Crystalline needle clusters formed in the vial. The mother liquid was decanted, and crystals were washed with 10 mL DMF (three times) and soaked with 10 mL CHCl₃ for 24 h. The crystal left to soak for 3 d with fresh CHCl₃ added every 24 h. After 3 days of soaking, the crystals were stored in the last CHCl₃ solution until needed.

UMCM-1-[2,5-NH₂Br]. 2-Amino-5-bromo-1,4-benzenedicarboxlyic acid (50 mg, 0.194 mmol), BTB (28 mg, 0.065 mmol), and Zn(NO₃)₂•6H₂O (230 mg, 0.776 mmol) were dissolved in DMF (10 mL). The vial was placed in a sand bath, and the sand bath was transferred to an isothermal oven heated at 85 °C. After 48 h, the vial was removed from the oven and left to cool to room temperature. Crystalline needle clusters formed in the vial. The mother liquid was decanted, and crystals were washed with 10 mL DMF (three times) and soaked with 10 mL CHCl₃ for 24 h. The crystal left to soak for 3 d with fresh CHCl₃ added every 24 h. After 3 days of soaking, the crystals were stored in the last CHCl₃ solution until needed.

*UMCM-1-[2,5-NH*₂*I]*. 2-Amino-5-iodo-1,4-benzenedicarboxlyic acid (60 mg, 0.194 mmol), BTB (28 mg, 0.065 mmol), and Zn(NO₃)₂•6H₂O (230 mg, 0.776 mmol) were dissolved in DMF (10 mL). The vial was placed in a sand bath, and the sand bath was transferred to an isothermal oven heated at 85 °C. After 48 h, the vial was removed from the oven and left to cool to room temperature. Crystalline needle clusters formed in the vial. The mother liquid was decanted, and crystals were washed with 10 mL DMF (three times) and soaked with 10 mL CHCl₃ for 24 h. The crystal left to soak for 3 days with fresh CHCl₃ added every 24 h. After 3 d of soaking, the crystals were stored in the last CHCl₃ solution until needed.

Postsynthetic modification of UMCM-1-[2,5-NH₂X]

UMCM-1-[2,5-AM1X]. Approximately 0.04 mmol of UMCM-1-[2,5-NH₂X] was placed in a vial with 4 equiv. of acetic anhydride (16 mg, 0.16 mmol) in 2 mL of CHCl₃. The mixture was heated in an oven at 55 °C for 24 h, after which the solution was decanted, and a fresh solution of acid anhydride (in 2 mL of CHCl₃) was added to the vial again and heated for an additional 24 h. The product was washed with 10 mL of CHCl₃ three times and the crystal left to soak for 3 d with fresh CHCl₃ added every 24 h. After 3 d of soaking, the crystals were stored in the last CHCl₃ solution until needed.

UMCM-1-[2,5-AMButeneX]. Approximately 0.04 mmol of UMCM-1-[2,5-NH₂X] was placed in a vial with 4 equiv. of 4-pentenoic anhydride (29 mg, 0.16 mmol) in 2 mL of CHCl₃. The mixture was heated in an oven at 55 °C for 24 h, after which the solution was decanted, and a fresh solution of acid anhydride (in 2 mL of CHCl₃) was added to the vial again and heated for an additional 24 h. The product was washed with 10 mL of CHCl₃ three times and the crystal left to soak for 3 d with fresh CHCl₃ added every 24 h. After 3 d of soaking, the crystals were stored in the last CHCl₃ solution until needed.

UMCM-1-[2,5-AMPhX]. Approximately 0.04 mmol of UMCM-1-[2,5-NH₂X]was placed in a vial with 4 equiv. of benzoic anhydride (36 mg, 0.16 mmol) in 2 mL of CHCl₃. The mixture was heated in an oven at 55 °C for 24 h, after which the solution was decanted, and a fresh solution of acid anhydride (in 2 mL of CHCl₃) was added to the vial again and heated for an additional 24 h. The product was washed with 10 mL of CHCl₃ three times and the crystal left to soak for 3 d with fresh CHCl₃ added every 24 h. After 3 d of soaking, the crystals were stored in the last CHCl₃ solution until needed.

UMCM-1-[2,5-AMtBuX]. Approximately 0.04 mmol of UMCM-1-[2,5-NH₂X]was placed in a vial with 4 equiv. of trimethylacetic anhydride (30 mg, 0.16 mmol) in 2 mL of CHCl₃. The mixture was heated in an oven at 55 °C for 24 h, after which the solution was decanted, and a fresh solution of acid anhydride (in 2 mL of CHCl₃) was added to the vial again and heated for an additional 24 h. The product was washed with 10 mL of CHCl₃ three times and the crystal left to soak for 3 d with fresh CHCl₃ added every 24 h. After 3 d of soaking, the crystals were stored in the last CHCl₃ solution until needed.

Postsynthetic Deprotection (PSD) trials

UMCM-1-OAlly, UMCM-1-OBnB(OH)₂, and UMCM-1-Dioxole were used in an attempt to generate a phenol group in the UMCM pore by chemical postsynthetic deprotection. The OAllyl group deprotection was performed using a previously reported procedure with LiCl/NaBH₄ condition.³ The OBnB(OH)₂ group deprotection was performed using a previously reported procedure with H₂O₂ condition.⁴ Lastly, deprotection of the dioxole group was performed with Pb(OAc)₄.⁵ However, the PXRD pattern of all UMCM materials after treatment changed completely to amorphous patterns indicating the collapse or destruction of the frameworks. In addition, the ¹H NMR spectra of digested samples showed no conversion to HO-BDC from protected BDCs.

Fig. S1 The X-ray crystal structure of UMCM-1-Br; framework (left) and small cage (right). Color scheme: Zn (green), O (red), C (gray), Br (brown).

Fig. S2 The X-ray crystal structure of UMCM-1-OAllyl; framework (left) and small cage (right). Color scheme: Zn (green), O (red), C (gray).

Fig. S3 The X-ray crystal structure of UMCM-1-OBnB(OH)₂; framework (left) and small cage (right). Color scheme: Zn (green), O (red), C (gray).

Identification	UMCM-1-Br	UMCM-1-	UMCM-1-
code		OAllyl	OBnB(OH) ₂
Empirical	C ₄₄ H0 Br _{0.50}	C46 H0 O15 Zn4	C46 H0 O14 Zn4
formula	O ₁₃ Zn ₄		
Formula weight	1037.88	1053.94	1037.94
Temperature	200(2) K	200(2) K	200(2) K
Wavelength	0.71073 Å	0.71073 Å	0.71073 Å
Crystal system	Hexagonal	Hexagonal	Hexagonal
Space group	P63/m	P63/m	P63/m
Unit cell	a = b =	a = b =	a = b = 41.283(3) Å
dimensions	41.336(3) Å	41.351(4) Å	c = 17.5145(11) Å
	c = 17.554(3) Å	c =	$\alpha = \beta = 90^{\circ}$
	$\alpha = \beta = 90^{\circ}$	17.5266(16) Å	$\gamma = 120^{\circ}$
	$\gamma = 120^{\circ}$	$\alpha = \beta = 90^{\circ}$	
		$\gamma = 120^{\circ}$	
Volume	25976(5) Å ³	25953(4) Å ³	25850(3) Å ³
Ζ	6	6	6
Density (calculated)	0.398 Mg/m ³	0.405 Mg/m ³	0.400 Mg/m ³
Absorption	0.678 mm ⁻¹	0.565 mm ⁻¹	0.567 mm ⁻¹
coefficient			
F(000)	3033	3096	3048
Crystal size	0.15 x 0.10 x	0.15 x 0.10 x	0.15 x 0.10 x 0.10
	0.10 mm ³	0.10 mm ³	mm ³
Theta range for	0.99 to 25.44°.	1.14 to 25.37°.	0.99 to 25.39°.
data collection			
Index ranges	-44<=h<=47,	-49<=h<=37,	-46<=h<=49,
	-49<=k<=41,	-34<=k<=49,	-48<=k<=49,
	-21<=l<=21	-21<=l<=21	-21<=l<=21
Reflections	306780	170316	118540
collected			
Independent	16515 [R(int) =	16412 [R(int) =	16408 [R(int) =
reflections	0.1426	0.0000	0.0944
Completeness to	99.5 %	99.7 %	100.0 %
theta = 25.44°	16515 / 0 / 240	16410 / 0 / 220	1(417/0/150
Data / restraints /	16515/0/348	16412/0/338	1641//0/152
Coodnoss of fit	1.050	0.624	0.700
	1.030	0.024	0.709
$\frac{\text{on } F^2}{F^2}$	D1 0.0716		D1 0.0652 D2
Final K indices	KI = 0.07/16,	KI = 0.0621,	KI = 0.0653, WR2 = 0.1022
$\frac{[1>2\text{sigma}(1)]}{\text{Drinding}}$	WK2 = 0.1895	WK2 = 0.1/90	0.1933
K indices (all	KI = 0.1190,	KI = 0.0819,	$K_1 = 0.10/2, WK_2 = 0.2102$
Uala)	WKZ = 0.2129	WKZ = 0.1960	U.2193
Largest diff peak	1.094 and -	0.809 and -	1.101 and -0.555
and note	0.573 e.A-3	0.519 e.A-3	e.A-3

Table S1 Crystal data and structure refinement for UMCM-1-Br, OAlly, and OBnB(OH)₂.

Fig. S4 ¹H NMR analysis of UMCM-1-Br, OAllyl, OBnB(OH)₂, and Dioxole materials.

Fig. S5 Thermogravimetric analysis (TGA) of mono- and bi- functionalized UMCM-1 materials.

Table S2 Brunauer-Emmett-Teller (BET) surface area of pre-functionalized UMCM materials.^a

UMCM	BET Surface Area (m ² /g)
UMCM-1-Br	3782
UMCM-1-OAllyl	3513
UMCM-1-OBnB(OH) ₂	3351

^{*a*} The average surface area number was determined from two independent samples.

Fig. S6 The X-ray crystal structure of UMCM-1-[2,5-NH₂Cl]; framework (left) and small cage (right). Due to the disorder of the Cl atom on the functionalized benzene dicarboxylate ligands, the amino cannot be determined. Color scheme: Zn (green), O (red), C (gray), Cl (cyan).

Fig. S7 The X-ray crystal structure of UMCM-1-[2,5-NH₂Br]; framework (left) and small cage (right). Due to the disorder of the Br atom on the functionalized benzene dicarboxylate ligands, the amino cannot be determined. Color scheme: Zn (green), O (red), C (gray), Br (brown).

Fig. S8 The X-ray crystal structure of UMCM-1-[2,5-NH₂I]; framework (left) and small cage (right). Due to the disorder of the I atom on the functionalized benzene dicarboxylate ligands, the amino cannot be determined. Color scheme: Zn (green), O (red), C (gray), I (purple).

Identification	UMCM-1-[2,5-	UMCM-1-[2,5-	UMCM-1-[2,5-	UMCM-1-
code	NH ₂ Cl]	NH ₂ Br]	NH ₂ I]	Dioxole
Empirical	C ₄₂ H ₁₇ Cl N ₀ O ₁₃	C ₄₄ H ₀ Br N ₀ O ₁₃	C _{43.50} H ₁₈ I N ₀	C ₄₄ H ₀ O ₁₃ Zn ₄
formula	Zn ₄	Zn ₄	O ₁₃ Zn ₄	
Formula weight	1026.49	1077.83	1136.96	997.92
Temperature	200(2) K	200(2) K	200(2) K	200(2) K
Wavelength	0.71073 Å	0.71073 Å	0.71073 Å	0.71073 Å
Crystal system	Hexagonal	Hexagonal	Hexagonal	Hexagonal
Space group	P63/m	P63/m	P63/m	P63/m
Unit cell	a = b = 41.247(7)	a = b = 41.285(8)	a = b = 41.345(2)	a = b = 41.367(4)
dimensions	Å	Å	Å	Å
	c = 17.447(3) Å	c = 17.489(3) Å	c = 17.5177(9) Å	c = 17.5389(17)
	$\alpha = \beta = 90^{\circ}$	$\alpha = \beta = 90^{\circ}$	$\alpha = \beta = 90^{\circ}$	A
	$\gamma = 120^{\circ}$	$\gamma = 120^{\circ}$	$\gamma = 120^{\circ}$	$\alpha = \beta = 90^{\circ}$
X 7 1	. 2	. 2		$\gamma = 120^{\circ}$
Volume	25706(8) Å ³	25815(8) Å ³	25932(2) Å ³	25992(4) Å ³
Ζ	6	6	6	6
Density (aslaulated)	0.398 Mg/m ³	0.416 Mg/m ³	0.437 Mg/m ³	0.383 Mg/m ³
(calculated)	0.504 1	0 700 1	0.542 1	0.500 1
coefficient	0.584 mm ⁻¹	0.799 mm ⁻¹	0.743 mm^{-1}	0.563 mm ⁻¹
F(000)	3060	3138	3336	2928
Crystal size	0.15 x 0.10 x	0.15 x 0.10 x	0.15 x 0.10 x	0.15 x 0.10 x
	0.10 mm ³	0.10 mm ³	0.10 mm ³	0.10 mm ³
Theta range for	1.30 to 17.25°.	1.30 to 20.84°.	1.29 to 25.37°.	1.50 to 25.37°.
data collection				
Index ranges	-34<=h<=26,	-41<=h<=29,	-48<=h<=46,	-49<=h<=49,
	-21<=k<=34,	-41<=k<=38,	-35<=k<=49,	-49<=k<=49,
	-10<=l<=14	- 17<=l<=17	-11<=1<=21	-21<=l<=21
Reflections	63917	67885	119356	239558
collected				
Independent	5485 [R(int) =	9420 [R(int) =	16412 [R(int) =	16465 [R(int) =
reflections	0.1453]	0.1998]	0.1495]	0.1256]
Completeness to	99.7 %	99.8 %	99.9 %	99.9 %
theta = 25.44°				
Data / restraints /	5485 / 3 / 148	9420 / 0 / 166	16412 / 4 / 150	16467 / 4 / 142
parameters				
Goodness-of-fit	1.038	0.861	0.775	0.780
on F ²				
Final R indices	R1 = 0.0966,	R1 = 0.0713,	R1 = 0.0819,	R1 = 0.0683,
[I>2sigma(I)]	wR2 = 0.2456	wR2 = 0.1746	wR2 = 0.2308	wR2 = 0.1981
R indices (all	R1 = 0.1271,	R1 = 0.1430,	R1 = 0.1266,	R1 = 0.1220,
data)	wR2 = 0.2671	wR2 = 0.1993	wR2 = 0.2640	wR2 = 0.2385
Largest diff. peak	1.182 and -0.904	0.983 and -0.462	2.293 and -0.810	1.007 and -0.757
and hole	e.Å-3	e.Å-3	e.Å-3	e.Å-3

Fig. S9 ¹H NMR spectra of UMCM-1-[2,5-NH₂Cl] and postsynthetic modified UMCM-1-[2,5-AMCl] after acid digestion. Filled circles indicate 2,5-NH₂Cl-BDC, and open squares indicate modified ligands.

Fig. S10 ¹H NMR spectra of UMCM-1-[2,5-NH₂Br] and postsynthetic modified UMCM-1-[2,5-AMBr]after acid digestion. Filled circles indicate 2,5-NH₂Br-BDC, and open squares indicate modified ligands.

Fig. S11 ¹H NMR spectra of UMCM-1-[2,5-NH₂I]and postsynthetic modified UMCM-1-[2,5-AMI]after acid digestion. Filled circles indicate 2,5-NH₂I-BDC, and open squares indicate modified ligands.

Fig. S12 ESI-MS spectra of UMCM-1-[2,5-NH₂X] after acid digestion; a) X = Cl, b) X = Br, c) X = I.

UMCM	BET Surface Area (m ² /g)
UMCM-1-Dioxole	3858
UMCM-1-[2,5-NH ₂ Cl]	3596
UMCM-1-[2,5-NH ₂ Br]	3599
UMCM-1-[2,5-NH ₂ I]	3270

Table S4 Brunauer-Emmett-Teller (BET) surface area of bifunctional UMCM-1 materials.^a

^{*a*} The average surface area number was determined from two independent samples.

Fig. S13 The X-ray crystal structure of UMCM-1-Dioxole framework (left) and small cage (right). Color scheme: Zn (green), O (red), C (gray).

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is The Royal Society of Chemistry 2012

Fig. S14 ESI-MS spectra of UMCM-1-[2,5-AM1X] after acid digestion; a) X = Cl, b) X = Br, c) X = I.

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is The Royal Society of Chemistry 2012

Fig. S15 ESI-MS spectra of UMCM-1-[2,5-AMButeneX] after acid digestion; a) X = Cl, b) X = Br, c) X = I.

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is The Royal Society of Chemistry 2012

Fig. S16 ESI-MS spectra of UMCM-1-[2,5-AMPhX] after acid digestion; a) X = Cl, b) X = Br, c) X = I.

Table S5 BrunaueAMX] materials. ^a	er-Emmett-Teller (BET) surface are	a of postsynthetically modified UN	/ICM-1-[2,5-
	UMCM	BET Surface Area (m^2/g)]

UMCM	BET Surface Area (m ² /g)
UMCM-1-[2,5-AM1Cl]	3051
UMCM-1-[2,5-AM1Br]	3528
UMCM-1-[2,5-AM1I]	2810
UMCM-1-[2,5-AMButeneCl]	3221
UMCM-1-[2,5-AMButeneBr]	3196
UMCM-1-[2,5-AMButeneI]	3517
UMCM-1-[2,5-AMPhCl]	2756
UMCM-1-[2,5-AMPhBr]	2872
UMCM-1-[2,5-AMPhI]	2830

^a The average surface area number was determined from two independent samples.

Fig. S17 N₂ isotherm (77 K) of postsynthetically modified UMCM-1-[2,5-AMX].

Fig. S18 TGA of the modified UMCM-1-[2,5-AMX].

Scheme S1 Chemical postsynthetic deprotection trials from protected UMCMs.

References

- 1. M. Kim, J. A. Boissonnault, P. V. Dau and S. M. Cohen, *Angew. Chem. Int. Ed.*, 2011, **50**, 12193-12196.
- 2. Z. Wang, K. K. Tanabe and S. M. Cohen, *Inorg. Chem.*, 2009, **48**, 296-306.
- 3. S. R. Ram, K. P. Chary, S. Salahuddin and D. S. Iyengar, *Synth. Commun.*, 2002, **32**, 133-137.
- 4. J. L. M. Jourden and S. M. Cohen, *Angew. Chem. Int. Ed.*, 2010, **49**, 6795-6797.
- 5. P. G. M. Wuts, T. W. Greene and T. W. Greene, *Greene's protective groups in organic synthesis*, 4th edn., Wiley-Interscience, Hoboken, N.J., 2007.