Supplementary material for

Variation in the biomolecular interactions of nickel(II) hydrazone complexes upon tuning the hydrazide fragment

Paramasivam Krishnamoorthy,^a Palanisamy Sathyadevi,^a Rachel R. Butorac,^b Alan H. Cowley,^b Nattamai S.P. Bhuvanesh,^c and Nallasamy Dharmaraj ^{a,*}

^a Department of Chemistry, Bharathiar University, Coimbatore - 641 046, India E-mail address: dharmaraj@buc.edu.in; Tel.: +91 422 2428316; Fax: +91 422 2422387

^b Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, Texas 78712, U.S.A

^c Department of Chemistry, Texas A&M University, College Station, TX 77843, U.S.A.

Figures

Figure S1. Unit cell packing diagram of the complex 4.

Figure S2. Unit cell packing diagram of the complex 5.

Figure S3. Electronic absorption spectra of ligands **1-3** (25 μ M) in the absence and presence of increasing amounts of CT DNA (2.5, 5.0, 7.5, 10.0, 12.5, 15.0, 17.5 and 20.0, 22.5 and 25 μ M). Arrows show the changes in absorbance as a function of increasing DNA concentration (Inset: Plot of [DNA] vs [DNA]/(ϵ_a - ϵ_f)).

Figure S4. Electronic absorption spectra of complexes **4** and **5** (25 μ M) in the absence and presence of increasing amounts of CT DNA (2.5, 5.0, 7.5, 10.0, 12.5, 15.0, 17.5 and 20.0, 22.5 and 25 μ M). Arrows show the changes in absorbance as a function of increasing DNA concentration (Inset: Plot of [DNA] vs [DNA]/(ϵ_a - ϵ_f)).

Figure S5. Emission spectra of DNA-EB, in the presence of 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130,140 and 150 μ M of ligands 1-3. Arrow indicates the change in the emission intensity as a function of ligand concentration (Inset: Stern-Volmer plot of the fluorescence titration data corresponding to the ligands).

Figure S6. Emission spectra of DNA-EB, in the presence of 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130,140 and 150 μ M of complexes 4 and 5. Arrow indicates the change in the emission intensity as a function of complex concentration (Inset: Stern-Volmer plot of the fluorescence titration data corresponding to the complex).

Figure S7. Emission spectra of BSA (1×10^{-6} M; $\lambda_{exi} = 280$ nm; $\lambda_{emi} = 345$ nm) as a function of concentration of the ligands **1-3** (0, 2, 4, 6, 8, 10, 12 and 14×10^{-7} M). Arrow indicates the effect of the ligands on the fluorescence emission of BSA (Inset: Plot between [Q] and I₀/I).

Figure S8. Emission spectra of BSA (1×10^{-6} M; $\lambda_{exi} = 280$ nm; $\lambda_{emi} = 345$ nm) as a function of concentration of the complexes **4** and **5** (0, 2, 4, 6, 8, 10, 12 and 14×10^{-7} M). Arrow indicates the effect of metal complexes **4** and **5** on the fluorescence emission of BSA (Inset: Plot between [Q] and I₀/I).

Figure S9. Synchronous spectra of BSA $(1 \times 10^{-6} \text{ M})$ as a function of concentration of the ligands **1-3** (0, 2, 4, 6, 8, 10, 12 and $14 \times 10^{-7} \text{ M}$) with wavelength difference of $\Delta \lambda = 15$ nm (a) and $\Delta \lambda = 60$ nm (b). Arrow indicates the change in emission intensity w.r.t various concentration of the ligands.

Figure S10. Synchronous spectra of BSA $(1 \times 10^{-6} \text{ M})$ as a function of concentration of the complexes **4** and **5** (0, 2, 4, 6, 8, 10, 12 and $14 \times 10^{-7} \text{ M}$) with wavelength difference of $\Delta \lambda = 15 \text{ nm}$ (a) and $\Delta \lambda = 60 \text{ nm}$ (b). Arrow indicates the change in emission intensity w.r.t various concentration of the complexes.

Figure S11. % Cell inhibition of NIH 3T3, HeLa, HepG-2 and A431 cell lines as a function of concentration of nickel hydrazones **4**, **5** and **6**.