**Supporting Information** 

## Quantifying factors that influence metal ion release in photocaged complexes using ZinCast derivatives

Celina Gwizdala,\*<sup>a</sup> Charlene V. Singh,<sup>a</sup> Tracey R. Friss,<sup>a</sup> John C. MacDonald<sup>b</sup> and Shawn C. Burdette\*<sup>b</sup>

<sup>a</sup> Department of Chemistry, University of Connecticut, Storrs, CT 06269-

3060, USA. E-mail: shawn.burdette@uconn.edu

<sup>b</sup> Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609-2280, USA. Email: <u>scburdette@wpi.edu</u>

| I.   | Spectroscopy Fitting Protocols |  |
|------|--------------------------------|--|
| П.   | Additional Spectroscopic Data  |  |
| III. | Complete X-ray Report          |  |
| III. | NMR of Products                |  |

Data Fitting Protocols.

Binding data was fitted with XLfit program using the Levenberg–Marquardt algorithm. Several equilibrium models were selected in order to achieve the best fit and parameter approximation for changes in absorption by the ligand (y) as a function of metal concentration (x). Affinity for binding of the metal (K<sub>D</sub>) was assigned to  $\frac{1}{2}ML_{max}$  where  $ML_{max}$  is the upper limit of the curve defined as maximum binding capacity. The following fitting models were selected for all K<sub>D</sub> determinations:

1. 
$$y = A + Bx + [\frac{(C-B)(1-\exp(-D)x)}{D}]$$

2. 
$$y = \frac{A+Bx}{1+Cx+Dx^2}$$

3. 
$$y = \frac{A}{[1+Bexp(-Cx)]^{\frac{1}{D}}}$$

4. 
$$y = Aexp[-\exp(B - Cx)]$$

5. 
$$y = \frac{A}{1 + Bexp(-Cx)}$$

All parameters were tabulated below

|           |                  |        |          |          | Para     | meter    |          |
|-----------|------------------|--------|----------|----------|----------|----------|----------|
|           |                  |        | Equation | Α        | В        | С        | D        |
|           |                  | MeCN   | N/A      | N/A      | N/A      | N/A      | N/A      |
|           | $Cu^{2+}$        | EtOH   | 2        | 0.006337 | 10787.91 | -41939.9 | 2.27E+09 |
|           |                  | Buffer | 2        | -0.00031 | 115445.3 | 222756.6 | 36007317 |
|           |                  | MeCN   | 3        | 0.370947 | -0.55448 | 174771.8 | 0.143991 |
| ZinCast-1 | Zn <sup>2+</sup> | EtOH   | 3        | 0.351268 | -1.50518 | 134524.6 | 0.055722 |
|           |                  | Buffer | 2        | -0.0012  | 3875.063 | 10109.89 | 2589954  |
|           |                  | MeCN   | 3        | 0.359653 | -3.94818 | 185815.2 | 0.006361 |
|           | $Cd^{2+}$        | EtOH   | 1        | -0.0056  | 4.34229  | 13653.63 | 41715.65 |
|           |                  | Buffer | 2        | -0.00146 | 734.7071 | 2356.68  | 3534.758 |
|           |                  | MeCN   | N/A      | N/A      | N/A      | N/A      | N/A      |
|           | Cu <sup>2+</sup> | EtOH   | 3        | 0.317422 | 1.348434 | 302076.4 | 0.519484 |
|           |                  | Buffer | 2        | -0.00808 | 10014.95 | 1808.931 | 3.2E+08  |
|           |                  | MeCN   | 3        | 0.615161 | -3.89187 | 152027.2 | 0.006888 |
| ZinUnc-1  | Zn <sup>2+</sup> | EtOH   | 2        | -0.00226 | 8935.359 | 18956.95 | 6881535  |
|           |                  | Buffer | 2        | 0.000568 | 97.46232 | 147.7034 | 230.9362 |
|           |                  | MeCN   | 2        | 0.001    | 19970.95 | 31783.55 | -127412  |
|           | $Cd^{2+}$        | EtOH   | 2        | -0.00197 | 494.3082 | 968.9761 | 4147.366 |
|           |                  | Buffer | 2        | 0.000417 | 26.53198 | 46.48144 | -9.30404 |

|           |                     |        |          |          | Para     | meter    |          |
|-----------|---------------------|--------|----------|----------|----------|----------|----------|
|           |                     |        | Equation | Α        | В        | С        | D        |
|           |                     | MeCN   | N/A      | N/A      | N/A      | N/A      | N/A      |
|           | $Cu^{2+}$           | EtOH   | 2        | 0.002698 | 11581.46 | -41109.6 | 2.26E+09 |
|           |                     | Buffer | N/A      | N/A      | N/A      | N/A      | N/A      |
|           |                     | MeCN   | 4        | 0.384744 | 1.096614 | 174088   | N/A      |
| ZinCast-2 | Zn <sup>2+</sup>    | EtOH   | 2        | 0.006634 | 1360.419 | 4295.127 | -97083.3 |
|           |                     | Buffer | N/A      | N/A      | N/A      | N/A      | N/A      |
|           |                     | MeCN   | 3        | 0.363537 | -3.84506 | 105226.5 | 0.007992 |
|           | $Cd^{2+}$           | EtOH   | 2        | -0.00023 | 413.5244 | 1239.445 | 5557.656 |
|           |                     | Buffer | N/A      | N/A      | N/A      | N/A      | N/A      |
|           |                     | MeCN   | N/A      | N/A      | N/A      | N/A      | N/A      |
|           | Cu <sup>2+</sup>    | EtOH   | 4        | 0.352159 | 1.325151 | 162444.6 |          |
|           |                     | Buffer | N/A      | N/A      | N/A      | N/A      | N/A      |
|           |                     | MeCN   | 2        | 0.00231  | 12046.11 | 19779.92 | -158071  |
| ZinUnc-2  | Zn <sup>2+</sup>    | EtOH   | N/A      | N/A      | N/A      | N/A      | N/A      |
|           |                     | Buffer | N/A      | N/A      | N/A      | N/A      | N/A      |
|           |                     | MeCN   | 2        | 0.011498 | 2506.327 | 3578.055 | 6076.577 |
|           | $\mathbf{Cd}^{2^+}$ | EtOH   | N/A      | N/A      | N/A      | N/A      | N/A      |
|           |                     | Buffer | N/A      | N/A      | N/A      | N/A      | N/A      |

|           |                  |        |          | Parameter |          |          |              |
|-----------|------------------|--------|----------|-----------|----------|----------|--------------|
|           |                  |        | Equation | Α         | В        | С        | D            |
|           |                  | MeCN   | N/A      | N/A       | N/A      | N/A      | N/A          |
|           | $Cu^{2+}$        | EtOH   | 3        | 0.253117  | -3.82371 | 56104.84 | 0.006915     |
|           |                  | Buffer | N/A      | N/A       | N/A      | N/A      | N/A          |
|           | 2                | MeCN   | 2        | 0.004463  | 16249.56 | 47002.98 | -<br>3309568 |
| ZinCast-3 | Zn <sup>2+</sup> | EtOH   | 2        | 0.00178   | 37.02968 | 216.0619 | -1947.49     |
|           |                  | Buffer | N/A      | N/A       | N/A      | N/A      | N/A          |
|           |                  | MeCN   | 2        | 0.008552  | 996.2301 | 1832.451 | 802014.9     |
|           | $Cd^{2+}$        | EtOH   | N/A      | N/A       | N/A      | N/A      | N/A          |
|           |                  | Buffer | N/A      | N/A       | N/A      | N/A      | N/A          |
|           |                  | MeCN   | N/A      | N/A       | N/A      | N/A      | N/A          |
|           | $Cu^{2+}$        | EtOH   | N/A      | N/A       | N/A      | N/A      | N/A          |
|           |                  | Buffer | N/A      | N/A       | N/A      | N/A      | N/A          |
|           |                  | MeCN   | N/A      | N/A       | N/A      | N/A      | N/A          |
| ZinUnc-3  | Zn <sup>2+</sup> | EtOH   | 1        | 0.019111  | 0.641237 | 60.32722 | 204.5505     |
|           |                  | Buffer | N/A      | N/A       | N/A      | N/A      | N/A          |
|           |                  | MeCN   | N/A      | N/A       | N/A      | N/A      | N/A          |
|           | Cd <sup>2+</sup> | EtOH   | N/A      | N/A       | N/A      | N/A      | N/A          |
|           |                  | Buffer | N/A      | N/A       | N/A      | N/A      | N/A          |

|           |                  |        |          |          | Para     | meter    |          |
|-----------|------------------|--------|----------|----------|----------|----------|----------|
|           |                  |        | Equation | Α        | В        | С        | D        |
|           |                  | MeCN   | N/A      | N/A      | N/A      | N/A      | N/A      |
|           | $Cu^{2+}$        | EtOH   | 5        | 0.091073 | 12.03822 | 327762.8 | N/A      |
|           |                  | Buffer | N/A      | N/A      | N/A      | N/A      | N/A      |
|           |                  | MeCN   | N/A      | N/A      | N/A      | N/A      | N/A      |
| ZinCast-4 | Zn <sup>2+</sup> | EtOH   | 5        | 0.136268 | 13.97318 | 227696.1 | N/A      |
|           |                  | Buffer | 3        | 0.09706  | -3.51397 | 131530   | 0.009581 |
|           |                  | MeCN   | N/A      | N/A      | N/A      | N/A      | N/A      |
|           | $Cd^{2+}$        | EtOH   | 3        | 0.107343 | 1.268591 | 326996.5 | 0.451497 |
|           |                  | Buffer | 2        | 0.000447 | 4208.884 | -4975.91 | 6.09E+08 |
|           |                  | MeCN   | N/A      | N/A      | N/A      | N/A      | N/A      |
|           | $Cu^{2+}$        | EtOH   | 2        | 0.004372 | 10677.93 | -45408.2 | 2E+09    |
|           |                  | Buffer | N/A      | N/A      | N/A      | N/A      | N/A      |
|           |                  | MeCN   | N/A      | N/A      | N/A      | N/A      | N/A      |
| ZinUnc-4  | Zn <sup>2+</sup> | EtOH   | 3        | 0.412474 | -1.49224 | 142599.4 | 0.061138 |
|           |                  | Buffer | 2        | -0.00408 | 6635.591 | 15904.89 | 425031.6 |
|           |                  | MeCN   | N/A      | N/A      | N/A      | N/A      | N/A      |
|           | $Cd^{2+}$        | EtOH   | 1        | -0.00879 | -2.46832 | 23546.69 | 63045.78 |
|           |                  | Buffer | 2        | -0.00329 | 7805.349 | 18651.11 | 314529.2 |

|           |                  |        |          |          | Para     | meter    |          |
|-----------|------------------|--------|----------|----------|----------|----------|----------|
|           |                  |        | Equation | Α        | В        | С        | D        |
|           |                  | MeCN   | N/A      | N/A      | N/A      | N/A      | N/A      |
|           | $Cu^{2+}$        | EtOH   | 5        | 0.056872 | 17.96121 | 211296.2 | N/A      |
|           |                  | Buffer | N/A      | N/A      | N/A      | N/A      | N/A      |
|           |                  | MeCN   | N/A      | N/A      | N/A      | N/A      | N/A      |
| ZinCast-5 | Zn <sup>2+</sup> | EtOH   | 3        | 0.105775 | 1.808159 | 153244.6 | 0.66402  |
|           |                  | Buffer | 3        | 0.071566 | -3.94866 | 99973.54 | 0.006775 |
|           |                  | MeCN   | N/A      | N/A      | N/A      | N/A      | N/A      |
|           | $Cd^{2+}$        | EtOH   | 3        | 0.080784 | 1.977601 | 257394.3 | 0.648377 |
|           |                  | Buffer | 1        | -0.00142 | 16.95323 | 3763.374 | 61727.2  |







Figure S1 Titration of ZinCast-1 with Cu(ClO<sub>4</sub>)<sub>2</sub> in EtOH.







Figure S2 Titration of ZinCast-1 with Zn(ClO<sub>4</sub>)<sub>2</sub> in EtOH.







Figure S3 Titration of ZinCast-1 with Zn(ClO<sub>4</sub>)<sub>2</sub> in CH<sub>3</sub>CN.







Figure S4 Titration of ZinCast-1 with Cd(ClO<sub>4</sub>)<sub>2</sub> in EtOH.







Figure S5 Titration of ZinCast-1 with Cd(ClO<sub>4</sub>)<sub>2</sub> in CH<sub>3</sub>CN.

-0.15

-0.20

-0.25

-0.30 -

AAbs



0.5 eq 0.6 eq

0.7 eq 0.8 eq

0.9 eq

1.2 eq 1.4 eq



Figure S6 Titration of ZinCast-2 with Cu(ClO<sub>4</sub>)<sub>2</sub> in EtOH.







Figure S7 Titration of ZinCast-2 with Zn(ClO<sub>4</sub>)<sub>2</sub> in EtOH.







Figure S8 Titration of ZinCast-2 with Zn(ClO<sub>4</sub>)<sub>2</sub> in CH<sub>3</sub>CN.







Figure S9 Titration of ZinCast-2 with Cd(ClO<sub>4</sub>)<sub>2</sub> in EtOH.







Figure S10 Titration of ZinCast-2 with Cd(ClO<sub>4</sub>)<sub>2</sub> in CH<sub>3</sub>CN.





Figure S11 Titration of ZinCast-3 with Cu(ClO<sub>4</sub>)<sub>2</sub> in EtOH.







Figure S12 Titration of ZinCast-3 with Zn(ClO<sub>4</sub>)<sub>2</sub> in EtOH.







Figure S13 Titration of ZinCast-3 with Zn(ClO<sub>4</sub>)<sub>2</sub> in CH<sub>3</sub>CN.







Figure S14 Titration of ZinCast-3 with Cd(ClO<sub>4</sub>)<sub>2</sub> in CH<sub>3</sub>CN.







Figure S15 Titration of ZinCast-4 with Cu(ClO<sub>4</sub>)<sub>2</sub> in EtOH.







Figure S16 Titration of ZinCast-4 with Zn(ClO<sub>4</sub>)<sub>2</sub> in EtOH.







Figure S17 Titration of ZinCast-4 with Zn(ClO<sub>4</sub>)<sub>2</sub> in water.







Figure S18 Titration of ZinCast-4 with Cd(ClO<sub>4</sub>)<sub>2</sub> in EtOH







Figure S19 Titration of ZinCast-4 with Cd(ClO<sub>4</sub>)<sub>2</sub> in water.







Figure S20 Titration of ZinCast-5 with Cu(ClO<sub>4</sub>)<sub>2</sub> in EtOH.







Figure S21 Titration of ZinCast-5 with Zn(ClO<sub>4</sub>)<sub>2</sub> in EtOH.







Figure S22 Titration of ZinCast-5 with Zn(ClO<sub>4</sub>)<sub>2</sub> in water.



Figure S23 Titration of ZinCast-5 with Cd(ClO<sub>4</sub>)<sub>2</sub> in EtOH.



Figure S24 Titration of ZinCast-5 with Cd(ClO<sub>4</sub>)<sub>2</sub> in water.







Figure S25 Titration of ZinUnc-1 with Cu(ClO<sub>4</sub>)<sub>2</sub> in EtOH.







Figure S26 Titration of ZinUnc-1 with Zn(ClO<sub>4</sub>)<sub>2</sub> in EtOH.







Figure S27 Titration of ZinUnc-1 with Zn(ClO<sub>4</sub>)<sub>2</sub> in CH<sub>3</sub>CN.







Figure S28 Titration of ZinUnc-1 with Cd(ClO<sub>4</sub>)<sub>2</sub> in EtOH.







Figure S29 Titration of ZinUnc-1 with Cd(ClO<sub>4</sub>)<sub>2</sub> in CH<sub>3</sub>CN.







Figure S30 Titration of ZinUnc-2 with Cu(ClO<sub>4</sub>)<sub>2</sub> in EtOH.







Figure S31 Titration of ZinUnc-2 with Zn(ClO<sub>4</sub>)<sub>2</sub> in CH<sub>3</sub>CN.






Figure S32 Titration of ZinUnc-2 with Cd(ClO<sub>4</sub>)<sub>2</sub> in CH<sub>3</sub>CN.







Figure S33 Titration of ZinUnc-3 with Zn(ClO<sub>4</sub>)<sub>2</sub> in CH<sub>3</sub>CN.







Figure S34 Titration of ZinUnc-4 with Cu(ClO<sub>4</sub>)<sub>2</sub> in EtOH.







Figure S35 Titration of ZinUnc-4 with Zn(ClO<sub>4</sub>)<sub>2</sub> in EtOH

-0.3

-0.4





λ (nm)

30 eq

50 eq 70 eq

Figure S36 Titration of ZinUnc-4 with Zn(ClO<sub>4</sub>)<sub>2</sub> in water.







Figure S37 Titration of ZinUnc-4 with Cd(ClO<sub>4</sub>)<sub>2</sub> in EtOH.







Figure S38 Titration of ZinUnc-4 with Cd(ClO<sub>4</sub>)<sub>2</sub> in water.



Figure S39 Titration of DMAUnc with HCl in CH<sub>3</sub>CN.



Figure S40 Titration of DMAUnc with HCl in EtOH.



Figure S41 Titration of DMAUnc with HCl in water.



Figure S42 Titration of DMACast with HCl in CH<sub>3</sub>CN.



Figure S43 Titration of DMACast with HCl in EtOH.



Figure S44 Titration of DMACast with HCl in water.



Figure S45 Photolysis of ZinCast-4 in water.

Figure S46 Photolysis of ZinCast-5 in water.



Figure S47 Photolysis of *m*-OMeCast in water.

Figure S48 Photolysis of *m*-DMACast in water.

## Crystal Structure Report for [Zn(23)]Cl<sub>2</sub>

A colorless plate-like specimen of  $C_{19}H_{19}Cl_2N_3OZn$ , approximate dimensions 0.02 mm x 0.10 mm x 0.20 mm, was used for the X-ray crystallographic analysis. The X-ray intensity data were measured.

#### Table S1: Data collection details for [Zn(23)]Cl<sub>2</sub>.

| Axis                                                                                       | dx/mm                                                                                      | 20/°   | ω/°    | φ/°     | χ/°    | Width/° | Frames | Time/s | Wavele<br>ngth/Å | Voltage/<br>kV | Current<br>/mA | Temper<br>ature/K |
|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--------|--------|---------|--------|---------|--------|--------|------------------|----------------|----------------|-------------------|
| Phi                                                                                        | 49.323                                                                                     | -27.50 | 316.94 | -339.53 | -44.32 | 0.50    | 646    | 30.00  | 0.71073          | 20.00          | 5.00           | 100.02            |
| Phi                                                                                        | 49.323                                                                                     | -2.50  | 40.56  | -59.45  | -93.52 | 0.50    | 97     | 30.00  | 0.71073          | 20.00          | 5.00           | 100.02            |
| Phi                                                                                        | 49.323                                                                                     | 10.00  | 5.69   | -138.10 | 95.73  | 0.50    | 150    | 30.00  | 0.71073          | 20.00          | 5.00           | 100.02            |
| Omega                                                                                      | 49.323                                                                                     | 25.00  | 3.90   | -79.56  | -33.35 | 0.50    | 260    | 30.00  | 0.71073          | 20.00          | 5.00           | 100.02            |
| Omega                                                                                      | 49.323                                                                                     | 25.00  | 135.31 | -60.34  | -99.80 | 0.50    | 139    | 30.00  | 0.71073          | 20.00          | 5.00           | 100.02            |
| A total of 1292 frames were collected. The total exposure time was 10.77 hours. The frames |                                                                                            |        |        |         |        |         |        |        |                  |                |                |                   |
| were in                                                                                    | were integrated with the Bruker SAINT software package using a parrow-frame algorithm. The |        |        |         |        |         |        |        |                  |                |                |                   |

were integrated with the Bruker SAINT software package using a narrow-frame algorithm. The integration of the data using a monoclinic unit cell yielded a total of 17291 reflections to a maximum  $\theta$  angle of 26.19° (0.81 Å resolution), of which 3997 were independent (average redundancy 4.326, completeness = 98.7%, R<sub>int</sub> = 3.61%, R<sub>sig</sub> = 3.94%) and 2910 (72.80%) were greater than  $2\sigma(F^2)$ . The final cell constants of <u>a</u> = 7.7523(3) Å, <u>b</u> = 25.2982(11) Å, <u>c</u> = 10.7609(4) Å,  $\beta$  = 106.849(2)°, volume = 2019.82(14) Å<sup>3</sup>, are based upon the refinement of the XYZ-centroids of 4748 reflections above 20  $\sigma(I)$  with 5.100° < 2 $\theta$  < 48.92°. Data were corrected for absorption effects using the multi-scan method (SADABS). The ratio of minimum to maximum apparent transmission was 0.867. The calculated minimum and maximum transmission coefficients (based on crystal size) are 0.7545 and 0.9708.

The structure was solved and refined using the Bruker SHELXTL Software Package, using the space group P 1 21/c 1, with Z = 4 for the formula unit,  $C_{19}H_{19}Cl_2N_3OZn$ . The final anisotropic full-matrix least-squares refinement on F<sup>2</sup> with 236 variables converged at R1 = 3.43%, for the observed data and wR2 = 7.56% for all data. The goodness-of-fit was 1.006. The largest peak in the final difference electron density synthesis was 0.569 e<sup>-</sup>/Å<sup>3</sup> and the largest hole was -0.264 e<sup>-</sup>/Å<sup>3</sup> with an RMS deviation of 0.056 e<sup>-</sup>/Å<sup>3</sup>. On the basis of the final model, the calculated density was 1.452 g/cm<sup>3</sup> and F(000), 904 e<sup>-</sup>.

#### Table S2. Sample and crystal data for [Zn(23)]Cl<sub>2</sub>.

| Identification code    | [Zn(23)]Cl <sub>2</sub>    |                              |  |  |  |  |
|------------------------|----------------------------|------------------------------|--|--|--|--|
| Chemical formula       | $C_{19}H_{19}Cl_2N_3OZn$   |                              |  |  |  |  |
| Formula weight         | 441.64                     |                              |  |  |  |  |
| Temperature            | 100(2) K                   |                              |  |  |  |  |
| Wavelength             | 0.71073 Å                  |                              |  |  |  |  |
| Crystal size           | 0.02 x 0.10 x 0.20 m       | m                            |  |  |  |  |
| Crystal habit          | colorless plate            | colorless plate              |  |  |  |  |
| Crystal system         | monoclinic                 |                              |  |  |  |  |
| Space group            | P 1 21/c 1                 |                              |  |  |  |  |
| Unit cell dimensions   | a = 7.7523(3) Å            | $\alpha = 90^{\circ}$        |  |  |  |  |
|                        | b = 25.2982(11)  Å         | $\beta = 106.849(2)^{\circ}$ |  |  |  |  |
|                        | c = 10.7609(4)  Å          | $\gamma = 90^{\circ}$        |  |  |  |  |
| Volume                 | 2019.82(14) Å <sup>3</sup> |                              |  |  |  |  |
| Z                      | 4                          |                              |  |  |  |  |
| Density (calculated)   | $1.452 \text{ Mg/cm}^3$    |                              |  |  |  |  |
| Absorption coefficient | $1.493 \text{ mm}^{-1}$    |                              |  |  |  |  |
| F(000)                 | 904                        |                              |  |  |  |  |

## Table S3. Data collection and structure refinement for [Zn(23)]Cl<sub>2</sub>.

| Theta range for data collection     | 1.61 to 26.19°                                                          |                                                  |  |  |
|-------------------------------------|-------------------------------------------------------------------------|--------------------------------------------------|--|--|
| Index ranges                        | -9<=h<=8, -27<=k<=31, -11<=l<=13                                        |                                                  |  |  |
| <b>Reflections collected</b>        | 17291                                                                   |                                                  |  |  |
| Independent reflections             | 3997 [R(int) = 0.0                                                      | 361]                                             |  |  |
| Coverage of independent reflections | 98.7%                                                                   |                                                  |  |  |
| Absorption correction               | multi-scan                                                              |                                                  |  |  |
| Max. and min.<br>transmission       | 0.9708 and 0.7545                                                       |                                                  |  |  |
| Structure solution<br>technique     | direct methods                                                          |                                                  |  |  |
| Structure solution program          | SHELXS-97 (Sheldrick, 1990)                                             |                                                  |  |  |
| <b>Refinement method</b>            | Full-matrix least-squares on F <sup>2</sup>                             |                                                  |  |  |
| Refinement program                  | SHELXL-97 (Sheldrick, 1997)                                             |                                                  |  |  |
| Function minimized                  | $\Sigma w (F_o^2 - F_c^2)^2$                                            |                                                  |  |  |
| Data / restraints /<br>parameters   | 3997 / 0 / 236                                                          |                                                  |  |  |
| Goodness-of-fit on F <sup>2</sup>   | 1.006                                                                   |                                                  |  |  |
| $\Delta/\sigma_{max}$               | 0.001                                                                   |                                                  |  |  |
| Final R indices                     | 2910 data;<br>I>2σ(I)                                                   | R1 = 0.0343, wR2 = 0.0681                        |  |  |
|                                     | all data                                                                | R1 = 0.0608, wR2 = 0.0756                        |  |  |
| Weighting scheme                    | w=1/[ $\sigma^{2}(F_{o}^{2})$ +(0.0<br>where P=( $F_{o}^{2}$ +2 $F_{c}$ | 321P) <sup>2</sup> +0.8051P]<br><sup>2</sup> )/3 |  |  |
| Largest diff. peak and hole         | 0.569 and -0.264 e                                                      | eÅ <sup>-3</sup>                                 |  |  |
| R.M.S. deviation from mean          | 0.056 eÅ <sup>-3</sup>                                                  |                                                  |  |  |

## Table S4. Atomic coordinates and equivalent isotropic atomic displacement parameters $(\text{\AA}^2)$ for $[\text{Zn}(23)]\text{Cl}_2$ .

U(eq) is defined as one third of the trace of the orthogonalized  $U_{ij}$  tensor.

|     | x/a         | y/b          | z/c         | U(eq)       |
|-----|-------------|--------------|-------------|-------------|
| Zn1 | 0.31496(4)  | 0.626483(12) | 0.61727(3)  | 0.03314(10) |
| N1  | 0.1927(3)   | 0.55605(8)   | 0.65092(19) | 0.0336(5)   |
| N2  | 0.4504(3)   | 0.69325(8)   | 0.7157(2)   | 0.0346(5)   |
| C19 | 0.2352(4)   | 0.50801(11)  | 0.6180(3)   | 0.0412(7)   |
| C15 | 0.0543(3)   | 0.56119(11)  | 0.7016(2)   | 0.0349(6)   |
| C9  | 0.3635(3)   | 0.72222(11)  | 0.7834(2)   | 0.0345(6)   |
| C16 | 0.9566(4)   | 0.51796(12)  | 0.7197(3)   | 0.0482(7)   |
| C10 | 0.4392(4)   | 0.76679(12)  | 0.8502(3)   | 0.0464(7)   |
| C13 | 0.6141(4)   | 0.70930(12)  | 0.7140(3)   | 0.0431(7)   |
| C18 | 0.1434(4)   | 0.46350(12)  | 0.6330(3)   | 0.0499(8)   |
| C17 | 0.0013(5)   | 0.46872(13)  | 0.6839(3)   | 0.0565(9)   |
| C12 | 0.6969(4)   | 0.75322(12)  | 0.7790(3)   | 0.0497(8)   |
| C11 | 0.6078(4)   | 0.78259(13)  | 0.8477(3)   | 0.0524(8)   |
| C14 | 0.0125(3)   | 0.61666(10)  | 0.7339(2)   | 0.0359(6)   |
| C8  | 0.1783(3)   | 0.70271(10)  | 0.7795(3)   | 0.0361(6)   |
| N4  | 0.1836(3)   | 0.64473(8)   | 0.79058(19) | 0.0322(5)   |
| C1  | 0.2711(3)   | 0.62687(11)  | 0.9218(2)   | 0.0378(6)   |
| C6  | 0.1957(4)   | 0.63679(12)  | 0.0233(3)   | 0.0455(7)   |
| C2  | 0.4294(4)   | 0.59838(12)  | 0.9476(3)   | 0.0537(8)   |
| C5  | 0.2795(5)   | 0.61885(14)  | 0.1467(3)   | 0.0607(9)   |
| C4  | 0.4357(5)   | 0.59025(16)  | 0.1697(4)   | 0.0787(12)  |
| C3  | 0.5103(5)   | 0.57957(15)  | 0.0726(4)   | 0.0751(11)  |
| C7  | 0.9436(5)   | 0.67061(18)  | 0.0836(4)   | 0.0913(14)  |
| 01  | 0.0385(3)   | 0.66395(9)   | 0.98985(19) | 0.0596(6)   |
| Cl1 | 0.09130(9)  | 0.66432(3)   | 0.45323(6)  | 0.04294(18) |
| Cl2 | 0.54220(10) | 0.59284(3)   | 0.54751(8)  | 0.0549(2)   |

### Table S5. Bond lengths (Å) for [Zn(23)]Cl<sub>2</sub>..

| Zn1-N1  | 2.099(2)  | Zn1-N2  | 2.105(2)  |
|---------|-----------|---------|-----------|
| Zn1-Cl2 | 2.2712(7) | Zn1-Cl1 | 2.2943(7) |
| Zn1-N4  | 2.414(2)  | N1-C19  | 1.334(3)  |
| N1-C15  | 1.343(3)  | N2-C13  | 1.337(3)  |
| N2-C9   | 1.344(3)  | C19-C18 | 1.367(4)  |
| C15-C16 | 1.376(4)  | C15-C14 | 1.504(4)  |
| C9-C10  | 1.374(4)  | C9-C8   | 1.507(3)  |
| C16-C17 | 1.377(4)  | C10-C11 | 1.375(4)  |
| C13-C12 | 1.370(4)  | C18-C17 | 1.371(4)  |
| C12-C11 | 1.368(4)  | C14-N4  | 1.472(3)  |
| C8-N4   | 1.471(3)  | N4-C1   | 1.450(3)  |
| C1-C2   | 1.380(4)  | C1-C6   | 1.403(4)  |
| C6-O1   | 1.354(3)  | C6-C5   | 1.375(4)  |
| C2-C3   | 1.393(4)  | C5-C4   | 1.370(5)  |
| C4-C3   | 1.360(5)  | C7-O1   | 1.420(4)  |
|         |           |         |           |

### Table S6. Bond angles (°) for [Zn(23)]Cl<sub>2</sub>..

|             |            | 0           | • •        |
|-------------|------------|-------------|------------|
| N1-Zn1-N2   | 141.14(8)  | N1-Zn1-Cl2  | 99.87(6)   |
| N2-Zn1-Cl2  | 98.37(6)   | N1-Zn1-Cl1  | 102.03(6)  |
| N2-Zn1-Cl1  | 102.00(6)  | Cl2-Zn1-Cl1 | 112.81(3)  |
| N1-Zn1-N4   | 73.51(8)   | N2-Zn1-N4   | 73.64(7)   |
| Cl2-Zn1-N4  | 150.25(5)  | Cl1-Zn1-N4  | 96.93(5)   |
| C19-N1-C15  | 119.0(2)   | C19-N1-Zn1  | 124.67(18) |
| C15-N1-Zn1  | 116.22(18) | C13-N2-C9   | 117.9(2)   |
| C13-N2-Zn1  | 124.99(18) | C9-N2-Zn1   | 117.07(17) |
| N1-C19-C18  | 122.8(3)   | N1-C15-C16  | 121.2(3)   |
| N1-C15-C14  | 115.8(2)   | C16-C15-C14 | 123.0(2)   |
| N2-C9-C10   | 121.7(2)   | N2-C9-C8    | 115.4(2)   |
| C10-C9-C8   | 122.9(2)   | C15-C16-C17 | 119.1(3)   |
| C9-C10-C11  | 119.5(3)   | N2-C13-C12  | 123.1(3)   |
| C19-C18-C17 | 118.3(3)   | C18-C17-C16 | 119.7(3)   |
| C11-C12-C13 | 118.8(3)   | C12-C11-C10 | 119.0(3)   |
| N4-C14-C15  | 108.5(2)   | N4-C8-C9    | 108.7(2)   |
| C1-N4-C8    | 112.6(2)   | C1-N4-C14   | 111.4(2)   |
| C8-N4-C14   | 116.5(2)   | C1-N4-Zn1   | 120.63(15) |
| C8-N4-Zn1   | 97.83(14)  | C14-N4-Zn1  | 96.82(14)  |
| C2-C1-C6    | 118.9(3)   | C2-C1-N4    | 119.8(2)   |
| C6-C1-N4    | 121.3(2)   | 01-C6-C5    | 124.1(3)   |
| O1-C6-C1    | 115.4(2)   | C5-C6-C1    | 120.4(3)   |
| C1-C2-C3    | 119.8(3)   | C4-C5-C6    | 119.6(3)   |
| C3-C4-C5    | 121.1(3)   | C4-C3-C2    | 120.1(3)   |
| C6-O1-C7    | 118.9(3)   |             |            |
|             |            |             |            |

# Table S7. Anisotropic atomic displacement parameters (Å<sup>2</sup>) for $[Zn(23)]Cl_2$ ..

The anisotropic atomic displacement factor exponent takes the form:  $-2\pi^2$  [ h<sup>2</sup> a<sup>\*2</sup> U<sub>11</sub> + ... + 2 h k a<sup>\*</sup> b<sup>\*</sup> U<sub>12</sub> ]

|     | U <sub>11</sub> | U <sub>22</sub> | U <sub>33</sub> | U <sub>23</sub>  | U <sub>13</sub> | U <sub>12</sub> |
|-----|-----------------|-----------------|-----------------|------------------|-----------------|-----------------|
| Zn1 | 0.03179(17)     | 0.03425(18)     | 0.03475(17)     | -<br>0.00113(14) | 0.01180(12)     | 0.00203(14)     |
| N1  | 0.0323(12)      | 0.0352(13)      | 0.0320(12)      | 0.0013(10)       | 0.0071(9)       | 0.0017(10)      |
| N2  | 0.0306(12)      | 0.0385(14)      | 0.0375(12)      | -0.0036(10)      | 0.0142(10)      | 0.0010(10)      |
| C19 | 0.0422(16)      | 0.0343(17)      | 0.0416(16)      | -0.0004(13)      | 0.0036(13)      | 0.0079(14)      |
| C15 | 0.0334(15)      | 0.0389(17)      | 0.0288(13)      | 0.0028(12)       | 0.0034(11)      | -0.0038(13)     |
| C9  | 0.0358(15)      | 0.0333(15)      | 0.0364(14)      | -0.0003(12)      | 0.0135(12)      | 0.0034(12)      |
| C16 | 0.0487(18)      | 0.050(2)        | 0.0474(17)      | 0.0033(15)       | 0.0155(14)      | -0.0087(16)     |
| C10 | 0.0496(18)      | 0.0405(18)      | 0.0528(18)      | -0.0104(14)      | 0.0207(15)      | 0.0012(15)      |
| C13 | 0.0386(16)      | 0.0484(19)      | 0.0461(17)      | -0.0055(14)      | 0.0184(13)      | 0.0026(14)      |
| C18 | 0.057(2)        | 0.0343(18)      | 0.0480(17)      | 0.0043(14)       | -0.0011(15)     | 0.0042(15)      |
| C17 | 0.067(2)        | 0.040(2)        | 0.056(2)        | 0.0091(15)       | 0.0064(17)      | -0.0149(17)     |
| C12 | 0.0396(16)      | 0.051(2)        | 0.0611(19)      | -0.0071(16)      | 0.0191(15)      | -0.0095(15)     |
| C11 | 0.0520(19)      | 0.0422(19)      | 0.063(2)        | -0.0134(16)      | 0.0159(16)      | -0.0110(16)     |
| C14 | 0.0296(14)      | 0.0433(18)      | 0.0361(14)      | 0.0007(12)       | 0.0116(12)      | 0.0004(12)      |
| C8  | 0.0374(15)      | 0.0333(16)      | 0.0433(15)      | -0.0006(12)      | 0.0206(12)      | 0.0053(13)      |
| N4  | 0.0290(11)      | 0.0331(13)      | 0.0349(12)      | -0.0023(10)      | 0.0098(9)       | 0.0013(10)      |
| C1  | 0.0362(15)      | 0.0384(16)      | 0.0366(14)      | -0.0010(13)      | 0.0070(12)      | -0.0038(13)     |
| C6  | 0.0493(18)      | 0.0471(19)      | 0.0414(16)      | 0.0001(14)       | 0.0152(14)      | -0.0049(15)     |
| C2  | 0.0431(18)      | 0.059(2)        | 0.0526(19)      | 0.0055(16)       | 0.0033(15)      | 0.0062(16)      |
| C5  | 0.075(2)        | 0.067(2)        | 0.0388(18)      | 0.0019(16)       | 0.0145(16)      | -0.011(2)       |
| C4  | 0.075(3)        | 0.098(3)        | 0.049(2)        | 0.015(2)         | -0.004(2)       | 0.003(2)        |
| C3  | 0.058(2)        | 0.088(3)        | 0.065(2)        | 0.014(2)         | -0.0036(19)     | 0.018(2)        |
| C7  | 0.094(3)        | 0.129(4)        | 0.069(3)        | 0.005(2)         | 0.051(2)        | 0.021(3)        |
| 01  | 0.0663(15)      | 0.0727(16)      | 0.0486(12)      | 0.0025(11)       | 0.0305(11)      | 0.0110(12)      |
| Cl1 | 0.0403(4)       | 0.0460(4)       | 0.0399(4)       | 0.0101(3)        | 0.0075(3)       | 0.0017(3)       |
| Cl2 | 0.0462(4)       | 0.0541(5)       | 0.0733(5)       | -0.0163(4)       | 0.0313(4)       | 0.0028(4)       |

# Table S8. Hydrogen atomic coordinates and isotropic atomic displacement parameters $(\text{\AA}^2)$ for $[\text{Zn}(23)]\text{Cl}_2$ ..

|      | x/a     | y/b    | z/c    | U(eq) |
|------|---------|--------|--------|-------|
| H19  | 0.3335  | 0.5046 | 0.5825 | 0.049 |
| H16  | -0.1402 | 0.5220 | 0.7564 | 0.058 |
| H10  | 0.3755  | 0.7866 | 0.8978 | 0.056 |
| H13  | 0.6758  | 0.6893 | 0.6655 | 0.052 |
| H18  | 0.1771  | 0.4298 | 0.6089 | 0.06  |
| H17  | -0.0660 | 0.4385 | 0.6943 | 0.068 |
| H12  | 0.8140  | 0.7631 | 0.7764 | 0.06  |
| H11  | 0.6617  | 0.8134 | 0.8929 | 0.063 |
| H14A | -0.0588 | 0.6350 | 0.6543 | 0.043 |
| H14B | -0.0591 | 0.6160 | 0.7965 | 0.043 |
| H8A  | 0.1409  | 0.7183 | 0.8520 | 0.043 |
| H8B  | 0.0899  | 0.7134 | 0.6968 | 0.043 |
| H2   | 0.4831  | 0.5916 | 0.8802 | 0.064 |
| H5   | 0.2293  | 0.6262 | 1.2156 | 0.073 |
| H4   | 0.4928  | 0.5777 | 1.2549 | 0.094 |
| H3   | 0.6178  | 0.5593 | 1.0901 | 0.09  |
| H7A  | -0.0914 | 0.6359 | 1.1089 | 0.137 |
| H7B  | -0.1646 | 0.6919 | 1.0464 | 0.137 |
| H7C  | 0.0213  | 0.6886 | 1.1602 | 0.137 |



Figure S49 <sup>1</sup>H NMR of compound ZinCast-1, 1.



Figure S50 <sup>13</sup>C NMR of compound ZinCast-1, 1.





Figure S51. <sup>1</sup>H NMR of ZinUnc-1, 2.



Figure S52. <sup>13</sup>C NMR of ZinUnc-1 2.



Figure S53 <sup>1</sup>H NMR of compound ZinCast-2, 3.



NO<sub>2</sub> OH

Figure S54 <sup>13</sup>C NMR of compound ZinCast-2, 3



Figure S55 <sup>1</sup>H NMR of compound ZinCast-3, 4



Figure S56<sup>13</sup>C NMR of compound ZinCast-3, 4.





Figure S57 <sup>1</sup>H NMR of compound 9.



Figure S58 <sup>13</sup>C NMR of compound 9.



Figure S59 <sup>1</sup>H NMR of compound ZinUnc-2, 12.



Figure S60 <sup>13</sup>C NMR of compound ZinUnc-2, 12.



Figure S61 <sup>1</sup>H NMR of compound ZinUnc-3, 13.



Figure S62 <sup>13</sup>C NMR of compound ZinUnc-3, 13.


Figure S63 <sup>1</sup>H NMR of compound 15.



Figure S64 <sup>13</sup>C NMR of compound 15.



**Figure S65** <sup>1</sup>H NMR of compound **16**.



Figure S66. <sup>13</sup>C NMR of compound 16.



**Figure S67** <sup>1</sup>H NMR of compound **17**.



**Figure S68**<sup>13</sup>C NMR of compound **17**.







Figure S70<sup>13</sup>C NMR of compound 18.



**S71** <sup>1</sup>H NMR of compound DMAUnc, **21**.



Figure S72 <sup>13</sup>C NMR of compound DMAUnc, 21.











Figure S74 <sup>13</sup>C NMR of compound 23.





Figure S75 <sup>1</sup>H NMR of compound 24.



Figure S76 <sup>13</sup>C NMR of compound 24.







Figure S77 <sup>1</sup>H NMR of compound 25.



Figure S78<sup>13</sup>C NMR of compound 25.





Figure S79 <sup>1</sup>H NMR of compound ZinCast-4, 26.







Figure S80 <sup>13</sup>C NMR of compound ZinCast-4, 26.





Figure S81 <sup>1</sup>H NMR of compound 28.



Figure S82 <sup>13</sup>C NMR of compound 28







Figure S83 <sup>1</sup>H NMR of compound 29.





Figure S84 <sup>13</sup>C NMR of compound 29.



| Current Data Parameters<br>NAME CGC8<br>EXPNO 4<br>PROCNO 1 | F2 - Acquisition Parameters<br>Date14.32<br>Time14.32<br>INSTRUM spect<br>PROBHD 5 mm QNP 1H/1<br>PULPROG 32768<br>32768<br>TD 32768<br>SOLVENT CDC13<br>NS 16<br>DS 5592.841 Hz | KIDKES U.110000 Mt   AQ 2.9295093 sec   RG 2.9295093 sec   RG 89.400 usec   DW 6.00 usec   DE 6.00 usec   DI 1.50000000 sec   DI 1.50000000 sec | CHANNEL fl | F2 - Processing parameters<br>SF 400.14266 MHz<br>WDW 55B 0.14166 MHz<br>NDW 0.14166 MHz<br>BSB 0.30 Hz<br>CB 1.00<br>GB 0.30 Hz<br>CB 1.00 |  |
|-------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|------------|---------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                                             |                                                                                                                                                                                  |                                                                                                                                                 |            |                                                                                                                                             |  |

mdd



Figure S85 <sup>1</sup>H NMR of compound ZinCast-5, 30.





Figure S86 <sup>13</sup>C NMR of compound ZinCast-5, 30.



Figure S87 <sup>1</sup>H NMR of compound *m*-OMeCast, 33.



Figure S88 <sup>13</sup>C NMR of compound *m*-OMeCast, 33.

r



**S89** <sup>1</sup>H NMR of compound *m*-DMACast, **34**.



Figure S90 <sup>13</sup>C NMR of compound *m*-DMACast, 34.



Figure S91 <sup>1</sup>H NMR of compound ZinUnc-4, 35.

## Electronic Supplementary Material (ESI) for Dalton Transactions This journal is O The Royal Society of Chemistry 2012



Figure S92 <sup>13</sup>C NMR of compound ZinUnc-4, 35.