Electronic Supporting Information (ESI) for:

Isolation and characterization of unusual multinuclear Schiff base complexes: Rearrangements reactions and octanuclear cluster formation

Marta Martínez Belmonte,^a Eduardo C. Escudero-Adán,^a Eddy Martin,^a and Arjan W. Kleij^{*a,b}

^aInstitute of Chemical Research of Catalonia (ICIQ), Av. Països Catalans 16, 43007, Tarragona, Spain. E-mail: <u>akleij@iciq.es</u>; Fax: +34 977920224; Tel: +34 977920247

Å

^bCatalan Institute for Research and Advanced Studies (ICREA), Pg. Llu'ıs Companys 23, 08010, Barcelona, Spain

Contents:

Page S2:	Copies of NMR and MS spectra for compounds 1-11.
Page S33:	NMR conversion of 1 into 4 in DMSO- d_6 at 130°C.
Page S34:	Comparison of ¹ H NMR traces for the conversion of $1\rightarrow 2$.
Page S35:	Comparison of ¹ H NMR traces for the conversion of $3\rightarrow 7$.
Page S36:	Comparison of ¹ H NMR traces for the conversion of $4\rightarrow 8$.

Copies of NMR and MS spectra for compounds 1-11:¹

¹H NMR spectrum (DMSO- d_6) for 1:

*Please note the peak located around $\delta = 1.8$ ppm indicating the presence of OAc.

¹ Please note that in the case of the ${}^{13}C{}^{1}H$ NMR experiments DEPT was used. In some cases, the ${}^{13}C$ NMR traces are of mediocre quality as a result of the rather low solubility of the respective complexes.

MALDI(+) MS (dctb) for 1:

Calculated pattern for Zn_8 complex 1 ($C_{38}H_{40}N_4O_{12}Zn_4 \cdot dctb \cdot Na$):

Note the data for dctb below:

¹H NMR spectrum (DMSO- d_6) for **2**:

MALDI(+) MS (dctb) for 2:

Calculated pattern for Zn_8 complex 2 ($C_{82}H_{62}N_6O_{16}Zn_8$):

¹H NMR spectrum (DMSO- d_6) for **3**:

Note that complex 3 was not very soluble under the MS conditions used.

Calculated pattern for Zn_8 complex **3** ($C_{34}H_{32}N_4O_{12}Zn_4$):

¹H NMR spectrum (DMSO- d_6) for **4**:

MS analysis of 4:

Calculated pattern for Zn_8 complex 4 ($C_{42}H_{36}N_4O_{12}Zn_4 \cdot dctb \cdot Zn$):

Note the data for dctb below:

¹H NMR spectrum (Acetone- d_6) for **5**:

¹H NMR spectrum (DMSO- d_6) for **6**:

MALDI(+) MS (dctb) for 6 (enlargement):

Calculated pattern for Zn_8 complex 6 ($C_{88}H_{64}N_8O_{16}Zn_8$):

¹H NMR spectrum (DMSO- d_6) for 8:

¹H NMR spectrum (DMSO- d_6) for **8**, enlargement of aromatic region:

MALDI(+) MS (dctb) for 8:

MALDI(+) MS (dctb) for 8 (enlargement):

X-ray diffraction analysis for 8:

Displacement ellipsoids shown at the 50% probability level; note that the co-crystallized solvent molecules and H-atoms are omitted for clarity. Only a partial numbering scheme (for the Zn centres) is provided here.

¹H NMR spectrum (DMSO- d_6) for **9**:

¹H NMR (EXTENDED region) spectrum (DMSO- d_6) for **9**:

¹³C{¹H} NMR spectrum (DMSO- d_6) for **9**:

POV-RAY presentation of the X-ray structure determined for 10:

Note the presence of four 3,5-dimethylpyridines coordinating to some of the Zn centres that are highlighted in green. Co-crystallized solvent molecules and H-atoms are omitted for clarity.

¹H NMR (DMSO- d_6) of the crystalline material obtained for the conversion of **1** \rightarrow **10**:

Comparison between pure complex **6** and the crystalline material (**10**) obtained after treatment of **1** with pyridine:

On top in **RED**: aromatic region for the pure complex 6. Below, in **BLACK** the same aromatic region for the crystalline material of the conversion $1\rightarrow 10$.

MALDI(+) MS (dctb) for **10**, showing the cluster around m/z = 1445:

MALDI(+) MS (dctb) for **10**, showing the cluster around m/z = 2011:

Please note the resemblance with the isotopic cluster for complex **6**.

X-ray structure (ORTEP) determined for 11:

¹H NMR (DMSO- d_6) of the crystalline material obtained for the conversion of $4\rightarrow 11$:

Comparison between pure complex **8** and the crystalline material (**11**) obtained after treatment of **4** with pyridine:

On top in **RED**: aromatic region for the pure complex **8**.

Below, in **BLACK** the same aromatic region for the crystalline material of the conversion $4\rightarrow 11$.

MALDI(+) MS (dctb) for 11:

MALDI(+) MS (dctb) for **11**, showing the cluster around m/z = 1512:

Please note the resemblance with the isotopic cluster for complex 8.

NMR conversion of 1 into 6 in DMSO- d_6 at 130°C.

The salicylaldehyde used was 2,3-dihydroxy-benzaldehyde; the reaction was carried out in an NMR tube using DMSO- d_6 as solvent. Amounts: **1** (7.5 mg, 0.00746 mmol), 2,3-dihydroxy-benzaldehyde (2.0 mg, 0.0145 mmol) and DMSO- d_6 (0.5 mL).

Comparison of ¹H NMR traces for the conversion of $1 \rightarrow 2$.

Note that this experiment was repeated twice with virtually the same result. Below only the aromatic region is shown (DMSO- d_6):

On top, in **RED**, the pure crystalline complex 2 in DMSO- d_6 . Below in **BLACK** the complex isolated after treatment of 1 with 2,3dihydroxybenzaldehyde in pyridine. Some residual pyridine (reaction solvent) is also present.

Comparison of ¹H NMR traces for the conversion of $3\rightarrow 7$.

On top, in **RED**, the pure complex **7** in DMSO- d_6 ². Below in **BLACK** the complex isolated after treatment of **3** with 2,3-dihydroxybenzaldehyde in pyridine.

² For the synthesis and further analysis of this complex refer to: R. M. Haak, A. Decortes, E. C. Escudero-Adán, M. Martínez Belmonte, E. Martin, J. Benet-Buchholz and A. W. Kleij, *Inorg. Chem.*, 2011, **50**, 7934.

Comparison of ¹H NMR traces for the conversion of $4\rightarrow 8$.

On top, in **RED**, the independently prepared complex **8** in DMSO- d_6 . Below in **BLACK** the complex isolated after treatment of **4** with 2,3-dihydroxybenzaldehyde in pyridine. Traces of residual pyridine (reaction medium) are also present.