Supporting Information

Transition Metal Ion-Assisted Photochemical Generation of Alkyl Halides and Hydrocarbons from Carboxylic Acids

Jack M. Carraher, Oleg Pestovsky and Andreja Bakac

Ames Laboratory and Chemistry Department, Iowa State University, Ames, IA 50011

Fig. S1. Plot of product ratios $[\text{ROOH}]_{\text{tot}} - \Delta[\text{Fe}^{2+}] / \Delta[\text{Fe}^{2+}]$ vs. $[\text{FeBr}^{2+}] / [(\text{NH}_3)_5\text{CoBr}^{2+}]$ according to eq 15 for the CH₃/ FeBr²⁺.reaction **Fig. S2.** UV-vis absorption spectra of Fe³⁺/C₂H₅CO₂H/Br⁻ **Fig. S3.** UV-vis absorption spectra of Fe³⁺/C₂H₅CO₂H/Cl⁻

Figure S1. Plot of product ratios $[\text{ROOH}]_0 - \Delta[\text{Fe}^{2+}] / \Delta[\text{Fe}^{2+}]$ vs. $[\text{FeBr}^{2+}] / [(\text{NH}_3)_5\text{CoBr}^{2+}]$ according to eq 15. R = $(\text{CH}_3)_3\text{C}$. Concentrations: 0.57 – 0.62 mM Fe²⁺, 0.47 – 0.50 mM (CH₃)₃COOH, 0.10 – 0.23 mM FeBr²⁺, and 0.5 – 2.2 mM (NH₃)₅CoBr²⁺. The plotted concentrations of FeBr²⁺ and (NH₃)₅CoBr²⁺ are the averages for each run.

Figure S2. UV-vis absorption spectra (0.1 cm path length) of 7.1 mM Fe³⁺ + 55 mM propionic acid + 5 mM Br⁻ (a), + 10 mM Br⁻ (b), + 50 mM Br⁻ (c), 100 mM Br⁻ (d). pH = 1.85 at pH = 1.85 and $\mu = 0.2$ M.

Figure S3. UV-vis absorption spectra (0.1 cm path length) of 7.1 mM Fe³⁺ + 55 mM propionic acid (a), + 5 mM Cl⁻ (b), + 10 mM Cl⁻ (c), + 50 mM Cl⁻ (d), and 100 mM Cl⁻ (e) at pH = 1.85 and μ = 0.2 M.