Supporting Information

Postfunctionalization of periodic mesoporous silica SBA-1 with magnesium and iron(II) silylamides

Thomas Deschner,^{*a,b*} Michael Klimpel,^{*c*} Maxim Tafipolsky,^{*c*} Wolfgang Scherer,^{*d*} Karl W. Törnroos^{*b*} and Reiner Anwander^{**a*}

 *a Institut für Anorganische Chemie, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany. Fax: +49 7071 292436; Tel: +49 7071 2972069; E-mail: Reiner.Anwander@uni-tuebingen.de
^b Kjemisk Institutt, Universitetet i Bergen, Allégaten 41, 5007 Bergen, Norway
^c Department of Chemistry, Technische Universität München, Lichtenbergstr. 4, D-85747 Garching bei München, Germany
^d Institut für Physik, Universität Augsburg, Universitätsstraße 1, D-86159 Augsburg,

Germany

Synthesis Procedures

Materials.

SBA-1 1: C₁₈TEABr (5.70 g, 13.08 mmol), concentrated HCl (37 wt %, 362.9 g, 3.18 mol), and distilled water (598.5 g, 33.23 mol) were combined, and the resulting mixture was vigorously stirred until a homogeneous solution formed (ca. 30 minutes). The solution was cooled to 0 °C in an ice bath and 13.68 g (65.67 mmol) of TEOS was slowly added. Stirring was continued for 4 h at 0 °C, and then the reaction mixture was heated in a polypropylene bottle to 100 °C and maintained there for n hours without stirring (n =1; 6). The solid product was recovered by filtration (without washing) and dried at ambient temperature. The assynthesized material was calcined at 540 °C (air, 5 h) and dehydrated in vacuo (270 °C, 10^{-4} Torr, 8 h). The molar composition of the synthesis gel was 1:5:280:3500 C₁₈TEABr:TEOS:HCI:H₂O.

Grafting Precursors.

[Mg{N(SiHMe₂)₂}₂]₂ (2). To a solution of 1.87 g HN(SiHMe₂)₂ (14.00 mmol) in 5 mL hexane a 1M Mg(*n*-Bu)₂ solution in heptane (7 ml, 7.00 mmol) was added slowly. The solution was stirred for 4 h at ambient temperature during which gas evolution was observed (*n*-butane). Afterwards, the solvent was removed in vaccuo. Two times subsequent crystallization in *n*-hexane at -35 °C yielded 1.80 g (6.23 mmol, 89% yield) colourless crystals of the pure compound. Analysis calculated for C₈H₂₈N₂Si₄Mg (wt%): C, 33.25; H, 9.77; N, 9.69. Found: C, 33.64; H, 9.04; N, 9.51. DRIFT (KBr, KBr, cm⁻¹): 2953s, 2897w, 2078s, 2047s, 1781w, 1428w, 1410w, 1259s, 1247s, 1058s, 957s, 889s, 843s, 793s, 775s, 765s, 737w, 709w, 692w, 683w, 634w, 619w, 488m, 408w.

 $[Mg{N(SiMe_3)_2}_2]_2$ (3). To a solution of 2.26 g HN(SiMe_3)_2 (14.00 mmol) in 5 mL hexane a 1M Mg(*n*-Bu)_2 solution in heptane (7 ml, 7.00 mmol) was added slowly. The solution was stirred for 4 hours at ambient temperature during which gas evolution was observed (*n*-butane). Afterwards, the solvent was removed in vaccuo. Two times subsequent crystallization in *n*-hexane at -35°C yielded 2.11 g (6.11 mmol, 87% yield) colourless crystals of the pure compound. Analysis calculated for $C_{12}H_{36}N_2Si_4Mg$ (wt%): C, 41.77; H, 10.52; N, 7.04. Found: C, 41.51; H, 11.14; N, 7.77. DRIFT (KBr, KBr, cm⁻¹): 2946s, 2897m, 1462w, 1450w, 1429w, 1391w, 1316w, 1296w, 1251m, 1239s, 1184w, 1025m, 986s, 876s, 841s, 826s, 780m, 747m, 712w, 664m, 621w, 610m, 435w.

[Fe^{II}{N(SiHMe₂)₂}₂]₂ (5). A solution of 4.40 g LiN(SiHMe₂)₂ (31.56 mmol) in 5 mL THF was added slowly (highly exothermic reaction) to a milky solution of 2.04 g FeCl₂ (15.78 mmol) in 5 mL THF. The solution turned dark brown immediately. After one hour of stirring at ambient temperature, the solvent was removed. Centrifugation and three times washing of the remaining solid with *n*-hexane led to a dark green/black solution. The washing fractions were collected and *n*-hexane was removed. Extraction with *n*-hexane and two times subsequent crystallization in *n*-hexane at -35 °C yielded 3.06 g (9.56 mmol, 61% yield) green crystals of the pure compound. Analysis calculated for C₈H₂₈N₂Si₄Fe (wt%): C, 29.98; H, 8.81; N, 8.74. Found: C, 29.49; H, 9.01; N, 8.46. DRIFT (KBr, KBr, cm⁻¹): 2949s, 2899m,2116s, 2083s, 1418w, 1250s, 1001m, 889s, 839s, 804m, 788m, 773m, 727w, 628w, 604w 472w.

Hybrid Materials.

SiHMe₂@SBA-1 (1a). Dehydrated SBA-1 (1) (100 mg) was suspended in 5 ml of *n*-hexane. Under stirring, 200 mg (1.50 mmol) of $HN(SiHMe_2)_2$ was added. The suspension was stirred for 18 h at ambient temperature and nonreacted silazane separated via combined *n*-hexane washings-centrifugations (3×). Subsequently removing the remaining solvent by drying under vacuum yielded the hybrid material (81 mg). Analysis found (wt%): C, 7.36; H, 1.90; N, 0.02.

Si(vinyl)Me₂@[Mg{N(SiHMe₂)₂}₂]₂@SBA-1 (1j). A suspension of 56 mg of the hybrid material 1i in 5 ml *n*-hexane was prepared. Under stirring, 200 mg (1.08 mmol) of $HN[Si(vinyl)Me_2]_2$ was added. After stirring the suspension overnight at ambient temperature, nonreacted silazane was separated via combined *n*-hexane washings–centrifugations (3×). Subsequently removing the remaining solvent by drying under vacuum yielded a slightly yellowish hybrid material (65 mg). Analysis found (wt%): C, 8.99; H, 2.08; N, 0.19; Mg, n.d..

Si(vinyl)Me₂@SBA-1 (1k). A suspension of 96 mg of the SBA-1 material (1) in 5 ml *n*-hexane was prepared. Under stirring, 500 mg (2.70 mmol) of HN[Si(vinyl)Me₂]₂ was added. After stirring the suspension overnight at ambient temperature, nonreacted silazane was separated via combined *n*-hexane washings-centrifugations (3×). Subsequently removing the remaining solvent by drying under vacuum yielded a white hybrid material (80.7 mg). Analysis found (wt%): C, 12.65; H, 2.57; N, 0.01.

Figure S1. PXRD of SBA-1 1.

Figure S2. Nitrogen adsorption/desorption isotherms and corresponding BJH pore size distribution of SBA-1 (1) (), SiHMe₂@SBA-1 (1a) (), [Mg{N(SiHMe₂)₂}₂]₂@SBA-1 (1b) () after 18 h grafting and [Mg{N(SiHMe₂)₂}₂]₂@SBA-1 (1e) () after 4d grafting.

Figure S3. BJH pore size distribution of SBA-1 (1) (), SiHMe₂@SBA-1 (1a) (), $[Mg\{N(SiMe_3)_2\}_2]_2@SBA-1$ (1c) () after 18 h grafting and $[Mg\{N(SiMe_3)_2\}_2]_2@SBA-1$ (1f) () after 4 d grafting.

Figure S4. BJH pore size distribution of SBA-1 (1) (), SiHMe₂@SBA-1 (1a) (), Mg[N(SiPhMe₂)₂]₂@SBA-1 (1d) () after 18 h grafting and Mg[N(SiPhMe₂)₂]₂@SBA-1 (1g) () after 4 d grafting.

Figure S5. Nitrogen adsorption/desorption isotherms and corresponding BJH pore size distribution of SBA-1 (1) (), SiHMe₂@SBA-1 (1a) (), $[Mg{N(SiHMe_2)_2}_2]_2@SBA-1$ (1b) () after 18 h grafting and $[Fe^{II}{N(SiHMe_2)_2}_2]_2@[Mg{N(SiHMe_2)_2}_2]_2@SBA-1$ (1h) () after 4 d grafting.

Figure S6. BJH pore size distribution of SBA-1 (1) (), SiHMe₂@SBA-1 (1a) (), $[Mg\{N(SiHMe_2)_2\}_2]_2@SBA-1$ (1e) () after 4 d grafting and $[Fe^{II}\{N(SiHMe_2)_2\}_2]_2@[Mg\{N(SiHMe_2)_2\}_2]_2@SBA-1$ (1i) () after 4 d grafting.

Figure S7. Nitrogen adsorption/desorption isotherms and corresponding BJH pore sizedistributionofSBA-1(1)(),SiHMe₂@SBA-1(1a)(),Si(vinyl)Me₂@[Mg{N(SiHMe₂)₂}₂]₂@SBA-1(1j)() and Si(vinyl)Me₂@SBA-1(1k)().

Figure S8. IR spectra (DRIFT) of mesoporous silica SBA-1 (1) and hybrid materials SiHMe₂@SBA-1 (1a), $[Mg\{N(SiHMe_2)_2\}_2]_2@SBA-1$ (1b) and $[Mg\{N(SiHMe_2)_2\}_2]_2@SBA-1$ (1e) and precursor $[Mg\{N(SiHMe_2)_2\}_2]_2$ (2) in the range of 400-4000 cm⁻¹.

Figure S9. IR spectra (DRIFT) of mesoporous silica SBA-1 (1) and hybrid materials SiHMe₂@SBA-1 (1a), $[Mg{N(SiMe_3)_2}_2]_2@SBA-1$ (1c) and $[Mg{N(SiHMe_2)_2}_2]_2@SBA-1$ (1f) and precursor $[Mg{N(SiMe_3)_2}_2]_2$ (3) in the range of 400-4000 cm⁻¹.

Figure S10. IR spectra (DRIFT) of mesoporous silica SBA-1 (1) and hybrid materials SiHMe₂@SBA-1 (1a), Mg[N(SiPhMe₂)₂]₂@SBA-1 (1d) and Mg[N(SiPhMe₂)₂]₂@SBA-1 (1g) and precursor Mg[N(SiPhMe₂)₂]₂(4) in the range of 400-4000 cm⁻¹.

Figure S11. IR spectra (DRIFT) of mesoporous silica SBA-1 (1) and hybrid materials $[Mg\{N(SiHMe_2)_2\}_2]_2@SBA-1$ (1b), $[Fe^{II}\{N(SiHMe_2)_2\}_2]_2@[Mg\{N(SiHMe_2)_2\}_2]_2@SBA-1$ (1e) and $[Fe^{II}\{N(SiHMe_2)_2\}_2]_2@[Mg\{N(SiHMe_2)_2\}_2]_2@SBA-1$ (1e) and $[Fe^{II}\{N(SiHMe_2)_2\}_2]_2@[Mg\{N(SiHMe_2)_2\}_2]_2@SBA-1$ (1i) and precursor $[Fe^{II}\{N(SiHMe_2)_2\}_2]_2$ (5) in the range of 400-4000 cm⁻¹.

Figure S12. IR spectra (DRIFT) of the silazane $HN[Si(vinyl)Me_2]_2$ and the hybrid materials $Si(vinyl)Me_2@[Mg{N(SiHMe_2)_2}_2]_2@SBA-1 (1j), Si(vinyl)Me_2@SBA-1 (1k).$

	Sample/Precursor	$a_{\rm S}[{\rm m}^2/{\rm g}]^{\rm a}$	$D_{\rm me}[\rm nm]^{\rm b}$	$V_{\rm p}[{\rm cm}^3/{\rm g}]^{\rm c}$	C [wt%] ^d	N [wt%] ^d
1	SBA-1 ($a = 8.50 \text{ nm}$)	1320	4.5	0.82	-	-
1 a	SiHMe ₂ @SBA-1	1110	4.2	0.51	6.61	0.11
1j	Si(vinyl)Me2@Mg[N(SiHMe2)2]x@SBA-1	960	4.2	0.46	8.99	0.19
1k	Si(vinyl)Me ₂ @SBA-1	950	4.2	0.45	12.65	0.01

Table S1. Analytical data of the vinyl-functionalized materials

^a Specific BET surface area. ^b Pore diameter calculated according to Ravikovich and Neimark;⁷ all samples were pretreated at 250 °C (parent materials), 100 °C (silylated samples) and 25 °C (grafted samples) respectively *in vacuo* until the pressure was $<10^{-3}$ Torr. ^c Pore volume determined at the relative pressure p/p₀ = 0.975. ^d Elemental analysis obtained after treatment at 100 °C *in vacuo* ($<10^{-3}$ Torr).