Tri-, hepta- and octa-nuclear Ag(I) complexes derived from 2pyridyl functionalized tris(amido)phosphate ligand

Arvind K. Gupta,^a Alexander Steiner^b and Ramamoorthy Boomishankar^{*a}

^aDepartment of Chemistry, Mendeleev Block, Indian Institute of Science Education and Research,

Dr. Homi Bhabha Road, Pune - 411008, India. Fax: +912025908186; E-mail: boomi@iiserpune.ac.in

^bDepartment of Chemistry, University of Liverpool, Crown Street,

Liverpool - L69 7ZD, United Kingdom; E-mail: a.steiner@liverpool.ac.uk

Supporting Information

Contents	Page Nos.
Selected Bond-lengths and –angles for $1.C_7H_8 - 4.H_2O$	3-8
Hydrogen bond-lengths and –angles for $1.C_7H_8 - 4.H_2O$	9-10
NMR spectra for 2, 3 and 4	10
ESI Mass spectra for 2, 3 and 4	11-12
Additional figures for $1.C_7H_8$ and $3.5CH_3OH.3H_2O$	13
PXRD patterns for 2, 3 and 4	14
TGA graphs for 2 and 4	14

Compound	Bond lengths	Bond Angles
.C ₇ H ₈	P(1)-O(1): 1.476(2)	O(1)-P(1)-N(3): 109.92(13)
	P(1)-N(3): 1.649(3)	O(1)-P(1)-N(1): 115.51(13)
	P(1)-N(1): 1.650(2)	N(3)-P(1)-N(1): 109.67(13)
	P(1)-N(2): 1.655(3)	O(1)-P(1)-N(2): 114.24(13)
	P(2)-O(2): 1.476(2)	N(3)-P(1)-N(2): 104.78(13)
	P(2)-N(6): 1.644(2)	N(1)-P(1)-N(2): 101.97(13)
	P(2)-N(4): 1.646(3)	O(2)-P(2)-N(6): 112.54(13)
	P(2)-N(5): 1.654(2)	O(2)-P(2)-N(4): 109.62(12)
	P(3)-O(3): 1.474(2)	N(6)-P(2)-N(4): 110.81(13)
	P(3)-N(7): 1.642(3)	O(2)-P(2)-N(5): 114.73(12)
	P(3)-N(8): 1.647(3)	N(6)-P(2)-N(5): 103.39(13)
	P(3)-N(9): 1.655(3)	N(4)-P(2)-N(5): 105.41(13)
	P(4)-O(4): 1.477(2)	O(3)-P(3)-N(7): 115.70(13)
	P(4)-N(12): 1.640(3)	O(3)-P(3)-N(8): 109.74(12)
	P(4)-N(10): 1.640(3)	N(7)-P(3)-N(8): 109.64(13)
	P(4)-N(11): 1.655(3)	O(3)-P(3)-N(9): 114.15(13)
		N(7)-P(3)-N(9): 101.62(13)
		N(8)-P(3)-N(9): 105.27(13)
		O(4)-P(4)-N(12): 109.58(13)
		O(4)-P(4)-N(10): 112.87(13)
		N(12)-P(4)-N(10): 111.51(13)
		O(4)-P(4)-N(11): 114.21(13)
		N(12)-P(4)-N(11): 105.05(13)
		N(10)-P(4)-N(11): 103.26(13)

Table S1: Selected bond-lengths and angles for 1.C₇H₈, 2.3H₂O, 3.5CH₃OH.3H₂O and 4.H₂O

22110		
$2.3H_{2}O$	Ag(1)-N(12A): 2.197(16)	N(12A)-Ag(1)-N(42): 171.6(7)
	Ag(1)-N(42): 2.203(17)	N(52)-Ag(2)-N(32): 168.0(6)
	Ag(2)-N(52): 2.165(17)	N(62)-Ag(3)-N(22): 172.6(8)
	Ag(2)-N(32): 2.187(16)	N(82)-Ag(4)-N(122): 171.3(7)
	Ag(3)-N(62): 2.19(2)	N(72)-Ag(5)-N(112): 177.4(8)
	Ag(3)-N(22): 2.19(2)	N(102)-Ag(6)-N(92): 169.0(8)
	Ag(4)-N(82): 2.172(18)	O(1)-P(1)-N(1): 116.3(10)
	Ag(4)-N(122): 2.185(18)	O(1)-P(1)-N(3): 115.3(11)
	Ag(5)-N(72): 2.173(18)	N(1)-P(1)-N(3): 103.8(10)
	Ag(5)-N(112): 2.177(19)	O(1)-P(1)-N(2): 113.0(11)
	Ag(6)-N(102): 2.14(2)	N(1)-P(1)-N(2): 100.9(10)
	Ag(6)-N(92): 2.192(19)	N(3)-P(1)-N(2): 105.9(10)
	P(1)-O(1): 1.465(19)	O(2)-P(2)-N(6): 116.3(10)
	P(1)-N(1): 1.649(18)	O(2)-P(2)-N(4): 112.6(10)
	P(1)-N(3): 1.666(18)	N(6)-P(2)-N(4): 102.4(10)
	P(1)-N(2): 1.68(2)	O(2)-P(2)-N(5): 115.9(9)
	P(2)-O(2): 1.443(17)	N(6)-P(2)-N(5): 104.7(10)
	P(2)-N(6): 1.653(19)	N(4)-P(2)-N(5): 103.3(10)
	P(2)-N(4): 1.664(18)	O(3)-P(3)-N(7): 115.6(10)
	P(2)-N(5): 1.668(19)	O(3)-P(3)-N(8): 113.9(9)
	P(3)-O(3): 1.473(16)	N(7)-P(3)-N(8): 104.9(10)
	P(3)-N(7): 1.595(19)	O(3)-P(3)-N(9): 113.7(10)
	P(3)-N(8): 1.620(18)	N(7)-P(3)-N(9): 103.3(10)
	P(3)-N(9): 1.684(17)	N(8)-P(3)-N(9): 104.1(9)
	P(4)-O(4): 1.499(16)	O(4)-P(4)-N(11): 117.7(10)
	P(4)-N(11): 1.627(18)	O(4)-P(4)-N(12): 111.5(9)
	P(4)-N(12): 1.645(18)	N(11)-P(4)-N(12): 107.3(9)
	P(4)-N(10): 1.682(19)	O(4)-P(4)-N(10): 114.0(9)
		N(11)-P(4)-N(10): 101.0(9)
		N(12)-P(4)-N(10): 104.0(10)
3 .5CH ₃ OH.3H ₂ O	Ag(1)-N(9): 2.104(4)	N(9)-Ag(1)-N(3): 164.00(16)
	Ag(1)-N(3): 2.124(4)	N(9)-Ag(1)-Ag(5): 80.25(11)
	Ag(1)-Ag(5): 2.7522(6)	N(3)-Ag(1)-Ag(5): 84.28(11)
	Ag(1)-Ag(2): 2.9083(6)	N(9)-Ag(1)-Ag(2): 99.90(11)
	Ag(2)-N(6): 2.106(4)	N(3)-Ag(1)-Ag(2): 94.89(11)
	Ag(2)-N(12): 2.123(4)	Ag(5)-Ag(1)-Ag(2): 172.37(2)
	Ag(2)-Ag(3): 2.7641(6)	N(6)-Ag(2)-N(12): 163.44(16)
	Ag(3)-N(66): 2.152(5)	N(6)-Ag(2)-Ag(3): 82.13(11)
	Ag(3)-N(126): 2.169(5)	N(12)-Ag(2)-Ag(3): 81.40(11)

Ag(4)-N(76): 2.182(5)	N(6)-Ag(2)-Ag(1): 101.05(11)
Ag(4)-N(116): 2.215(5)	N(12)-Ag(2)-Ag(1): 95.36(11)
Ag(4)-O(4): 2.549(3)	Ag(3)-Ag(2)-Ag(1): 166.29(2)
Ag(5)-N(36): 2.185(5)	N(66)-Ag(3)-N(126): 162.44(19)
Ag(5)-N(96): 2.193(5)	N(66)-Ag(3)-Ag(2): 80.91(13)
Ag(6)-N(106): 2.181(5)	N(126)-Ag(3)-Ag(2): 81.56(13)
Ag(6)-N(26): 2.220(5)	N(76)-Ag(4)-N(116): 168.58(19)
Ag(6)-O(1): 2.549(3)	N(76)-Ag(4)-O(4): 99.69(15)
Ag(7)-N(86): 2.160(5)	N(116)-Ag(4)-O(4): 89.83(15)
Ag(7)-N(56): 2.177(5)	N(36)-Ag(5)-N(96): 161.18(19)
Ag(7)-O(3): 2.517(3)	N(36)-Ag(5)-Ag(1): 78.83(13)
Ag(8)-N(16): 2.174(5)	N(96)-Ag(5)-Ag(1): 82.89(14)
Ag(8)-N(46): 2.220(5)	N(106)-Ag(6)-N(26): 168.8(2)
Ag(8)-O(2): 2.581(4)	N(106)-Ag(6)-O(1): 99.20(16)
P(1)-O(1): 1.471(4)	N(26)-Ag(6)-O(1): 88.55(16)
P(1)-N(3): 1.604(4)	N(86)-Ag(7)-N(56): 159.37(19)
P(1)-N(1): 1.649(4)	N(86)-Ag(7)-O(3): 91.99(17)
P(1)-N(2): 1.686(4)	N(56)-Ag(7)-O(3): 102.05(15)
P(2)-O(2): 1.469(4)	N(16)-Ag(8)-N(46): 162.52(18)
P(2)-N(6): 1.605(4)	N(16)-Ag(8)-O(2): 100.82(15)
P(2)-N(5): 1.649(4)	N(46)-Ag(8)-O(2): 88.08(15)
P(2)-N(4): 1.682(4)	O(1)-P(1)-N(3): 113.3(2)
P(3)-O(3): 1.479(3)	O(1)-P(1)-N(1): 110.5(2)
P(3)-N(9): 1.606(4)	N(3)-P(1)-N(1): 109.0(2)
P(3)-N(7): 1.660(4)	O(1)-P(1)-N(2): 111.9(2)
P(3)-N(8): 1.688(4)	N(3)-P(1)-N(2): 109.1(2)
P(4)-O(4): 1.494(4)	N(1)-P(1)-N(2): 102.5(2)
P(4)-N(12): 1.603(4)	O(2)-P(2)-N(6): 112.3(2)
P(4)-N(10): 1.649(4)	O(2)-P(2)-N(5): 112.2(2)
P(4)-N(11): 1.673(4)	N(6)-P(2)-N(5): 106.4(2)
	O(2)-P(2)-N(4): 112.2(2)
	N(6)-P(2)-N(4): 109.9(2)
	N(5)-P(2)-N(4): 103.3(2)
	O(3)-P(3)-N(9): 113.2(2)
	O(3)-P(3)-N(7): 110.9(2)
	N(9)-P(3)-N(7): 107.5(2)
	O(3)-P(3)-N(8): 111.5(2)
	N(9)-P(3)-N(8): 109.8(2)
	N(7)-P(3)-N(8): 103.3(2)

		O(4)-P(4)-N(12): 115.1(2)
		O(4)-P(4)-N(10): 109.6(2)
		N(12)-P(4)-N(10): 107.9(2)
		O(4)-P(4)-N(11): 110.8(2)
		N(12)-P(4)-N(11): 109.4(2)
		N(10)-P(4)-N(11): 103.3(2)
		P(1)-O(1)-Ag(6): 96.08(17)
		P(2)-O(2)-Ag(8): 93.68(17)
		P(3)-O(3)-Ag(7): 96.95(17)
		P(4)-O(4)-Ag(4): 97.92(17)
4 .H ₂ O	Ag(1)-N(12)#1: 2.139(8)	N(12)#1-Ag(1)-N(1):168.3(3)
	Ag(1)-N(1): 2.140(7)	N(12)#1-Ag(1)-Ag(2): 94.8(2)
	Ag(1)-Ag(2): 2.9477(10)	N(1)-Ag(1)-Ag(2): 84.8(2)
	Ag(1)-Ag(1)#1: 3.2192(13)	N(12)#1-Ag(1)-Ag(1)#1: 71.7(2)
	Ag(1)-Ag(1)#2: 3.2192(14)	N(1)-Ag(1)-Ag(1)#1: 119.13(19)
	Ag(2)-N(2): 2.286(7)	Ag(2)-Ag(1)-Ag(1)#1: 73.70(2)
	Ag(2)-N(32)#1: 2.331(16)	N(12)#1-Ag(1)-Ag(1)#2: 127.2(2)
	Ag(2)-N(32')#1: 2.343(15)	N(1)-Ag(1)-Ag(1)#2: 64.48(19)
	Ag(2)-N(2)#1: 2.393(7)	Ag(2)-Ag(1)-Ag(1)#2: 91.256(18)
	Ag(2)-Ag(3): 2.8990(12)	Ag(1)#1-Ag(1)-Ag(1)#2: 60.0
	Ag(2)-Ag(2)#2: 2.9018(11)	N(2)-Ag(2)-N(32)#1: 104.4(4)
	Ag(2)-Ag(2)#1: 2.9019(11)	N(2)-Ag(2)-N(32')#1: 106.0(4)
	Ag(2)-P(1)#1: 3.033(2)	N(32)#1-Ag(2)-N(32')#1: 8.5(7)
	Ag(3)-N(22): 2.238(9)	N(2)-Ag(2)-N(2)#1: 151.1(4)
	Ag(3)-N(22)#2: 2.238(9)	N(32)#1-Ag(2)-N(2)#1: 93.0(4)
	Ag(3)-N(22)#1: 2.238(9)	N(32')#1-Ag(2)-N(2)#1: 94.6(4)
	Ag(3)-Ag(2)#1: 2.8990(12)	N(2)-Ag(2)-Ag(3): 76.35(19)
	Ag(3)-Ag(2)#2: 2.8990(12)	N(32)#1-Ag(2)-Ag(3): 123.5(6)
	N(1)-P(1): 1.649(7)	N(32')#1-Ag(2)-Ag(3): 132.0(5)
	N(2)-C(21): 1.389(12)	N(2)#1-Ag(2)-Ag(3): 74.8(2)
	N(2)-P(1): 1.641(9)	N(2)-Ag(2)-Ag(2)#2: 53.35(18)
	N(2)-Ag(2)#2: 2.393(7)	N(32)#1-Ag(2)-Ag(2)#2: 157.5(3)
	O(1)-P(1): 1.480(7)	N(32')#1-Ag(2)-Ag(2)#2: 156.4(3)
	P(1)-N(3): 1.668(8)	N(2)#1-Ag(2)-Ag(2)#2: 108.77(19)
	P(1)-Ag(2)#2: 3.033(2)	Ag(3)-Ag(2)-Ag(2)#2: 59.967(15)
	B(1)-F(4): 1.345(17)	N(2)-Ag(2)-Ag(2)#1: 112.01(18)
	B(1)-F(1): 1.346(17)	N(32)#1-Ag(2)-Ag(2)#1: 142.4(3)
	B(1)-F(2): 1.347(17)	N(32')#1-Ag(2)-Ag(2)#1: 142.0(3)
	B(1)-F(3): 1.348(17)	N(2)#1-Ag(2)-Ag(2)#1: 50.02(18)

	Ag(3)-Ag(2)-Ag(2)#1: 59.967(15)
	Ag(2)#2-Ag(2)-Ag(2)#1: 60.0
	N(2)-Ag(2)-Ag(1): 81.7(2)
	N(32)#1-Ag(2)-Ag(1): 95.9(6)
	N(32')#1-Ag(2)-Ag(1): 87.8(5)
	N(2)#1-Ag(2)-Ag(1): 119.71(18)
	Ag(3)-Ag(2)-Ag(1): 138.44(3)
	Ag(2)#2-Ag(2)-Ag(1): 78.59(2)
	Ag(2)#1-Ag(2)-Ag(1): 97.925(19)
	N(2)-Ag(2)-P(1)#1: 175.76(19)
	N(32)#1-Ag(2)-P(1)#1: 71.7(4)
	N(32')#1-Ag(2)-P(1)#1: 69.9(3)
	N(2)#1-Ag(2)-P(1)#1: 32.6(2)
	Ag(3)-Ag(2)-P(1)#1: 107.13(5)
	Ag(2)#2-Ag(2)-P(1)#1: 130.37(5)
	Ag(2)#1-Ag(2)-P(1)#1: 72.09(5)
	Ag(1)-Ag(2)-P(1)#1: 96.81(5)
	N(22)-Ag(3)-N(22)#2: 117.89(12)
	N(22)-Ag(3)-N(22)#1: 117.89(12)
	N(22)#2-Ag(3)-N(22)#1: 117.89(12)
	N(22)-Ag(3)-Ag(2)#1: 132.3(2)
	N(22)#2-Ag(3)-Ag(2)#1: 88.2(2)
	N(22)#1-Ag(3)-Ag(2)#1: 73.6(2)
	N(22)-Ag(3)-Ag(2)#2: 88.2(2)
	N(22)#2-Ag(3)-Ag(2)#2: 73.6(2)
	N(22)#1-Ag(3)-Ag(2)#2: 132.3(2)
	Ag(2)#1-Ag(3)-Ag(2)#2: 60.07(3)
	N(22)-Ag(3)-Ag(2): 73.6(2)
	N(22)#2-Ag(3)-Ag(2): 132.3(2)
	N(22)#1-Ag(3)-Ag(2): 88.2(2)
	Ag(2)#1-Ag(3)-Ag(2): 60.06(3)
	Ag(2)#2-Ag(3)-Ag(2): 60.06(3)
	C(11)-N(1)-P(1): 120.1(6)
	C(11)-N(1)-Ag(1): 113.6(5)
	P(1)-N(1)-Ag(1): 115.6(4)
	C(21)-N(2)-P(1): 121.0(7)
	C(21)-N(2)-Ag(2): 106.3(6)
	P(1)-N(2)-Ag(2): 124.9(4)
	C(21)-N(2)-Ag(2)#2: 125.1(6)

	P(1)-N(2)-Ag(2)#2: 95.7(3)
	Ag(2)-N(2)-Ag(2)#2: 76.6(2)
	O(1)-P(1)-N(2): 116.8(4)
	O(1)-P(1)-N(1): 118.0(4)
	N(2)-P(1)-N(1): 101.7(4)
	O(1)-P(1)-N(3): 105.3(4)
	N(2)-P(1)-N(3): 107.1(4)
	N(1)-P(1)-N(3): 107.2(4)
	O(1)-P(1)-Ag(2)#2: 165.7(3)
	N(2)-P(1)-Ag(2)#2: 51.7(3)
	N(1)-P(1)-Ag(2)#2: 62.3(3)
	N(3)-P(1)-Ag(2)#2: 87.5(3)
	F(4)-B(1)-F(1): 108.7(10)
	F(4)-B(1)-F(2): 110.2(10)
	F(1)-B(1)-F(2): 110.3(11)
	F(4)-B(1)-F(3): 109.5(10)
	F(1)-B(1)-F(3): 109.5(11)
	F(2)-B(1)-F(3): 108.5(10)

Compound	D-HA	d(HA)Å	d(DA)Å	<(DHA)°	
	N(1)-H(1)N(52P)	1.99	2.853(4)	167.8	
	N(2)-H(2)N(42P)	2.16	3.035(4)	172.9	
	N(3)-H(3)O(2)#1	2.00	2.797(3)	149.5	
	N(4)-H(4)O(1)#2	2.00	2.845(3)	159.7	
	N(5)-H(5)N(32P)	2.10	2.977(3)	175.4	
	N(6)-H(6)N(22P)	1.98	2.853(4)	173.0	
	N(7)-H(7)N(112)	1.96	2.829(4)	168.5	
1 .C ₇ H ₈	N(8)-H(8)O(4)#3	2.02	2.776(3)	143.1	
	N(9)-H(9)N(122)	2.19	3.058(4)	171.5	
	N(10)-H(10)N(92P)	1.99	2.867(4)	174.4	
	N(11)-H(11)N(82P)	2.10	2.981(4)	176.1	
	N(12)-H(12)O(3)#4	2.00	2.863(3)	166.1	
	Symmetry transformations used to generate equivalent atoms:				
	#1 -x+1,y-1/2,-z+1/2 #2	2 -x+1,y+1/2,-z+1/2	#3 -x,y+1/2,-z+1/2	2	
	#4 -x,y-1/2,-z+1/2				
	N(1)-H(1)O(10)	2.37	3.09(3)	141.5	
	N(1)-H(1)O(9)	2.63	3.47(3)	166.7	
	N(2)-H(2)O(13)	2.25	3.05(2)	155.9	
	N(3)-H(3)O(5)	2.38	3.21(2)	162.7	
	N(4)-H(4)O(13)	2.34	3.14(2)	155.0	
	N(5)-H(5)O(10)	2.37	3.10(2)	142.7	
	N(5)-H(5)O(8)	2.42	3.24(3)	161.1	
2 .3H ₂ O	N(6)-H(6)O(7)	2.23	3.00(3)	147.7	
	N(7)-H(7)O(19)	2.29	3.05(3)	146.4	
	N(8)-H(8)O(22)	2.36	3.15(2)	153.9	
	N(9)-H(9)O(16)	2.48	3.24(2)	148.5	
	N(9)-H(9)O(15)	2.54	3.34(3)	154.9	
	N(10)-H(10)O(17)	2.18	3.01(2)	161.5	
	N(10)-H(10)O(19)	2.37	3.11(2)	144.1	
	N(11)-H(11)O(22)	2.24	3.05(2)	156.1	
	N(12)-H(12)O(16)	2.30	3.03(3)	143.7	
	N(1)-H(1A)O(2)	1.98	2.821(6)	163.9	
3 .5CH ₃ OH.3H ₂ O	N(5)-H(5)O(3)	1.95	2.804(5)	172.0	
5.50113011.51120	N(7)-H(7)O(4)	1.96	2.811(5)	171.1	
	N(10)-H(10)O(1)	1.97	2.827(5)	171.7	

Table S2: Table of hydrogen bonding parameters for 1.C₇H₈, 2.3H₂O, 3.5CH₃OH.3H₂O and 4.H₂O

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is © The Royal Society of Chemistry 2012

Figure S1: Solid state ³¹P-CP-MAS NMR spectra of **2** (a), **3** (b) and **4** (c) recorded at a spinning rate of 10 KHz. The peaks denoted with asterisks are spinning side bands

The solid-state NMR spectra were measured on a Bruker Avance DSX 500 spectrometer operating at 202.40 MHz for ³¹P. All spectra were collected using a 4 mm triple resonance probe and zirconia rotors. The ³¹P{¹H} MAS NMR spectra were measured at a MAS rate of 10 kHz with ¹H TPPM decoupling during acquisition at an *rf* field of *ca*. 83 kHz. A ³¹P $\pi/3$ pulse length of 2.1 µs with a recycle delay of 120.0 s was used.

Figure S2: Solution ³¹P- NMR spectra (in d_6 -DMSO) of reaction mixtures of **1** with (a) excess of AgClO₄ and (b) excess of AgBF₄ indicating the formation of **3** and **4** at different ratios after three days.

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is O The Royal Society of Chemistry 2012

Figure S4: ESI(+) mass spectra of **3**; $M = \{[Ag_8(LH_2)_4](ClO_4)_4\}$

As the set of ligands and metal ions used are same, many of the peaks were found to be common in all of them. The peak at m/z 433.0 corresponds to smallest fragment $[Ag(LH_3)]^+$ and was observed in all the spectra. While the peak at m/z 1726.5 corresponds to the cationic core of **4**, a similar peak was found in the spectra of **3** as well. Although the exact reason for this is unclear, we attribute this to the presence of both mono- and di-anionic imido P(V) species in dilute solutions. Concurrently, the peak at m/z 540.9, corresponding to the tetra-cationic core in **3**, was also found in the spectra of **4**.

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is O The Royal Society of Chemistry 2012

Additional Figures

Figure S6: (a) View of the octa-nuclear cluster in **3**.5CH₃OH.3H₂O along with coordinated and H-bonded perchlorates. The disordered perchlorate groups are omitted; (c) packing diagram of **3**.5CH₃OH.3H₂O showing 1D-solvent channel

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is O The Royal Society of Chemistry 2012

Figure S7: Crystal Structure of 1.C₇H₈

Figure S8: PXRD patterns for $1.C_7H_8(a)$, 2(b), 3(c) and 4(d). A slight mismatch of the synthesized and simulated patterns for 1, 2 and 3 is due to the presence of solvated molecules in their single crystal X-ray data

Figure S9: TGA traces of the compounds 2 and 4

14