Supporting information (SI)

Ruthenium(II) [3+2+1] Mixed Ligand Complexes: Substituent Effect On

Photolability, Photooxidation of Bases, Photocytotoxicity and

Photonuclease Activity

Gopal Sathyaraj^a, Mathiyalagan Kiruthika^a, Thomas weyhermüller^b, Balachandran Unni

Nair^{a,*}

^aChemical Laboratory, Central Leather Research Institute, CSIR, Adyar, Chennai,

600020, India. ^bMax-Planck Institut für Bioanorganische Chemie, D-45413 Mülheim an

der Ruhr, Germany.

Corresponding Author: *E-mail: <u>bunair@clri.res.in</u>.

Table of Contents

S3

Fig. S1 ESI-MS spectra of complexes 1-4 in acetonitrile.

Fig. S2 Experimental (solid line) and calculated (dotted line) absorption spectra with the corresponding stick spectra of $[Ru(itpy)(phen)CI]^+$. Each stick spectrum is composed of the δ -functions at the excitation energies obtained from TDDFT calculations, with their intensities equal to the calculated oscillator strength (in vacuum).

Fig. S3 Experimental (solid line) and calculated (dotted line) absorption spectra with the corresponding stick spectra of $[Ru(bitpy)(bpy)CI]^+$. Each stick spectrum is composed of the δ -functions at the excitation energies obtained from TDDFT calculations, with their intensities equal to the calculated oscillator strength (in vacuum).

Fig. S4 Experimental (solid line) and calculated (dotted line) absorption spectra with the corresponding stick spectra of [Ru(bitpy)(phen)Cl]⁺. Each stick spectrum is composed of

the δ -functions at the excitation energies obtained from TDDFT calculations, with their intensities equal to the calculated oscillator strength (in vacuum). S6 List of Cartesian coordinates in Ångströms for all complexes optimized in this work. S-7-S11 Fig. S5 Crystal Packing of complex 3 S12 Fig. S6 ESI-MS spectra of acetone-water solution of complex 2 irradiated in the presence of guanosine. S13 Fig. S7 ESI-MS spectra of acetone-water solution of complex 2 irradiated in the presence of deoxyguanosine. S14 Fig. S8 ESI-MS spectra of complex 2 in acetonitrile-water solution after irradiation at 440 nm for 50 min. S15 Fig. S9 ESI-MS spectra of acetone-water solution of complex 3 after irradiation at 440 nm for 50 min. S16 Fig. S10 ESI-MS spectra of acetone-water solution of complex 4 after irradiation at 440 nm for 50 min. S17 Fig. S11 ESI-MS spectra of acetone-water solution of complex 4 irradiated in the S18 presence of guanosine. Fig. S12 Cleavage of supercoiled pUC18 by the complex 1, when incubated for 1 h and followed by irradiation at 440 nm for 30 min. Lane 1- control DNA, lane 2, 3, 4 DNA in the presence of 6, 12, 24 μ M complexes **1** respectively. S19 Fig. S13 Cleavage of supercoiled pUC18 by the complex 2, when incubated for 1 h and followed by irradiation at 440 nm for 30 min. Lane 1- control DNA, lane 2, 3, 4 DNA in the presence of 6, 12, 24 μ M complexes **2** respectively. S20

Fig. S14 Cleavage of supercoiled pUC18 by the complex **3**, when incubated for 1 h and followed by irradiation at 440 nm for 30 min. Lane 1- control DNA, lane 2, 3, 4 DNA in the presence of 6, 12, 24 μ M complexes **3** respectively. S21

Fig. S15 Cleavage of supercoiled pUC18 by the complex **4**, when incubated for 1 h and followed by irradiation at 440 nm for 30 min. Lane 1- control DNA, lane 2, 3, 4 DNA in the presence of 6, 12, 24 μ M complexes **4** respectively. S22

Fig. S1 ESI-MS spectra of complexes 1-4 in acetonitrile.

Fig. S2 Experimental (solid line) and calculated (dotted line) absorption spectra with the corresponding stick spectra of $[Ru(itpy)(phen)Cl]^+$. Each stick spectrum is composed of the δ -functions at the excitation energies obtained from TDDFT calculations, with their intensities equal to the calculated oscillator strength (in vaccum).

Fig. S3 Experimental (solid line) and calculated (dotted line) absorption spectra with the corresponding stick spectra of $[Ru(bitpy)(bpy)Cl]^+$. Each stick spectrum is composed of the δ -functions at the excitation energies obtained from TDDFT calculations, with their intensities equal to the calculated oscillator strength (in vaccum).

Fig. S4 Experimental (solid line) and calculated (dotted line) absorption spectra with the corresponding stick spectra of $[Ru(bitpy)(phen)CI]^+$. Each stick spectrum is composed of the δ -functions at the excitation energies obtained from TDDFT calculations, with their intensities equal to the calculated oscillator strength (in vaccum).

Cartesian coordinates in Ångstroms for optimized structures of complexes considered in this work. All calculations used B3LYP functional and LanL2DZ basis set for all atoms.

Ru	-0.00193	-3.87462	0.65664
Cl	-1.00393	-2.81662	2.58964
Ν	-1.84393	-4.00662	-0.26636
С	-2.61593	-5.10262	-0.42236
Н	-2.35293	-5.91762	-0.00936
С	-3.78993	-5.07162	-1.17336
Н	-4.31193	-5.85962	-1.27736
C	-4 19093	-3 89162	-1 76536
н	-4 99493	-3 85462	-2 26936
C	-3 40793	-2 76362	-1 61436
н	-3 66993	-1 94062	-2 00836
C	-2 22993	-2 84662	-0.87636
C	_1 28293	-1 72762	-0 73936
C	-1 50293	-0 10962	_1 09736
с и	-2 22102	-0.40902	-1 /0126
	-2.33193	0 52220	-1.40130
	-0.40095	0.0000	-0.00030
	0./310/	0.11638	-0.32836
n G	1.43907	1 212020	-0.19936
L N	0.88807	-1.21362	0.03464
N	-0.10893	-2.10662	-0.1/436
C	2.05007	-1.81162	0./2164
C	3.25407	-1.14462	0.91964
H	3.36107	-0.24862	0.61864
C	4.30007	-1.80062	1.56264
Н	5.12807	-1.35862	1.70764
С	4.11707	-3.11062	1.98664
Н	4.82307	-3.58262	2.41464
С	2.88707	-3.71962	1.77564
Н	2.76207	-4.60962	2.08064
N	1.86107	-3.10262	1.15664
С	-0.71693	1.95638	-1.16336
N	0.18507	2.91038	-0.99336
С	-0.48093	4.09838	-1.29036
С	-1.80893	3.81538	-1.64136
N	-1.92993	2.44438	-1.56336
Н	-2.59993	1.98238	-1.72136
N	0.79407	-4.95662	-0.85936
С	0.98807	-4.49262	-2.11036
Н	0.74107	-3.59762	-2.31136
С	1.53807	-5.27862	-3.11536
Н	1.65407	-4.92862	-3.99036
С	1.91407	-6.57962	-2.82736
Н	2.31307	-7.12462	-3.49436
С	1.70007	-7.07462	-1.55336
Н	1.94307	-7.96762	-1.33936
С	1.12207	-6.25062	-0.58236
С	0.80507	-6.69062	0.77864
С	1,10707	-7,96062	1.27364

H	1.52207	-8.60962	0.71564
С	0.79407	-8.25962	2.58064
Н	1.02007	-9.10662	2.94364
С	0.14407	-7.31362	3.36364
Н	-0.08693	-7.50762	4.26464
С	-0.15893	-6.08862	2.81064
Н	-0.62893	-5.45262	3.33864
N	0.18507	-5.75162	1.54664
Н	-2.56954	4.51721	-1.91303
Н	-0.04606	5.07542	-1.25587

Ru	0.90563	0.01308	-0.39874
Cl	0.47422	0.07187	-2.83474
Ν	0.53835	2.07319	-0.3439
С	1.44279	3.07471	-0.4906
Н	2.47477	2.77243	-0.62302
С	1.07303	4.42666	-0.49153
Н	1.83141	5.1918	-0.61885
С	-0.28506	4.7604	-0.33536
Н	-0.60375	5.79814	-0.33537
С	-1.22577	3.72895	-0.18853
Н	-2.27789	3.96734	-0.07689
С	-0.80227	2.38906	-0.19825
С	-1.71311	1.22904	-0.0857
С	-3.1123	1.26233	0.02149
Н	-3.6227	2.21904	0.05664
С	-3.83795	0.04746	0.07374
С	-3.12623	-1.17782	-0.00287
Н	-3.69834	-2.09772	0.01268
С	-1.73428	-1.16274	-0.11377
N	-1.05909	0.03031	-0.1225
С	-0.84641	-2.33453	-0.27103
С	-1.30281	-3.66294	-0.30163
Н	-2.35953	-3.87716	-0.18573
C	-0.38644	-4.70867	-0.49588
Н	-0.72876	-5.73833	-0.52752
С	0.97674	-4.39964	-0.65861
Н	1.7159	-5.17661	-0.82239
С	1.37805	-3.05701	-0.61616
Н	2.41516	-2.77418	-0.75184
Ν	0.49803	-2.04215	-0.42276
С	-5.29154	-0.01795	0.19032
Ν	-5.98197	-1.16569	0.34682
C	-7.32184	-0.81428	0.41449
С	-7.46045	0.56728	0.29633
Ν	-6.16868	1.0626	0.15685
Н	-5.93282	2.0363	0.02267
Ν	1.54604	-0.04121	1.57232
C	0.71976	-0.05986	2.65689
Н	-0.34363	-0.042	2.45098
C	1.20315	-0.10126	3.96862
Н	0.50381	-0.11607	4.79788
		S8	

С	2.59565	-0.12428	4.18338
Н	3.00177	-0.15679	5.18945
С	3.60039	-0.10681	3.06831
С	2.91216	-0.06416	1.77146
С	3.72345	-0.0434	0.54087
С	5.13147	-0.06063	0.5166
С	5.80285	-0.03979	-0.71542
Н	6.8879	-0.05297	-0.749
С	5.04645	-0.00213	-1.90371
Н	5.52587	0.0143	-2.87682
С	3.64731	0.01402	-1.82581
Н	3.009	0.04213	-2.70301
N	2.99244	-0.00586	-0.62823
Н	-8.33138	1.20257	0.2967
Н	-8.09525	-1.55505	0.54057
С	5.93569	-0.10302	1.82924
Н	7.00518	-0.1165	1.79907
С	5.14356	-0.12186	3.02651
Н	5.70775	-0.1513	3.9352

Ru	0.90563	0.01308	-0.39874
Cl	0.47422	0.07187	-2.83474
Ν	0.53835	2.07319	-0.3439
С	1.44279	3.07471	-0.4906
Н	2.47477	2.77243	-0.62302
С	1.07303	4.42666	-0.49153
Н	1.83141	5.1918	-0.61885
С	-0.28506	4.7604	-0.33536
Н	-0.60375	5.79814	-0.33537
С	-1.22577	3.72895	-0.18853
Н	-2.27789	3.96734	-0.07689
С	-0.80227	2.38906	-0.19825
С	-1.71311	1.22904	-0.0857
С	-3.1123	1.26233	0.02149
Н	-3.6227	2.21904	0.05664
С	-3.83795	0.04746	0.07374
С	-3.12623	-1.17782	-0.00287
Н	-3.69834	-2.09772	0.01268
С	-1.73428	-1.16274	-0.11377
N	-1.05909	0.03031	-0.1225
С	-0.84641	-2.33453	-0.27103
С	-1.30281	-3.66294	-0.30163
Н	-2.35953	-3.87716	-0.18573
С	-0.38644	-4.70867	-0.49588
Н	-0.72876	-5.73833	-0.52752
С	0.97674	-4.39964	-0.65861
Н	1.7159	-5.17661	-0.82239
С	1.37805	-3.05701	-0.61616
Н	2.41516	-2.77418	-0.75184
N	0.49803	-2.04215	-0.42276
С	-5.29154	-0.01795	0.19032
Ν	-5.98197	-1.16569	0.34682

N	-6.16868	1.0626	0.15685
Н	-5.93282	2.0363	0.02267
N	1.54604	-0.04121	1.57232
С	0.71976	-0.05986	2.65689
Н	-0.34363	-0.042	2.45098
С	1.20315	-0.10126	3.96862
Н	0.50381	-0.11607	4.79788
С	2.59565	-0.12428	4.18338
Н	3.00177	-0.15679	5.18945
С	3.45045	-0.10535	3.07237
Н	4.52466	-0.12313	3.21698
С	2.91216	-0.06416	1.77146
С	3.72345	-0.0434	0.54087
С	5.13147	-0.06063	0.5166
Н	5.69766	-0.09048	1.44073
С	5.80285	-0.03979	-0.71542
Н	6.8879	-0.05297	-0.749
С	5.04645	-0.00213	-1.90371
Н	5.52587	0.0143	-2.87682
С	3.64731	0.01402	-1.82581
Н	3.009	0.04213	-2.70301
N	2.99244	-0.00586	-0.62823
С	-7.46045	0.56728	0.29633
С	-8.60427	1.37687	0.30911
Н	-8.50533	2.43807	0.40385
С	-9.85791	0.55767	0.25057
Н	-10.72756	1.18096	0.26095
С	-7.32184	-0.81428	0.41449
С	-8.43282	-1.65442	0.56885
Н	-8.2937	-2.71177	0.65574
С	-9.74469	-0.87078	0.55744
Н	-10.58908	-1.51729	0.67548

Ru	1.66116	0.01443	-0.39727
Cl	1.29773	0.10468	-2.84261
N	1.31976	2.07867	-0.32767
С	2.24085	3.0697	-0.43672
Н	3.27204	2.75522	-0.54462
С	1.88876	4.42638	-0.43055
Н	2.66017	5.18292	-0.52715
С	0.53129	4.77606	-0.30739
Н	0.22612	5.81785	-0.30276
С	-0.42645	3.75555	-0.19957
Н	-1.47803	4.00668	-0.11357
С	-0.02014	2.41041	-0.21467
С	-0.94813	1.26125	-0.14137
С	-2.3494	1.31085	-0.07248
Н	-2.84906	2.27299	-0.03851
С	-3.09002	0.10506	-0.05301
С	-2.39305	-1.12818	-0.12365
Н	-2.97812	-2.04	-0.13256
С	-0.99866	-1.13052	-0.19656

N	-0.30851	0.05433	-0.17369
С	-0.122	-2.31181	-0.34251
С	-0.5943	-3.63382	-0.39968
Н	-1.65648	-3.83531	-0.3152
С	0.31373	-4.68929	-0.57954
Н	-0.04055	-5.71407	-0.63139
С	1.68474	-4.39631	-0.70118
Н	2.41831	-5.18111	-0.85231
С	2.10171	-3.0595	-0.63386
Н	3.14581	-2.7891	-0.73753
Ν	1.22955	-2.03531	-0.45457
С	-4.54987	0.05906	0.0265
Ν	-5.24181	-1.07931	0.17337
Ν	-5.39425	1.17328	-0.0343
н	-5.12139	2.134	-0.18315
N	2.24944	-0.06936	1.58925
С	1.39439	-0.08952	2.65123
Н	0.33709	-0.05688	2.41754
C	1.84222	-0.15016	3.97477
H	1.12097	-0.16515	4.78504
C	3.22817	-0.19177	4.22598
H	3.60699	-0.23928	5.24206
C	4.2624	-0.17494	3.1381
C	3 60935	-0 11069	1 8241
C	4 45318	-0 08734	0 61554
C	5 86099	-0 12225	0 62775
C	6 56458	-0 09778	-0.58614
H	7 6499	-0 12426	-0 59146
C	5 84022	-0 03924	-1 79335
H	6 34519	-0 01949	-2 75338
C	4.43976	-0.0061	-1.7517
H	3.82462	0.03847	-2.64464
N	3.7539	-0.02904	-0.57185
C	-6.70993	0.7099	0.07782
C	-7.95357	1.36458	0.07453
Н	-8.04398	2.4421	-0.02885
C	-9.0897	0.55276	0.21259
H	-10 07421	1 01299	0 21594
C	-6 59191	-0 70964	0 21025
C	-7.74669	-1.50801	0.34915
H	-7.66226	-2.58537	0.45011
C	-8.98888	-0.86176	0.34846
- H	-9.89916	-1.44561	0.45204
C	6.63014	-0.18819	1.96029
- H	7.69979	-0.21523	1.95771
C	5.80692	-0.20881	3.13635
- H	6.34682	-0.25466	4.05901

Fig. S5 Crystal Packing of complex 3

Fig. S6 ESI-MS spectra of acetone-water solution of complex 2 irradiated in the presence of guanosine.

Fig. S7 ESI-MS spectra of acetone-water solution of complex 2 irradiated in the presence of deoxyguanosine.

Fig. S8 ESI-MS spectra of complex **2** in acetonitrile-water solution after irradiation at 440 nm for 50 min.

Fig. S9 ESI-MS spectra of acetone-water solution of complex **3** after irradiation at 440 nm for 50 min.

Fig. S10 ESI-MS spectra of acetone-water solution of complex **4** after irradiation at 440 nm for 50 min.

Fig. S11 ESI-MS spectra of acetone-water solution of complex 4 irradiated in the presence of guanosine.

Fig. S12 Cleavage of supercoiled pUC18 by the complex **1**, when incubated for 1 h and followed by irradiation at 440 nm for 30 min. Lane 1- control DNA, lane 2, 3, 4 DNA in the presence of 6, 12, 24 μ M complexes **1** respectively.

Fig. S13 Cleavage of supercoiled pUC18 by the complex **2**, when incubated for 1 h and followed by irradiation at 440 nm for 30 min. Lane 1- control DNA, lane 2, 3, 4 DNA in the presence of 6, 12, 24 μ M complexes **2** respectively.

Fig. S14 Cleavage of supercoiled pUC18 by the complex **3**, when incubated for 1 h and followed by irradiation at 440 nm for 30 min. Lane 1- control DNA, lane 2, 3, 4 DNA in the presence of 6, 12, 24 μ M complexes **3** respectively.

Fig. S15 Cleavage of supercoiled pUC18 by the complex **4**, when incubated for 1 h and followed by irradiation at 440 nm for 30 min. Lane 1- control DNA, lane 2, 3, 4 DNA in the presence of 6, 12, 24 μ M complexes **4** respectively.