Metallomacrocycles as Ligands: Synthesis and Characterisation of Aluminuim-Bridged Bisglyoximato Complexes of Palladium and Iron

Paul Kelley, Madalyn R. Radlauer, Abraham Yanez-McKay, Michael W. Day and Theodor Agapie* Department of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Blvd. MC 127-72, Pasadena, CA, 91125, USA.

*To whom correspondence should be addressed. E-mail: agapie@caltech.edu.

Supporting Information

I. Experimental Details	
General Considerations	S3
Synthesis of 3b	S3
Synthesis of 5b-Pd	S4
Synthesis of 3a	S 5
Synthesis of 5a-Fe	S 5
Synthesis of 5a-Fe-O-bridge	S 6
Synthesis of 3a ^{tBu}	S7
Synthesis of 5a ^{tBu} -Fe	S7
Synthesis of 8 ^{tBu}	S8
Synthesis of 9 ^{NO2}	S9
Synthesis of 10 ^{NO2}	S 9
Synthesis of 11 ^{NO2}	S10
Synthesis of 12 ^{NO2}	S10
Synthesis of 9 ^{tBu}	S11
Synthesis of 10 ^{tBu}	S11
Synthesis of 11 ^{tBu}	S12
Synthesis of 12 ^{tBu}	S13
II. NMR Spectra	
Figure S1. ¹ H NMR spectrum of 3b	S14
Figure S2. ¹³ C{ ¹ H} NMR spectrum of 3b	S14
Figure S3. ¹ H NMR spectrum of 5b-Pd	S14
Figure S4. ¹ H- ¹³ C HSQCAD NMR spectrum of 5b-Pd	S15
Figure S5. ¹ H- ¹³ C gHMBCAD NMR spectrum of 5b-Pd	S15
Figure S6. ¹ H NMR spectrum of 3a	S16
Figure S7. ¹ H NMR spectrum of 5a-Fe	S16
Figure S8. ¹³ C{ ¹ H} NMR spectrum of 5a-Fe	S16
Figure S9. ¹ H NMR spectrum of 5a-Fe-O-bridge	S17
Figure S10. ¹ H NMR spectrum of 3a ^{tBu}	S17
Figure S11. ¹ H NMR spectrum of 5a ^{tBu} -Fe	S17
Figure S12. ¹³ C{ ¹ H} NMR spectrum of 5a ^{tBu} -Fe	S18
Figure S13. ¹ H NMR spectrum of 8 ^{tBu}	S18
Figure S14. ¹³ C{ ¹ H} NMR spectrum of 8 ^{tBu}	S18
Figure S15. ¹ H NMR spectrum of 9 ^{NO2}	S19
Figure S16. ¹ H- ¹³ C gHMBCAD NMR spectrum of 9 ^{NO2}	S19
Figure S17. ¹ H NMR spectrum of 10 ^{NO2}	S20
Figure S18. ¹ H NMR spectrum of 11 ^{NO2}	S20
Figure S19. ¹³ C{ ¹ H} NMR spectrum of 11 ^{NO2}	S20
Figure S20. ¹ H NMR spectrum of 12 ^{NO2}	S21
Figure S21. ¹³ C{ ¹ H} NMR spectrum of 12 ^{NO2}	S21
Figure S22. ¹ H NMR spectrum of 9 ^{tBu}	S21
Figure S23. ¹³ C{ ¹ H} NMR spectrum of 9 ^{tBu}	S22

Figure S24. ¹ H NMR spectrum of 10 ^{tBu}	S22
Figure S25. ¹³ C{ ¹ H} NMR spectrum of 10 ^{tBu}	S22
Figure S26. ²⁷ Al NMR spectrum of 10 ^{tBu}	S23
Figure S27. ¹ H NMR spectrum of 11 ^{tBu}	S23
Figure S28. ¹³ C{ ¹ H} NMR spectrum of 11 ^{tBu}	S23
Figure S29. ²⁷ Al NMR spectrum of 11 ^{tBu}	S24
Figure S30. ¹ H NMR spectrum of 12 ^{tBu}	S24
Figure S31. ¹³ C{ ¹ H} NMR spectrum of 12 ^{tBu}	S24
Figure S32. ²⁷ Al NMR spectrum of 12 ^{tBu}	S25
III. Electrochemical Data	
General Considerations	S26
Figure S33. Cyclic Voltammograms of 11 ^{NO2} and 11 ^{tBu}	S26
IV. Crystallographic Information	
Table S1. Crystal and refinement data for 3b, 3b ^{tBu} , 5b-Pd- <i>anti</i> , and 5b-Pd- <i>syn</i>	S 27
Figure S34. Structural drawing of 3b	S 29
Table S2. Atomic coordinates and equivalent isotropic parameters for 3b	S 30
Table S3. Selected Bond lengths and angles for 3b	S 31
Figure S35. Structural drawing of 3b ^{tBu}	S 32
Table S4. Atomic coordinates and equivalent isotropic parameters for 3b ^{tBu}	S 33
Table S5. Selected Bond lengths and angles for 3b ^{tBu}	S 34
Figure S36. Structural drawing of 5b-Pd- <i>anti</i>	S 35
Table S6. Atomic coordinates and equivalent isotropic parameters for 5b-Pd-anti	S 35
Table S7. Selected bond lengths and angles for 5b-Pd-anti	S 36
Figure S37. Structural drawing of 5b-Pd-syn	S 37
Table S8. Atomic coordinates and equivalent isotropic parameters for 5b-Pd-syn	S 37
Table S9. Selected bond lengths and angles for 5b-Pd-syn	S 39
Table S10. Crystal and refinement data for 5a-Fe-O-bridge, 8 ^{tBu} , and 12 ^{NO2}	S 40
Figure S38. Structural drawing of 5a-Fe-O-bridge	S 42
Table S11. Atomic coordinates and equivalent isotropic parameters for 5a-Fe-O-bridge	S 42
Table S12. Selected bond lengths and angles for 5a-Fe-O-bridge	S 43
Figure S39. Structural drawing of 8 ^{tBu}	S 45
Table S13. Atomic coordinates and equivalent isotropic parameters for 8 ^{tBu}	S 46
Table S14. Selected Bond lengths and angles for 8 ^{tBu}	S 50
Figure S40. Structural drawing of 12 ^{NO2}	S 51
Table S15. Atomic coordinates and equivalent isotropic parameters for 12 ^{NO2}	S 51
Table S16. Selected bond lengths and angles for 12 ^{NO2}	S 54

V. References

I. Experimental Section

General Considerations. Unless otherwise specified, all compounds were manipulated using a glove box under a nitrogen atmosphere. Solvents for all reactions were dried by Grubbs' method.¹ Benzene- d_6 was purchased from Cambridge Isotope Laboratories and vacuum distilled from sodium benzophenone ketyl. Chloroform-d and dichloromethane- d_2 were also purchased from Cambridge Isotope Laboratories and vacuum distilled from calcium hydride. Alumina and Celite were activated by heating under vacuum at 200 for 12 °C h. Acenaphthenequinonedioxime, tetradentate salan ligands (1 and 6^{tBu}), methyl aluminum complexes $(2, 2^{tBu}, and 7^{tBu})$, and metal glyoxime precursors (4a-Fe and 4b-Pd) were all synthesized according to literature procedures.²⁻⁴ All other materials were used as received. All ¹H, ¹³C, and 2D NMR spectra were recorded on Varian Mercury 300 MHz, Varian 400 MHz, or Varian INOVA-500 or 600 MHz spectrometers at room temperature, unless denoted otherwise. Chemical shifts are reported with respect to internal solvent: 7.16 ppm and 128.06 (t) ppm (C_6D_6) , 7.26 ppm and 77.16 ppm (CDCl₃), and 5.32 ppm and 53.84 ppm (CD₂Cl₂) for ¹H and ¹³C NMR data, respectively. The chemical shifts in the ²⁷Al NMR data were referenced to a 1.1 M solution of Al(NO₃)₃ in D₂O. Elemental analysis was performed by Midwest Microlab, LLC (Indianapolis, IN).

Synthesis of 3b

Al(salan) (0.17 g, 0.43 mmol, 1 equiv), acenaphthenequinonedioxime (0.09 g, 0.43 mmol, 1 equiv), and THF (10 mL) were added to 20 mL vial with a stirbar at -35 °C in the glovebox and the mixture was stirred for 12 h. Volatiles were removed under vacuum to yield a yellow orange residue (0.19 g, 74 % yield). **3b** was used as isolated without any further purification. X-ray quality crystals were grown from a vapor diffusion of pentane into toluene. ¹H NMR (400 MHz, CD₂Cl₂) δ 14.33 (2H, s, A), 8.60 (2H, d, *J*=7.1, B), 8.35 (2H, d, *J*=7.0, B'), 7.94 (2H, d, *J*=8.2, C), 7.77 (2H, d, *J*=8.3, C'), 7.68 (2H, dd, *J*=8.3, 7.0, D), 7.56 (2H, dd, *J*=8.4, 7.0, D'), 6.74 (4H, d, *J*=2.4, E), 6.72 (4H, d, *J*=2.5, E), 4.97 (4H, d, *J*=12.7, F), 3.29 (4H, d, *J*=12.8, F), 2.76 (4H, t, *J*=6.0, G), 2.28 (2s, 24H, H, I), 2.12 (4H, t, *J*=6.0, J), 1.82 (s, 12H, K). ¹³C NMR (101 MHz, C₆D₆): δ 158.59 (1), 144.92 (2), 144.71 (3), 137.09 (4), 132.67 (5), 130.65 (6), 129.98 (7), 129.18 (8), 128.33 (9), 127.92 (6), 127.56 (10), 126.74 (11), 126.18 (12), 125.66 (13), 123.86 (14), 123.06 (15), 121.25 (16), 64.56 (17), 58.11 (18), 50.24 (19), 48.18 (20), 20.64 (21), 16.06 (22) ppm. Anal. Calcd for C₆₈H₇₂Al₂N₈O₈: C, 68.90; H, 6.29; N, 9.45. Found: C, 69.01; H, 6.12; N, 9.18.

Synthesis of 5b-Pd

Route A: **5b-Pd** was also synthesized by the addition of **3b** (0.050 g, 0.042 mmol) to $Pd(OAc)_2$ (0.021 g, 0.095 mmol, 2.25 equiv) in THF (5 mL) in a 20 mL vial in the glovebox at room temperature. The mixture was stirred over 13 h during which time the mixture turned dark orange brown with precipitate. Volatiles were removed under vacuum and the desired product was isolated by washing over Celite with hexanes and collecting the filtrate from toluene. Volatiles were again removed *in vacuo*, and 0.033 g of pale orange solid was collected (61 % yield).

Route B: Pd(OAc)₂ (0.10 g, 0.45 mmol) and acenaphthenequinonedioxime (0.19 g, 0.89 mmol, 2 equiv) were added to a Schlenk tube with methanol (10 mL) and the mixture was stirred for 3 h resulting in a color change of the heterogeneous mixture to orange. Volatiles were removed under vacuum, dry THF (10 mL) was added via cannula and then removed in vacuo twice. 2 (0.35 g, 0.89 mmol, 2 equiv) and dry THF (10 mL) were added by syringe and the reaction was stirred for 12 h. Volatiles were removed under vacuum and the resulting yellow orange solid was brought into the glovebox. Stirred solid in THF (10 mL) for 1 h and collected vellow orange precipitate (0.36 g, 63 % yield) which includes 2 sets of peaks by ¹H NMR spectroscopy in a 10:1 ratio. X-ray quality crystals were grown from a vapor diffusion of hexanes into THF. ¹H NMR (600 MHz, C₆D₆): major species: δ 8.37 (2H, d, J=7.0, A), 8.16 (2H, d, J=7.0, A), 7.37 (2H, d, J=8.2, B), 7.32 (2H, d, J=8.4, B), 7.25 (2H, dd, J=7.2, J=8.0, C), 7.09 (2H, dd, J=7.0, J=8.3, C), 6.96 (4H, d, J=1.6, D), 6.74 (4H, d, J=1.9, E), 5.10 (2H, d, J=12.6, F), 3.01 (2H, d, J=12.7, F), 2.39 (12H, s, G), 2.36 (4H, t, J=5.8, H), 2.26 (12H, s, I), 2.17 (12H, s, J), 1.71 (4H, t, J=6.0, K) ppm; minor species: δ 8.66 (2H, d, J=6.7, A), 7.81 (2H, d, J=7.0, A), 7.44 (2H, d, J=8.2, B), 7.32 (2H, d, B), 7.22 (2H, dd, C), 7.04 (2H, dd, C), 6.95 (4H, d, J=1.6, D), 6.55 (4H, d, E), 4.93 (2H, d, J=13.0, F), 2.98 (2H, d, J=12.7, F), 2.63 (12H, s, G), 2.26 (6H, s, J), 2.23 (4H, t, H), 2.19 (12H, s, I), 2.11 (6H, s, J), 1.78 (4H, t, J=6.1, K) ppm. ¹³C NMR (from 2D spectra, C_6D_6): δ 158.7 (1), 153.1 (2), 140.8 (3), 132.6 (4), 131.2 (5), 128.3 (6), 127.9 (6), 127.4 (7), 127.2 (8), 127.0 (9), 126.9 (8), 126.5 (5), 122.5 (10), 122.5 (11), 122.4 (11), 121.0 (12), 64.6 (13), 64.5 (13), 57.8 (14), 50.0 (15), 47.9 (16), 20.8 (17), 16.7 (18) ppm. Anal. Calcd for C₆₈H₇₂Al₂N₈O₈Pd: C, 63.33; H, 5.63; N, 8.69. Found: C, 63.20; H, 5.48; N, 8.39.

Synthesis of 3a

The macrocycle was synthesized following the synthesis procedure for **3b**. A stirring solution of **2** (0.158 g, 0.387 mmol) in THF was treated with a slurry of diphenylglyoxime (0.096 g, 0.398 mmol) in THF. The solution was stirred for 3 hours over which the solution became yellow. The solvent was removed *in vacuo* to yield a pale yellow solid. The macrocycle **3a** was used as isolated without any further purification. Yield 0.211 g, 88 %. ¹H NMR (300 MHz, C₆D₆) δ 14.41 (2H, s, N*H*), 7.86 (8H, m, k) 6.98 (4H, t, *J* = 7.6 Hz, i), 6.83 (8H, m, j), 6.76 (4H, s, 1,1'), 6.69 (4H, s, 1,1'), 4.89 (4H, d, *J* = 12.9 Hz, b,b'), 2.79 (4H, d, *J* = 13.1 Hz, b,b'), 2.38 (12H, s, e), 2.32 (4H, m, a,a'), 2.18 (12H, s, c), 2.15 (12H, s, d), 1.75 (4H, m, a,a') ppm. Anal. Calcd for C₇₂H₈₂Al₂N₈O₈: C, 69.66; H, 6.66; N, 9.03; Found: C, 69.07; H, 6.69; N, 8.69 %.

Synthesis of 5a-Fe

Route A: In a 20 ml vial (0.043 g, 0.062 mmol) of **4a-Fe** was stirred in about 2 ml of THF. To this was added (0.050 g, 0.126 mmol) of **2** as a solution in a small amount of THF. The reaction was stirred at ambient temperature for 3 days. Over the reaction time the solid **4a-Fe** became soluble. The volitiles were removed under vacuum and the resulting purple solid was washed with Et_2O and benzene. The benzene was removed from the benzene fraction via vacuum and the resulting solid was dissolved in minimal amounts of THF. Small amounts of hexanes were added to the saturated solution resulting in precipitation of a purple solid. The solid was collected via filtration over a fine frit. Yield 0.033 g, 36 %.

Route B: Sodium hexamethyldisilazide (0.030 g, 0.163 mmol) was added to a solution of **3a** (0.100 g, 0.081 mmol) in THF. The solution was stirred for 2 hours and the solvent was removed via vacuum. The resulting white residue was washed with pentane to remove the bis(trimethylsilyl)amine. The bis(trimethylsilyl)amine free solid was taken up in THF and mixed with a solution of FeCl₂ (0.010 g, 0.079 mmol) in THF. The solution immediately turned a dark

purple and was stirred for an hour. After an hour excess pyridine was added to the solution upon which the color changed from dark purple to a reddish purple. The solvent was removed *in vacuo* yielding the a purple red solid which was washed with ether. Yield 0.060 g, 52 %, about 90 % pure. To date, an analytically pure sample has yet to be obtained due to contamination of what is believed to be another isomer of the desired complex. ¹H NMR (500 MHz, C₆D₆) δ 9.30 (4H, d, *J*=5.6 Hz, h), 7.33 (4H, m, *J*=5.8 Hz, i), 6.98 (16H, m, j,l), 6.95 (4H, s, l'), 6.79 (2H, t, *J*=8.2 Hz, f), 6.63 (4H, m, g), 6.61 (4H, s, l), 4.61 (4H, d, *J*=13.0 Hz, b'), 2.61 (4H, d, *J*=12.9 Hz, b), 2.36 (6H, s, d), 2.15 (4H, m, a'), 1.97 (6H, s, e), 1.80 (6H, s, c), 1.64 (4H, m, a) ppm. ¹³C{¹H} (126 MHz, C₆D₆) δ 159.08 (4), 158.35 (6), 156.67 (h), 135.70 (7), 134.57 (f), 131.41 (l'), 130.49 (i), 130.43 (k), 127.63 (j), 127.25 (l), 126.01 (5), 122.59 (g), 122.15 (3), 121.80 (2), 64.97 (b,b'), 58.18 (a,a'), 50.11 (a,a'), 47.68 (c), 20.89 (d), 16.74 (e) ppm. MS ESI (m/z): calcd, 1453.46 (M+); found 1452.7 (M+) (dipyridine) and 1390.2 (M+) (monopyridine with an oxygen)

A solution of **2** (0.248 g, 0.200 mmol) in THF was treated with a solution of Sodium hexamethyldisilazide (0.073 g, 0.400 mmol) also in THF. The solution was stirred for 3 hours over which the solution lost some of its color. After 3 hours the solvent was removed *in vacuo* resulting in a pale yellow white solid. The solid was washed with pentane resulting in a white THF soluble solid (0.116 g, 0.090 mmol, **3a-Na**₂). To a THF solution of this disodium salt was added a slurry of FeCl₂ in THF (0.0115 g, 0.091 mmol). Upon addition the solution immediately became a dark black with an orange hue. The solution was stirred for 4 hours and the THF was removed *in vacuo*. The resulting dark brown solid was washed with diethyl ether resulting in a orange solid which was extracted using DCM. The DCM was removed *in vacuo* resulting in a dark orange solid paramagnetic material. Alternatively, 4 can be synthesized by removing the pyridines from **5a-Fe**, by dissolving **5a-Fe** in a high boiling solvent and removing the solvent *in vacuo*. Crystals were grown from a concentrated solution of **5a-Fe** in THF layered with hexanes. Yield 0.066 g, 57 %. ¹H NMR (300 MHz, CD₂Cl₂) δ 18.46, 15.23, 12.84, 11.02, 10.67, 9.82, 8.97, 7.13, 6.68, 5.26, 4.96, 4.27 ppm.

Synthesis of 3a^{tBu}

The macrocycle was synthesized following the synthesis procedure for **3a**. A stirring solution of 2^{tBu} (0.100 g, 0.021 mmol) in THF was treated with a slurry of diphenylglyoxime (0.050 g, 0.021 mmol) in THF. The solution was stirred for 3 hours over which the solution became yellow. The solvent was removed *in vacuo* to yield a pale yellow solid. The Al(salan)₂(diphenylglyoxime)₂ macrocycle was used as isolated without any further purification. ¹H NMR (300 MHz, C₆D₆) δ 14.10 (2H, s, N*H*), 7.85 (4H, d, *J* = 6.7 Hz, 1,1') 7.61 (4H, t, *J* = 7.6 Hz, 1,1'), 6.92 (8H, m, k), 6.82 (8H, m, j), 6.65 (4H, m, i), 4.82 (4H, d, *J* = 12.7 Hz, b,b'), 2.81 (4H, d, *J* = 12.9 Hz, b,b'), 2.32 (12H, s, e), 2.23 (4H, m, a,a'), 2.02 (12H, s, c), 1.78 (4H, m, a,a'), 1.48 (36H, s, d) ppm.

Synthesis of 5a^{tBu}-Fe

5a^{tBu}-Fe was synthesized and purified according to the synthesis procedures of 5a-Fe.

Route A: In a 20 ml vial 0.072 g (0.010 mmol) of **4a-Fe** was stirred in about 2 ml of THF. To this was added 0.110 g (0.023 mmol) of the 2^{tBu} complex as a solution in a small amount of THF. The reaction was stirred at ambient temperature for 16 days. Over the reaction time the solid **4a-Fe** glyoxime became soluble. The volitiles were removed under vacuum and the resulting purple red solid was washed with hexanes, pentane, diethyl ether, and toluene. The toluene fraction was concentrated via vacuum and a small amount of hexanes was added to the saturated solution resulting in precipitation of a purple solid. The solid was collected via filtration over a fine frit. Yield 0.071 g, 44 %.

Route B: Sodium hexamethyldisilazide 0.036 g (0.200 mmol) was added to a solution of $3a^{tBu}$ (0.141 g, 0.100 mmol) in THF. The solution was stirred for 2 hours and the solvent was removed via vacuum. The resulting white residue was washed with pentane to remove the bis(trimethylsilyl)amine. The bis(trimethylsilyl)amine free solid (0.126 g, 0.090 mmol) was taken up in THF and mixed with a solution of Fe(II)Cl₂ (0.011 g, 0.090 mmol) in THF. The

solution immediately turned a dark purple and was stirred for an hour. After an hour excess pyridine was added to the solution upon which the color changed from dark purple to a reddish purple. The solvent was removed in vacuo yielding a purple red solid which was washed with pentane and hexanes and extracted with diethyl ether. Yield 0.098 g, 67 %

¹H NMR (300 MHz, C₆D₆): δ 9.26 (4H, d, *J*=5.5 Hz, h), 7.41 (4H, d, *J*=8.4 Hz, g), 7.21 (8H, s, k), 6.97 (8H, s, j), 6.89 (8H, s, l), 6.83 (4H, t, *J*=6.7 Hz, i), 6.58 (2H, t, *J*=6.7 Hz, f), 4.65 (4H, d, *J*=12.9 Hz, b,b'), 2.71 (4H, d, *J*=13.3 Hz, b,b'), 2.15 (4H, m, a,a'), 2.08 (6H, s, e), 1.81 (6H, s, c), 1.63 (4H, m, a,a'), 1.44 (36H, s, d) ppm. ¹³C{¹H} NMR (126 MHz, C₆D₆) δ 159.02 (4), 158.88 (6), 156.46 (h), 135.80 (7), 134.24 (2), 130.62 (f), 130.37 (k), 127.66 (j), 127.53 (i), 127.44 (1,1'), 125.67 (5), 123.18 (1,1'), 122.52 (g), 121.53 (3), 65.65 (b,b'), 58.10 (a,a'), 50.33 (a,a'), 47.64 (c), 33.90 (1), 32.33 (d), 17.12 (e) ppm. Anal. Calcd for C₉₄H₁₁₄Al₂FeN₁₀O₈: C, 69.62; H, 7.09; N, 8.64; Found C, 69.36; H, 7.33; N, 8.63

Synthesis of 8^{tBu}

In a round bottom flask **4a-Fe** (0.692 g, 0.98 mmol) was stirred in 10 ml of toluene at ambient temperature. To this purple slurry was added a solution of the 7^{tBu} (0.999 g, 2.08 mmol) in toluene. The solution was stirred for 14 hours. After 14 hours toluene was removed in vacuo yielding a purple solid. The solid was washed with hexanes, Et₂O, and toluene. The toluene washed was pumped down to a solid yielding clean 6. Yield: 0.688 g, 43 % ¹H NMR (500 MHz, C₆D₆) δ 9.21 (4H, d, J = 4.9 Hz, h), 7.31 (8H, d, J = 7.3 Hz, k), 7.21 (4H, d, J = 2.4 Hz, l'), 7.01 (8H, t, J = 7.5 Hz, j), 6.94 (4H, m, i), 6.75 (2H, t, J = 7.6 Hz, f), 6.74 (4H, d, J = 2.5 Hz, l), 6.30 (4H, t, J = 7.0 Hz, g), 4.49 (4H, d, J = 12.8 Hz, b,b'), 2.69 (4H, d, J = 9.0 Hz, a,a'), 2.57 (4H, d, J = 13.1 Hz, b,b'), 2.14 (12H, s, e), 1.90 (12H, s, c), 1.38 (36H, s, d), 0.89 (4H, d, J = 9.1 Hz, a,a') ppm. ¹³C{¹H} NMR (126 MHz, C₆D₆) δ 158.90 (4), 157.44 (6), 156.83 (h), 135.99 (2), 135.87 (7), 134.16 (f), 130.58 (k), 127.75 (j), 127.43 (i), 126.90 (l'), 126.68 (5), 123.14 (l), 122.65 (g), 120.89 (3), 63.73 (b,b'), 49.97 (a,a'), 46.85 (c), 33.88 (1), 32.30 (d), 17.62 (e) ppm. Anal. Calcd for C₉₄H₁₁₄Al₂FeN₁₀O₈: C, 69.62; H, 7.09; N, 8.64; Found, C, 69.49; H, 6.96; N, 8.44;

Synthesis of 9^{NO2}

This ligand variant was synthesized using a modified literature procedure.⁵ A solution of N,N'-dimethylcyclohexane-1,2-diamine (0.233 g, 1.63 mmol) and diisopropylethylamine (0.424 g, 3.28 mmol) in THF (7.5 ml) at 0°C (ice bath) was treated with a cold solution (ice bath) of 2-(chloromethyl)-6-methyl-4-nitrophenol (0.661 g, 3.28 mmol) in THF (5 ml). The solution was stirred for 16 hours during which a yellow precipitate formed. The resulting slurry was filtered using a medium glass frit and washed with 3x 20 ml of cold MeOH. The resulting off white solid was dried under vacuum. Yield 0.298 g, 38 % ¹H NMR (300 MHz, CDCl₃), δ 11.99 (2H, br s, OH) 8.01 (2H, d, J = 2.8 Hz, 1,1'), 7.84 (2H, d, J = 2.4 Hz, 1,1'), 3.91 (4H, d, J = 13.2 Hz, b,b'), 3.59 (2H, br s, b,b'), 2.83 (2H, m, a), 2.29 (6H, s, e), 2.14 (6H, s, c), 2.11 (2H, m, a''), 1.91 (2H, s, a'), 1.27 (4H, br m, a',a'') ppm. ¹³C{¹H} NMR (from 2D spectra, 126 MHz, (CD₃)₂SO) δ 166.98 (4), 135.74 (2), 126.12 (5), 125.81 (1'), 127.34 (1), 122.58 (3), 62.56 (b,b'), 25.54 (c), 22.78 (a), 16.68 (a), 16.53 (e) ppm from . ESI-MS Calc. (M) 472.2322 Found. 473.2 (MH+)

Synthesis of 10^{NO2}

The synthesis of 10^{NO2} was synthesized using trimethylaluminum following a published procedure for similar aluminium alkyl complexes.^{6,7} A freshly thawed slurry of 9^{NO2} (0.024 g, 0.052 mmol) in toluene (5 ml) was treated with a thawed solution of trimethylaluminum (0.004g, 5.2 µl, 0.053 mmol). Upon mixing the solid particulates dissolved and the solution became a dark orange color which faded after a few minutes resulting in a light yellow solution. The solution was allowed to stir for 18 hours. During this time the solution became a slurry. The solvent was removed *in vacuo* resulting in a light yellow powder which was used without further purification. Yield 0.026 g, 99 % ¹H NMR (300 MHz, CD₂Cl₂), δ 8.04 (2H, m, 1,1'), 7.85 (2H, m, 1,1'), 4.00 (2H, *J* = 13.4 Hz, b,b'), 3.50 (2H, *J* = 13.0 Hz, b,b'), 2.95 (2H, m, a), 2.32 (3H, s, e), 2.28 (6H, m, e',c'), 2.18 (2H, m, a''), 2.10 (3H, s, c), 1.97 (2H, m, a'), 1.51(2H, m, a''), 1.25(2H, m, a'), -0.69 (3H, s, AlCH₃) ppm.

Synthesis of 11^{NO2}

The macrocycle was synthesized following the synthesis procedure for **3a**. A stirring solution of **10**^{NO2} (0.100 g, 0.019 mmol) in THF was treated with a slurry of diphenylglyoxime (0.046 g, 0.019 mmol) in THF. The solution was stirred for 3 hours over which the solution became yellow. The solvent was removed *in vacuo* to yield a pale yellow solid. **11**^{NO2} was used as isolated without any further purification. Yield 0.139 g, 97 %. ¹H NMR (300 MHz, C₆D₆) δ 13.98 (2H, s, N*H*), 7.77 (4H, d, *J* = 2.9 Hz, 1,1'), 7.59 (12H, m, i and j), 7.29 (12H, m, k and 1,1'), 4.41 (4H, d, *J* = 13.5 Hz, b,b'), 3.25 (4H, d, *J* = 13.6 Hz, b,b'), 2.44 (4H, m, a), 2.06 (12H, s, e), 1.92 (12H, s, c), 1.72 (4H, m, a'), 1.59 (4H, m, a''), 1.03 (4H, m, a'), 0.80 (4H, m, a'') ppm. ¹³C {¹H} NMR (126 MHz, CD₂Cl₂) δ 165.86 (4), 149.36 (6), 136.44 (2), 130.11 (k), 128.28 (j), 127.97 (5), 127.40 (7), 126.39 (l'), 123.49 (l), 120.79 (3), 58.45 (b,b'), 56.39 (a), 39.97 (c), 24.01 (a''), 21.89 (a'), 16.18 (e) ppm. Anal. Calcd for C₇₆H₈₂Al₂FeN₁₂O₁₆: C, 61.95; H, 5.61; N, 11.41; Found: C, 61.91; H, 5.74; N, 11.29 %.

Synthesis of 12^{NO2}

Route A: To a slurry of 10^{NO2} (0.150 g, 0.302 mmol) in toluene (5 ml) was added 4a-Fe (0.101 g, 0.146 mmol) with THF (3 ml). The slurry was stirred for a total of 3 days, during which the solution took on a purple orange hue. From this colored solution a solid precipitated on the walls of the vial. After the allotted time the solvent was removed *in vacuo*. The solid was washed three times with hexanes to remove the excess toluene. The solid was fractioned with hexanes, diethylether, toluene, and THF. The desired product was found in the THF fraction. Yield 0.129 g, 52 %

Route B: Sodium hexamethyldisilazide (0.030 g, 0.163 mmol) was added to a solution of 11^{NO2} (0.236 g, 0.160 mmol) in THF. The solution was stirred for 12 hours and the solvent was removed via vacuum. The resulting residue was washed with pentane to remove the

bis(trimethylsilyl)amine. The bis(trimethylsilyl)amine free solid (0.217 g, 0.143 mmol) was taken up in THF and mixed with a solution of $Fe(II)Cl_2$ (0.019 g, 0.146 mmol) in THF. The solution immediately turned a dark purple. The dark purple solution was stirred for 3 hours after which excess pyridine was added. Upon addition of pyridine the solution color changed from dark purple to a reddish purple. The solvent was removed *in vacuo* yielding a purple solid which was washed with benzene and extracted with THF. Yield 0.174 g, 72 %

¹H NMR (500 MHz, CD₂Cl₂), δ 8.61 (4H, s, h), δ 7.83 (4H, l',), δ 7.63 (d, 4H), δ 7.28 (m, 20H), δ 7.02 (dd, 4H), δ 6.37 (m, 2H), δ 4.15 (d, 4H), δ 2.89 (d, 4H), δ 1.80 (s, 12H), δ 1.75 (s, 12H) ¹³C (¹H) NMR (126 MHz, CD₂Cl₂) δ 166.85 (4), 159.75 (6), 155.16 (h), 135.81 (2), 134.82 (k), 129.75 (j), 128.35 (5) 128.25 (7) 127.76 (f), 126.35 (l'), 123.88 (l), 123.05 (g), 121.54 (3), 58.48 (b,b') , 56.27 (a), 40.97 (c), 24.40 (a''), 22.06 (a'), 16.69 (e) ppm. Anal. Calcd for C₈₆H₉₀Al₂FeN₁₄O₁₆: C, 61.28; H, 5.38; N, 11.63; Found: C, 61.13; H, 5.46; N, 11.43 %

Synthesis of 9^{tBu}

This compound was synthesized via a mannich condensation of the (R,R)-1,2diammoniumcyclohexane mono-(+)-tartrate salt and 2-methyl-4-tert-butylphenol using a previously published procedure.^{7,8} The amines were methylated following the same procedure resulting in the compound **9^{tBu}**. ¹H NMR (300 MHz, CDCl₃), δ 10.01 (2H, br s, OH), 7.05 (2H, d, J = 2.1 Hz, 1,1'), 6.82 (2H, d, J = 2.4 Hz, 1,1'), 3.77 (2H, d, J = 13.2 Hz, b,b'), 3.66 (2H, d, J = 13.3 Hz, b,b'), 2.70 (2H, m, a), 2.20 (6H, s, e), 2.17 (6H, s, c), 2.01 (2H, m, a"), 1.81 (2H, d, a'), 1.27 (18H, s, d), 1.17 (4H, m, a',a") ppm. ¹³C{¹H} NMR (126 MHz, C₆D₆) δ 154.06 (4), 140.74 (2), 127.17 (l'), 124.73 (5), 123.32 (l), 121.26 (3), 61.65 (b,b'), 33.66 (1), 31.60 (d), 25.05 (c), 21.99 (a,a',a"), 16.23 (e) ppm. ESI-MS Calc. (M) 494.3872 Found. 495.3 (MH+)

Synthesis of 10^{tBu}

Compound 10^{tBu} was synthesized using trimethylaluminum following a published procedure for similar aluminium alkyl complexes.^{6,7} A slurry of 9^{tBu} (0.956 g, 1.93 mmol) in toluene was

frozen in a coldwell. Upon freezing the solution was allowed to thaw upon which a freshly thawed solution of trimethylaluminum (0.139 g, 1.93 mmol) in toluene (3 ml) was added slowly. This mixture was allowed to warm to room temperature and left stirring for 12 hours. After 12 hours the solvent was removed in vacuo, yielding an off white solid which was used without further purification. Yield: 0.900 g, 87 % 1H NMR (300 MHz, C6D6) δ 7.32, 7.29, 6.90, 6.82, and 6.78 (l,l'), 3.61, 3.54, 3.32, 3.27, 2.79, 2.75, and 2.70 (b,b'), 2.63 and 2.43 (e), 2.29 and 1.99 (a), 1.88, 1.68, and 1.66 (c), 1.41, 1.39, and 1.39 (d), 1.21, 0.60, and 0.48 (a',a''), -0.40 (AlCH3) ppm. ¹³C{¹H} NMR (126 MHz, CD₂Cl₂) δ 156.06 (4), 155.89 (4), 138.33 (2), 137.68 (2), 127.43 (l'), 127.29 (l'), 126.93 (l'), 126.68 (5), 126.55 (5), 126.01 (5), 123.04 (l), 122.84 (l), 120.03 (3), 118.54 (3), 63.81 (b,b'), 60.73 (b,b'), 60.26 (b,b'), 59.48 (b,b'), 42.67, 36.77, 33.57 (1), 31.51 (d), 24.79 (a''), 24.54 (a''), 23.13(a'), 22.89 (a'), 22.72 (a'), 16.21 (e), 16.08 (e), 15.72 (AlCH₃) ppm multiple diastereomers in solution.²⁷Al NMR (104.7 MHz, 25 °C, CD₂Cl₂) δ 74.21 ppm, $\omega_{1/2}$ 6500 Hz.

Synthesis of 11^{tBu}

The macrocycle was synthesized following the synthesis procedure for **3a**. A stirring solution of **10**^{tBu} (0.105 g, 0.197 mmol) in THF was treated with a slurry of diphenylglyoxime (0.047 g, 0.196 mmol) in THF. The solution was stirred for 3 hours over which the solution became yellow. The solvent was removed in vacuo to yield a pale yellow solid. **11**^{tBu} was used as isolated without any further purification. It can also be purified through precipitation from pentane. Yield 0.145 g, 98 %. ¹H NMR (300 MHz, C₆D₆) δ 14.20 (2H, s, NH), 7.67 (8H, d, J = 7.1 Hz, k), 7.29 (4H, s, 1,1°), 6.91 (12H, m, j,i), 6.78 (4H, m, 1,1°), 4.54 (4H, d, J = 13.0 Hz, b,b°), 2.88 (4H, d, J = 13.1 Hz, b,b°), 2.57 (4H, m, a), 2.34 (12H, s, e), 2.06 (12H, s, c), 1.45 (36H, s, d), 1.25 (8H, m, a', a''), 0.38 (8H, m, a', a'') ppm. ¹³C{¹H} NMR (126 MHz, CD₂Cl₂) δ 156.69 (4), 148.27 (6), 136.31 (7), 131.56 (2), 130.12 (k), 128.76 (j), 127.53 (i), 126.99 (l'), 125.54 (5), 123.17 (l), 120.29 (3), 59.40 (b,b°), 55.56 (a), 39.89 (c), 33.49 (1), 31.67 (d), 24.31 (a''), 21.83 (a'), 16.05 (e). ²⁷Al NMR (104.7 MHz, 25 °C, CD₂Cl₂) δ 14.40 ppm, $\omega_{1/2}$ 4150 Hz. Anal. Calcd for C₉₂H₁₁₈Al₂FeN₈O₈: C, 72.80; H, 7.84; N, 7.38; Found: C, 72.68; H, 7.60; N, 7.12 %

Synthesis of 12^{tBu}

Route A: In a 100 mL round bottom, a solution of 10^{tBu} (2.167 g, 4.05 mmol) was treated with a slurry of Fe(DPG)₂(Py)₂ (1.334 g, 1.93 mmol) in benzene at room temperature. The solution was stirred allowing for the produced methane to escape. After 24 hours the solvent was removed in vacuo. The crude solid was taken up in hexanes and filtered. The recovered solid was washed with diethyl ether and extracted with toluene. Purified 12^{tBu} was precipitated from toluene by adding hexanes to the toluene mixture and cooling the mixture to -35°C overnight. Another crop of purified solid can be obtained from the hexane fraction via cooling to -35°C overnight. Yield 2.197 g, 66 %

Route B: Sodium hexamethyldisilazide (0.013 g, 0.069 mol) was added to a solution of 11^{tBu} (0.503 g, 0.033 mol) in THF. The solution was stirred for 2 hours and the solvent was removed via vacuum. The resulting residue was triterated with THF to remove the bis(trimethylsilyl)amine. The bis(trimethylsilyl)amine free solid was taken up in THF and mixed with a slurry of Fe(II)Cl₂ (0.005 g, 0.039 mmol) in THF. The solution immediately turned a dark purple. The dark purple solution was stirred for one hour after which excess pyridine was added. Upon addition of pyridine the solution color changed from dark purple to a reddish purple. The solvent was removed in vacuo yielding a purple solid. The solid was washed with hexanes and a small amount of diethylether before it was extracted with toluene. The solvent was removed *in vacuo* yielding the same product as Route A. Yield 0.414 g, 72 %

¹H NMR (500 MHz, C₆D₆) δ 9.35 (4H, d, J = 5.5 Hz, h), 7.33 (8H, d, J = 7.4 Hz, k), 7.20 (4H, s, l'), 7.06 (8H, t, J = 7.4 Hz, j), 7.00 (4H, m, J = 7.1 Hz, i), 6.77 (2H, t, J = 7.6 Hz, f), 6.74 (4H, s, l), 6.34 (4H, t, J = 6.7 Hz, g), 4.54 (4H, d, J = 13.2 Hz, b'), 2.80 (4H, d, J = 13.4 Hz, b), 2.52 (4H, s, a), 2.17 (12H, s, e), 1.93 (12H, s, c), 1.35 (36H, s, d), 1.22 (4H, m, a'), 1.02 (4H, s, a''), 0.46 (4H, m, a'), 0.28 (4H, m, a'') ppm; ¹³C{¹H} NMR (125.70 MHz, C₆D₆) δ 158.77 (6), 157.80 (4), 157.01 (h), 136.14 (7), 135.90 (2), 134.17 (f), 130.62 (k), 127.78 (j), 127.41 (i), 127.08 (l'), 126.17 (5), 122.82 (l), 122.56 (g), 121.27 (3), 59.90 (b,b'), 55.45 (a), 40.90 (c), 33.86 (1), 32.29 (d), 24.26 (a''), 21.78 (a'), 17.51 (e) ppm; ²⁷Al NMR (104.7 MHz, 25 °C, C₆D₆) δ 14.19 ppm, $ω_{1/2}$ 9000 Hz. Anal. Calcd for C₁₀₂H₁₂₆Al₂FeN₁₀O₈: C, 70.82; H, 7.34; 8.10; Found C, 69.90; H, 7.24; N, 7.44 %

II. Nuclear Magnetic Resonance Spectra

Figure S1. ¹H NMR spectrum of 3b in CD_2Cl_2 .

Figure S3. ¹H NMR spectrum of **5b-Pd** in C_6D_6 .

Figure S4. ¹H-¹³C HSQCAD NMR spectrum of **5b-Pd** in C₆D₆.

Figure S5. $^{1}H^{-13}C$ gHMBCAD NMR spectrum of **5b-Pd** in C₆D₆.

145 140 13.5 13.0 12.5 12.0 11.5 11.0 13.5 10.0 9.5 9.0 8.5 8.0 7.5 11 (parti 0.5 7.0 6.5 6.0 4.0 3.5 3.0 2.5 2.0 1.5 1.0 5.5 5.0 4.5 Figure S6. ¹H NMR spectrum of 3a in C_6D_6 .

5.5 5.0 f1 (ppm) 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 3.0 0.5 0.0 6.0 4.5 4.0 3.5 2.5 2.0 1.5 1.0 Figure S7. ¹H NMR spectrum of 5a-Fe in C_6D_6 .

Figure S8. ¹³C NMR spectrum of 5a-Fe in C_6D_6 .

14.5 14.0 13.5 13.0 12.5 12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 It [part] 7.0 6.0 3.0 2.5 2.0 1.5 1.0 6.5 5.5 50 4.0 3.5 4.5 Figure S10. ¹H NMR spectrum of $3a^{tBu}$ in C₆D₆.

Figure S11. ¹H NMR spectrum of $5a^{tBu}$ in $C_6D_6^{H}$.

Figure S12. ¹³C{¹H} NMR spectrum of $5a^{tBu}$ in C₆D₆.

Figure S13. ¹H NMR spectrum of 8^{tBu} in C_6D_6 .

Figure S16. ¹H-¹³C gHMBCAD NMR spectrum of 9^{NO2} in (CD₃)₂SO.

Figure S17. ¹H NMR spectrum of 10^{NO2} in CD_2Cl_2

Figure S21. ¹³C{¹H} NMR spectrum of 12^{NO2} in CD₂Cl₂.

Figure S22. ¹H NMR spectrum of 9^{tBu} in CDCl₃

Figure S23. ¹³C{¹H} NMR spectrum of 9^{tBu} in C₆D₆

Figure S24. ¹H NMR spectrum of 10^{tBu} in C₆D₆

Figure S26. ²⁷Al NMR spectrum of 10^{tBu} in CD_2Cl_2

Figure S27. ¹H NMR spectrum of 11^{tBu} in CD_2Cl_2 .

Figure S32. ²⁷Al NMR spectrum of 12^{tBu} diphenylglyoxime macrocycle in C₆D₆.

III. Electrochemical Data

General Considerations. Electrochemical measurements were recorded in a glovebox under a N2 atmosphere using a Pine Instrument Company Bipotentiostat, at 1mM of the complex of interest, in DCM containing 0.1 M nBu₄N(ClO₄) as the supporting electrolyte. For the electrochemistry a platinum working electrode, a platinum wire auxiliary electrode, and a 0.01M Ag/AgNO₃ nonaqueous reference electrode were used for all measurements.

Figure S33. Cyclic voltammograms of 1 mM solutions of 11^{NO2} (blue) and 11^{tBu} (red) using a 100 mV/s scan rate, both referenced to Fc/Fc⁺.

IV. Crystallographic Data

	3b	3b ^{tBu}	5b-Pd-anti	2-cis
CCDC Deposition #		861066	861065	862109
Empirical formula	$C_{68}H_{70}Al_2N_8O_8\\$	$\begin{array}{c} C_{92}H_{120}N_8O_8Al_2\bullet\\ 4(C_4H_8O) \end{array}$	$C_{68}H_{72}N_8O_8Al_2Pd \bullet 6(C_4H_8O)$	$\begin{array}{c} C_{68}H_{72}N_8O_8Al_2Pd \bullet \\ 0.5(C_6H_{14}) \bullet \\ 1.45(C_4H_8O) \end{array}$
Formula weight	1181.28	1808.34	1722.32	1437.33
Crystallization Solvent	pentane/toluene	THF/hexanes	THF/hexane	THF/hexane
Crystal Habit	Plate	Plate	Fragment	Block
Crystal size, mm ³	0.23 x 0.19 x 0.19	0.26 x 0.16 x 0.04	0.12 x 0.07 x 0.03	0.16 x 0.11 x 0.08
Crystal color	yellow	Pale Yellow	Yellow	Orange
θ range for lattice determination		2.42 to 27.61	2.29 to 22.92°	2.35 to 29.82°
a, Å	12.0569(6)	11.9403(6)	10.9146(3)	18.5492(17)
b, Å	18.5626(10)	12.7271(7)	16.3913(5)	19.7138(17)
c, Å	18.9548(11)	17.7934(9)	24.2331(7)	20.515(3)
a, °	78.418(3)	98.660(2)	90	90
b, °	76.313(3)	103.176(2)	101.8030(10)	102.794(3)
γ, °	76.094(3)	106.624(2)	90	90
Volume, Å ³	3954.1(4)	2454.4(2)	4243.7(2)	10039.7(4)
Ζ	2	1	2	4
Crystal system	Triclinic	Triclinc	Monoclinic	Monoclinic
Space group	$P\bar{1}$	P-1	P $2_1/c$	P $2_1/n$
Density (calculated)	0.992	1.223	1.348 Mg/m^3	1.305 Mg/m^3
F(000)	1248	978	1824	3020
θ range for data collection, °	1.72 to 30.00	1.21 to 27.71	1.51 to 25.38	1.34 to 30.52
Completeness to θ °	99.3%	93.3%	93.9%	99.4%
	$-16 \le h \le 16$	$-15 \le h \le 15$	$-12 \le h \le 13$	$-18 \le h \le 26$
Index ranges	$-26 \le k \le 26$	$-16 \le k \le 16$	$-19 \le k \le 19$	$-28 \le k \le 27$
Data collection scan	$-26 \le 1 \le 26$	$-12 \le 1 \le 23$	$-28 \le 1 \le 27$ (m) scans: 6 settings	$-29 \le 1 \le 28$
type Deflections			6 seans, 6 seangs	w seams, 10 seamgs
collected	143111	10751	35112	111672
Independent reflections	22895 [R _{int} = 0.0433]	$10751[R_{int}=0.0000]$	7335 [R _{int} = 0.0608]	22234 [R_{int} = 0.0594]
Absorption	0.086	0.095	0.309	0.340
Absorption correction	Semi-empirical from equivalents	None	None	None
Max. and min. transmission	0.8626 and 0.8200	0.9962 and 0.9756	0.9908 and 0.9636	0.9733 and 0.9476

Table S1. Crystal and refinement data for 3b, 3b^{tBu}, 5b-Pd-*anti*, and 5b-Pd-*syn*.

Hydrogen placement	Geometric positions	Geometric positions	Geometric positions	Geometric positions
Structure refinement program	SHELXL-97 (Sheldrick, 2008)	SHELXL-97 (Sheldrick, 2008)	SHELXL-97 (Sheldrick, 2008)	SHELXL-97 (Sheldrick, 2008)
Refinement method	squares on F ²	squares on F ²	squares on F ²	squares on F^2
Data / restraints / parameters	22895/0/818	10751 / 0 / 601	7335 / 30 / 531	22234 / 66 / 875
Treatment of hydrogen atoms	Riding	Riding	Riding	Riding
Goodness-of-fit on F2	1.096	3.445	2.000	1.788
Final R indices [I>2s(I), 4802 reflections]	R1 = 0.0515 wR2 = 0.1498	R1 = 0.0643 wR2 = 0.0858	R1 = 0.0567 wR2 = 0.0814	R1 = 0.0504 wR2 = 0.0681
R indices (all data)	R1 = 0.0654 $wR_2 = 0.1566$	R1 = 0.0836 wR2 = 0.0863	R1 = 0.0970 wR2 = 0.0838	R1 = 0.0911 wR2 = 0.0698
Type of weighting scheme used	Sigma	Sigma	Sigma	Sigma
Weighting scheme used	$w=1/\sigma^2(Fo^2)$	$w=1/\sigma^2(Fo^2)$	$w=1/\sigma^2(Fo^2)$	$w=1/\sigma^2(Fo^2)$
Max shift/error		0.001	0.001	0.003
Average shift/error	0	0	0	0
Largest diff. peak and hole, $e.Å^{-3}$	1.066 and -0.296	0.649 and -0.520	0.941 and -0.678	1.745 and -1.010
Type of diffractometer	Bruker KAPPA APEX II	Bruker KAPPA APEX II	Bruker KAPPA APEX II	Bruker KAPPA APEX II
Wavelength, Å MoKa	0.71073	0.71073	0.71073	0.71073
Data Collection Temperature	100(2) K	100(2) K	100(2) K	100(2) K
Structure solution program	SHELXS-97 (Sheldrick, 2008)	SHELXS-97 (Sheldrick, 2008)	SHELXS-97 (Sheldrick, 2008)	SHELXS-97 (Sheldrick, 2008)
Primary solution method	Direct methods	Direct methods	Direct methods	Direct methods
Secondary solution method	Difference Fourier map	Difference Fourier map	Difference Fourier map	Difference Fourier map

Figure S34. Structural drawing of 3b with 50% thermal probability ellipsoids.

Special Refinement Details for 3b. A dichroic yellow plate of suitable size (0.23 x 0.19 x 0.19 mm) was selected from a representative sample of crystals of the same habit using an optical microscope and mounted onto a glass fiber. Low temperature (100 K) X-ray data were obtained on a Bruker APEXII CCD based diffractometer (Mo sealed X-ray tube, $K_a = 0.71073$ Å). All diffractometer manipulations, including data collection, integration and scaling were carried out using the Bruker APEXII software.¹ An absorption correction was applied using SADABS.² The space group was determined on the basis of systematic absences and intensity statistics and the structure was solved by direct methods and refined by full-matrix least squares on F^2 .

The structure was solved in the triclinic $P\mathbf{I}$ space group using XS³ (incorporated in SHELXTL). No missed symmetry was reported by the ADDSYM program in PLATON.⁴ All non-hydrogen atoms were refined by using anisotropic displacement parameters. Hydrogen atoms were placed in idealized positions and refined using a riding model. Three disordered toluene solvent molecules (the crystallization solvent) were found within the asymmetric unit. These could not be satisfactorily modeled and were removed using the SQUEEZE protocol included in PLATON⁴ (311 e/cell; Z = 2), the results of which are appended to the end of the CIF. The structure was refined (weighted least squares refinement on F^2) to convergence using the updated reflections file. The final least-squares refinement converged to $R_1 = 0.0515$ ($I > 2\sigma(I)$, 17531 data) and w $R_2 = 0.1566$ (F^2 , 22895 data, 818 parameters). The final CIF is available as supporting material.

	Х	У	Z	U(eq)
Al(1)	1482(1)	10585(1)	1696(1)	19(1)
Al(2)	3139(1)	6918(1)	3853(1)	24(1)
C(4)	1752(1)	11275(1)	128(1)	29(1)
C(5)	3133(1)	11509(1)	783(1)	27(1)
C(6)	2377(1)	12208(1)	1051(1)	29(1)
C(7)	2677(2)	12903(1)	751(1)	45(1)
C(8)	2058(2)	13558(1)	1023(1)	53(1)
C(9)	1099(2)	13501(1)	1592(1)	42(1)
C(10)	755(1)	12826(1)	1899(1)	29(1)
C(11)	1413(1)	12162(1)	1637(1)	24(1)
C(12)	2439(3)	14298(1)	721(1)	85(1)
C(13)	-307(1)	12791(1)	2502(1)	35(1)
C(14)	3435(1)	10303(1)	427(1)	25(1)
C(15)	3039(1)	9627(1)	331(1)	24(1)
C(16)	3564(1)	9271(1)	-285(1)	28(1)
C(17)	3342(1)	8585(1)	-341(1)	31(1)
C(18)	2565(1)	8270(1)	230(1)	30(1)
C(19)	2007(1)	8608(1)	849(1)	26(1)
C(20)	2243(1)	9303(1)	898(1)	23(1)
C(21)	3936(1)	8194(1)	-997(1)	42(1)
C(22)	1214(1)	8237(1)	1476(1)	33(1)
C(23)	183(1)	9370(1)	3529(1)	19(1)
C(24)	488(1)	8588(1)	3902(1)	20(1)
C(25)	-610(1)	9820(1)	4062(1)	19(1)
C(26)	-797(1)	9313(1)	4724(1)	20(1)
C(27)	-198(1)	8565(1)	4655(1)	22(1)
C(28)	-301(1)	8021(1)	5264(1)	28(1)
C(29)	-999(1)	8239(1)	5933(1)	34(1)
C(30)	-1537(1)	8968(1)	6006(1)	31(1)
C(31)	-1443(1)	9543(1)	5386(1)	24(1)
C(32)	-1905(1)	10322(1)	5358(1)	26(1)
C(33)	-1746(1)	10814(1)	4/13(1)	25(1)
C(34)	-1093(1)	105/5(1)	4044(1)	22(1)
C(38)	3651(1)	5300(1)	3770(1)	39(1)
C(39)	2204(1)	6066(1)	3036(1)	32(1)
C(40)	3014(1)	6293(1)	2335(1)	35(1)
C(41)	3177(2)	5952(1)	1/15(1)	5/(1)
C(42)	3800(2)	6219(1)	1039(1)	66(1)
C(43)	4280(2)	6839(1)	996(1) 1500(1)	4/(1)
C(44)	4133(1) 2524(1)	(193(1))	1399(1)	32(1)
C(45)	3324(1) 2005(4)	5910(1)	2278(1) 271(2)	$\frac{27(1)}{127(2)}$
C(40)	3993(4) 4628(1)	3643(2) 7999(1)	$\frac{5}{1}$	$\frac{12}{(2)}$
C(47)	4020(1)	/000(1) 5797(1)	1329(1) 4227(1)	33(1) 31(1)
C(48)	1039(1) 1845(1)	$\frac{5}{676(1)}$	4337(1) 5106(1)	31(1) 20(1)
C(49)	1043(1) 1222(1)	50/0(1) 5152(1)	5100(1) 5641(1)	30(1)
C(50)	1323(1) 1372(1)	5155(1) 5076(1)	5041(1) 6378(1)	30(1) 37(1)
C(51)	1372(1) 1980(1)	5533(1)	6571(1)	37(1) 35(1)
C(52)	2527(1)	6050(1)	6059(1)	31(1)
C(54)	2327(1) 2458(1)	6129(1)	5311(1)	28(1)
C(55)	761(2)	4536(1)	6959(1)	50(1)
C(56)	3172(1)	6539(1)	6276(1)	30(1)
C(57)	3856(1)	9593(1)	2895(1)	20(1)
C(58)	4151(1)	8884(1)	3395(1)	20(1) 20(1)
C(59)	4906(1)	8990(1)	3845(1)	20(1) 21(1)
C(60)	5079(1)	9735(1)	3606(1)	21(1) 21(1)
C(61)	4467(1)	10126(1)	3045(1)	21(1) 21(1)

Table S2. Atomic coordinates $(x \ 10^4)$ and equivalent isotropic displacement parameters $(\text{\AA}^2 x \ 10^3)$ for 3b. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

C(62)	4520(1)	10867(1)	2788(1)	27(1)
C(63)	5217(1)	11197(1)	3086(1)	33(1)
C(64)	5822(1)	10813(1)	3622(1)	32(1)
C(65)	5755(1)	10055(1)	3913(1)	26(1)
C(66)	6282(1)	9586(1)	4481(1)	32(1)
C(67)	6117(1)	8862(1)	4716(1)	32(1)
C(68)	5418(1)	8547(1)	4403(1)	26(1)
C(1A)	-264(3)	10375(2)	813(2)	32(1)
C(2A)	-1040(3)	11348(2)	1553(2)	30(1)
C(3A)	470(2)	11519(2)	477(2)	25(1)
C(1B)	-643(3)	10341(2)	1185(2)	33(1)
C(2B)	-666(2)	11635(2)	1153(2)	31(1)
C(3B)	735(2)	10939(1)	254(1)	25(1)
C(35)	5789(1)	6574(1)	3197(1)	44(1)
C(36)	5335(1)	5959(1)	4414(1)	46(1)
C(37)	4798(1)	5540(1)	3428(1)	43(1)
N(10)	84(1)	10930(1)	1063(1)	26(1)
N(11)	2498(1)	10942(1)	684(1)	22(1)
N(12)	3075(1)	9664(1)	2504(1)	21(1)
N(13)	3707(1)	8309(1)	3433(1)	24(1)
N(14)	2647(1)	5950(1)	3733(1)	28(1)
N(15)	4891(1)	6192(1)	3726(1)	30(1)
N(16)	624(1)	9594(1)	2854(1)	20(1)
N(17)	1346(1)	8121(1)	3579(1)	23(1)
O(1)	1104(1)	11515(1)	1935(1)	23(1)
O(2)	1705(1)	9635(1)	1485(1)	22(1)
O(3)	2812(1)	10358(1)	2127(1)	23(1)
O(4)	3840(1)	7704(1)	3949(1)	28(1)
O(5)	2989(1)	6626(1)	4829(1)	29(1)
O(6)	3409(1)	7233(1)	2867(1)	25(1)
O(7)	400(1)	10315(1)	2550(1)	23(1)
O(8)	1582(1)	7443(1)	4000(1)	26(1)

Table S3. Selected Bond lengths $[{\mbox{\sc A}}]$ and angles [°] for 3b.

Al(1)-O(1)	1.7978(9)	O(7)-Al(1)-N(11)	172.65(4)
Al(1)-O(2)	1.8289(9)	O(3)-Al(1)-N(11)	89.56(4)
Al(1)-O(7)	1.8873(9)	O(1)-Al(1)-N(10)	87.79(4)
Al(1)-O(3)	1.8894(9)	O(2)-Al(1)-N(10)	88.40(4)
Al(1)-N(11)	2.0947(11)	O(7)-Al(1)-N(10)	90.13(4)
Al(1)-N(10)	2.1956(11)	O(3)-Al(1)-N(10)	171.98(4)
Al(2)-O(5)	1.7983(10)	N(11)-Al(1)-N(10)	82.59(4)
Al(2)-O(6)	1.8188(10)	O(5)-Al(2)-O(6)	175.05(4)
Al(2)-O(8)	1.8800(9)	O(5)-Al(2)-O(8)	89.56(4)
Al(2)-O(4)	1.9107(10)	O(6)-Al(2)-O(8)	93.86(4)
Al(2)-N(14)	2.0908(11)	O(5)-Al(2)-O(4)	88.29(4)
Al(2)-N(15)	2.2040(11)	O(6)-Al(2)-O(4)	87.71(4)
N(12)-O(3)	1.3470(12)	O(8)-Al(2)-O(4)	97.67(4)
N(13)-O(4)	1.3374(12)	O(5)-Al(2)-N(14)	91.23(5)
N(16)-O(7)	1.3366(12)	O(6)-Al(2)-N(14)	92.24(5)
N(17)-O(8)	1.3549(12)	O(8)-Al(2)-N(14)	91.67(4)
O(1)-Al(1)-O(2)	174.00(4)	O(4)-Al(2)-N(14)	170.64(4)
O(1)-Al(1)-O(7)	86.97(4)	O(5)-Al(2)-N(15)	87.91(4)
O(2)-Al(1)-O(7)	88.39(4)	O(6)-Al(2)-N(15)	89.02(4)
O(1)-Al(1)-O(3)	90.81(4)	O(8)-Al(2)-N(15)	173.93(4)
O(2)-Al(1)-O(3)	93.60(4)	O(4)-Al(2)-N(15)	87.77(4)
O(7)-Al(1)-O(3)	97.68(4)	N(14)-Al(2)-N(15)	82.87(4)
O(1)-Al(1)-N(11)	91.70(4)	Symmetry transfor	mations used to generate
O(2)-Al(1)-N(11)	92.41(4)	equivalent atoms: #	1 -x,-y+1,-z+1

Figure S35. Structural drawing of 3b^{tBu} with 50% thermal probability ellipsoids.

Special Refinement Details for 3b^{tBu}. Crystals were mounted on a glass fiber using Paratone oil then placed on the diffractometer under a nitrogen stream at 100K. The crystal is a merohedral twin, with both ROTAX⁹ and TwinRotMax confirming an 17% twin component related to the major component by 180° rotation around c^* . The structure was refined with a single batch scale factor and an HKLF5 format reflection file, generated by Platon¹⁰.

	X	У	Z	Ueq
$\overline{\mathrm{Al}(1)}$	2519(1)	7426(1)	6494(1)	12(1)
0(1)	2511(1)	6788(1)	5477(1)	13(1)
O(2)	-1674(1)	3929(1)	3214(1)	14(1)
O(3)	3942(1)	7190(1)	6849(1)	13(1)
O(4)	1050(1)	7613(1)	6099(1)	13(1)
N(1)	1433(2)	6093(2)	4969(1)	12(1)
N(2)	-636(2)	4577(2)	3777(1)	13(1)
N(3)	2750(2)	8373(2)	7631(1)	12(1)
N(4)	3462(2)	9103(2)	6343(1)	14(1)
C(1)	1413(2)	5935(2)	4231(2)	11(1)
C(2)	289(2)	5216(2)	3602(1)	12(1)
C(3)	2325(2)	6391(2)	3824(2)	13(1)
C(4)	3547(2)	7012(2)	4066(2)	15(1)
C(5)	4141(2)	7249(2)	3478(2)	16(1)
C(6)	3552(2)	6893(2)	2683(2)	18(1)
C(7)	2288(2)	6249(2)	2408(2)	15(1)
C(8)	1540(2)	5789(2)	1614(2)	20(1)
C(9)	328(2)	5141(2)	1449(2)	21(1)
C(10)	-210(2)	4892(2)	2057(2)	18(1)
C(11)	480(2)	5320(2)	2832(2)	12(1)
C(12)	1720(2)	6016(2)	2999(2)	12(1)
C(13)	3505(2)	9570(2)	7735(2)	16(1)
C(14)	3290(2)	9923(2)	6952(2)	19(1)
C(15)	3359(2)	7900(2)	8256(2)	15(1)
C(16)	4596(2)	7831(2)	8246(2)	14(1)
C(17)	5482(2)	8052(2)	8970(2)	15(1)
C(18)	6549(2)	7802(2)	9013(2)	15(1)
C(19)	6693(2)	7322(2)	8298(2)	15(1)
C(20)	5852(2)	7086(2)	7555(2)	14(1)
C(21)	4773(2)	7378(2)	7533(2)	14(1)
C(22)	7520(2)	7993(2)	9798(2)	18(1)
C(23)	7666(2)	6866(2)	9915(2)	30(1)
C(24)	7197(2)	8518(2)	10503(2)	26(1)
C(25)	8754(2)	8777(2)	9780(2)	30(1)
C(26)	6017(2)	6462(2)	6805(2)	16(1)
C(27)	7277(2)	6305(2)	6962(2)	25(1)
C(28)	5905(2)	7078(2)	6127(2)	20(1)
C(29)	5025(2)	5291(2)	6520(2)	25(1)
C(30)	1529(2)	8296(2)	7753(1)	14(1)
C(31)	721(2)	8706(2)	7184(1)	12(1)
C(32)	178(2)	9454(2)	7460(2)	15(1)
C(33)	-688(2)	9754(2)	6952(2)	12(1)
C(34)	-1047(2)	9203(2)	6153(2)	13(1)
C(35)	-560(2)	8422(2)	5836(2)	12(1)
C(36)	420(2)	8229(2)	6360(2)	14(1)
C(37)	-1227(2)	10615(2)	7272(2)	15(1)
C(38)	-209(2)	11729(2)	7704(2)	22(1)
C(39)	-1903(2)	10177(2)	7858(2)	23(1)
C(40)	-2112(2)	10857(2)	6611(2)	20(1)
C(41)	-1122(2)	7736(2)	4971(2)	14(1)
C(42)	-221(2)	7980(2)	4479(1)	19(1)
C(43)	-1526(2)	6476(2)	4960(2)	17(1)
C(44)	-2253(2)	8006(2)	4550(2)	22(1)
C(45)	4778(2)	9333(2)	6438(2)	20(1)
C(46)	2942(2)	9287(2)	5551(2)	21(1)

Table S4. Atomic coordinates $(x \ 10^4)$ and equivalent isotropic displacement parameters $(Å^2 x \ 10^3)$ for $3b^{tBu}$. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is The Royal Society of Chemistry 2012

O(1C)	5683(2)	6750(2)	1577(1)	38(1)
C(1C)	5235(3)	5566(2)	1279(2)	42(1)
C(2C)	6277(3)	5133(2)	1516(2)	45(1)
C(3C)	7174(2)	6025(2)	2211(2)	47(1)
C(4C)	6695(3)	6991(2)	2224(2)	42(1)
O(1D)	2045(2)	6808(2)	-121(1)	53(1)
C(1D)	1706(3)	7773(3)	80(2)	64(1)
C(2D)	2869(4)	8755(3)	378(2)	65(1)
C(3D)	3722(3)	8225(3)	775(2)	47(1)
C(4D)	3295(2)	7057(2)	248(2)	34(1)

Table S5. Bond lengths [Å] and angles [°] for 3b^{tBu}.

<u>A1(1)</u> O(2)	1 7000(1()	O(2) $A1(1)$ $O(1)$	0(0)
AI(1)-O(3)	1.7988(16)	O(3)-AI(1)-O(1)	86.96(8)
Al(1)-O(4)	1.8318(16)	O(4)-Al(1)-O(1)	91.00(8)
Al(1)-O(1)	1.8646(17)	O(3)-Al(1)-O(2)#1	89.77(7)
Al(1)-O(2)#1	1.9423(17)	O(4)-Al(1)-O(2)#1	89.32(7)
Al(1)-N(3)	2.108(2)	O(1)-Al(1)-O(2)#1	99.38(7)
Al(1)-N(4)	2.198(2)	O(3)-Al(1)-N(3)	90.35(8)
O(1)-N(1)	1.354(2)	O(4)-Al(1)-N(3)	91.86(8)
O(2)-N(2)	1.349(2)	O(1)-Al(1)-N(3)	170.78(8)
O(2)-Al(1)#1	1.9423(17)	O(2)#1-Al(1)-N(3)	89.42(8)
O(3)-C(21)	1.323(3)	O(3)-Al(1)-N(4)	91.58(7)
O(4)-C(36)	1.334(3)	O(4)-Al(1)-N(4)	89.66(8)
N(1)-C(1)	1.292(3)	O(1)-Al(1)-N(4)	89.70(8)
N(2)-C(2)	1.303(3)	O(2)#1-Al(1)-N(4)	170.88(8)
N(3)-C(15)	1.487(3)	N(3)-Al(1)-N(4)	81.56(8)
N(3)-C(13)	1.489(3)	N(1)-O(1)-Al(1)	117.86(13)
N(3)-C(30)	1.501(3)	N(2)-O(2)-Al(1)#1	113.03(13)
N(4)-C(45)	1.478(3)		
N(4)-C(14)	1.481(3)	Symmetry transformations	used to generate
N(4)-C(46)	1.487(3)	equivalent atoms:	Ū.
		#1 -x,-y+1,-z+1	
O(3)-Al(1)-O(4)	177.61(9)		

Figure S36. Structural drawing of 5b-Pd-anti with 50% thermal probability ellipsoids.

Special Refinement Details for 5b-Pd-*anti***.** Crystals were mounted on a glass fiber using Paratone oil then placed on the diffractometer under a nitrogen stream at 100K. The crystal is small and relatively weakly diffracting at higher resolution resulting in the completeness in the highest shell of 94% while being 99.9% complete at $2q \le 46^\circ$. The molecule sits on a center of symmetry therefore the asymmetric unit contains half of the atoms. The asymmetric unit contains three solvent sites occupied by THF, one of which is disordered over two orientations. The disordered molecules were restrained to have similar geometry to the THF in one of the fully occupied sites, using SAME command.

	Х	У	Z	U _{eq}	Occ
Pd(1)	5000	0	5000	20(1)	1
Al(2)	6407(1)	132(1)	3789(1)	21(1)	1
O(1)	6703(2)	917(2)	4376(1)	20(1)	1
O(2)	5359(2)	1(2)	6261(1)	21(1)	1
O(3)	6044(2)	945(2)	3276(1)	21(1)	1
O(4)	6805(2)	-661(2)	4313(1)	21(1)	1
N(1)	6427(3)	723(2)	4868(1)	18(1)	1
N(2)	5729(3)	273(2)	5803(1)	20(1)	1

Table S6. Atomic coordinates (x 10^4) and equivalent isotropic displacement parameters (Å²x 10^3) for **5b-Pd-***anti*. U(eq) is defined as the trace of the orthogonalized U^{ij} tensor.

N(3)	6364(3)	-760(2)	3159(1)	20(1)	1	
N(4)	8390(3)	202(2)	3736(1)	20(1)	1	
C(1)	7054(4)	1020(2)	5338(2)	18(1)	1	
C(2)	6707(4)	749(2)	5862(2)	19(1)	1	
C(3)	8114(4)	1581(2)	5490(2)	19(1)	1	
C(4)	8811(3)	2057(2)	5198(2)	25(1)	1	
C(5)	9793(4)	2536(2)	5517(2)	26(1)	1	
C(6)	10080(4)	2533(2)	6090(2)	27(1)	1	
C(7)	9377(4)	2052(2)	6404(2)	22(1)	1	
C(8)	9565(4)	1964(2)	6995(2)	28(1)	1	
C(9)	8833(4)	1458(3)	7237(2)	25(1)	1	
C(10)	7828(4)	1007(2)	6908(2)	23(1)	1	
C(11)	7600(3)	1087(2)	6335(2)	21(1)	1	
C(12)	8402(3)	1593(2)	6086(2)	19(1)	1	
C(13)	7670(3)	-973(2)	3117(2)	24(1)	1	
C(14)	8511(3)	-231(2)	3210(2)	$\frac{2}{24(1)}$	1	
C(15)	8843(3)	1053(2)	3700(2)	$\frac{2}{27(1)}$	1	
C(16)	9220(3)	-177(2)	4228(2)	26(1)	1	
C(10)	5633(4)	-469(2)	2605(2)	20(1) 24(1)	1	
C(18)	6062(3)	313(2)	2388(2)	24(1) 20(1)	1	
C(18)	6277(3)	313(2) 384(3)	1843(2)	20(1) 26(1)	1	
C(20)	6591(4)	1118(3)	1637(2)	25(1)	1	
C(20)	6651(4)	1708(3)	1037(2) 1074(2)	23(1) 24(1)	1	
C(21)	6449(3)	1/90(3) 1761(2)	1974(2)	24(1) 10(1)	1	
C(22)	6446(3)	1/01(2)	2323(2)	19(1)	1	
C(23)	61/0(3)	990(2) 1206(2)	2/38(2) 1026(2)	19(1) 28(1)	1	
C(24)	0/90(4)	1200(3)	1050(2)	38(1)	1	
C(25)	6484(5) 572((4)	2505(2)	2891(2)	28(1) 24(1)	1	
C(26)	5/20(4)	-1525(2)	3297(2)	24(1)	1	
C(27)	6301(4)	-1932(2)	3841(2)	23(1)	1	
C(28)	6309(4)	-2776(3)	3873(2)	27(1)	1	
C(29)	6758(4)	-3188(3)	4366(2)	29(1)	1	
C(30)	7248(3)	-2726(3)	4835(2)	25(1)	1	
C(31)	7284(3)	-1883(3)	4828(2)	23(1)	1	
C(32)	6795(4)	-1473(3)	4322(2)	20(1)	1	
C(33)	6739(4)	-4110(3)	4396(2)	45(1)	1	
C(34)	7835(4)	-1397(3)	5342(2)	34(1)	1	
O(1C)	-313(5)	3335(4)	3928(3)	198(3)	1	
C(1C)	607(5)	3490(3)	3606(2)	59(2)	1	
C(2C)	1039(7)	4328(4)	3700(4)	154(4)	1	
C(3C)	382(8)	4667(5)	4145(4)	225(7)	1	
C(4C)	-662(8)	4150(5)	4096(4)	222(7)	1	
O(1D)	1434(7)	683(5)	2089(3)	219(4)	1	
C(1D)	2596(7)	916(4)	2176(3)	106(3)	1	
C(2D)	2829(5)	1492(5)	2640(3)	93(2)	1	
C(3D)	1822(7)	1367(4)	2959(3)	92(2)	1	
C(4D)	851(5)	910(4)	2513(3)	85(2)	1	
O(1E)	3794(7)	3020(4)	3788(3)	139(3)	0.614(5)	
C(1E)	4665(5)	2444(3)	4073(2)	14(2)	0.614(5)	
C(2E)	5603(6)	2865(4)	4489(3)	43(3)	0.614(5)	
C(3E)	5347(7)	3768(5)	4385(3)	74(3)	0.614(5)	
C(4E)	4070(5)	3768(3)	4125(2)	13(2)	0.614(5)	
O(1F)	4651(7)	3366(5)	3674(3)	40(3)	0.386(5)	
C(1F)	5718(9)	3814(5)	3938(4)	42(4)	0.386(5)	
C(2F)	6316(10)	3399(8)	4454(4)	76(5)	0.386(5)	
C(3F)	5631(19)	2593(10)	4451(7)	280(20)	0.386(5)	
C(4F)	4466(15)	2768(11)	4101(7)	410(30)	0.386(5)	

 Table S7.
 Selected bond lengths [Å] and angles [°] for 5b-Pd-anti.

Pd(1)-N(2)	1.997(3)	Pd(1)-N(2)#1	1.997(3)
------------	----------	--------------	----------

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is O The Royal Society of Chemistry 2012

Pd(1)-N(1)#1	2.034(3)	N(2)-Pd(1)-N(2)#1	180.0
Pd(1)-N(1)	2.034(3)	N(2)-Pd(1)-N(1)#1	98.19(13)
		N(2)#1-Pd(1)-N(1)#1	81.81(13)
		N(2)-Pd(1)-N(1)	81.81(13)
		N(2)#1-Pd(1)-N(1)	98.19(13)
Symmetry transformation	s used to generate	N(1)#1-Pd(1)-N(1)	180.0
equivalent atoms:			
#1 -x+1,-y,-z+1			

Figure S37. Structural drawing of 5b-Pd-syn with 50% thermal probability ellipsoids.

Special Refinement Details for 5b-Pd-syn. Crystals were mounted on a glass fiber using Paratone oil then placed on the diffractometer under a nitrogen stream at 100K. The crystal contains solvent of crystallization, hexane distributed across a center of symmetry and THF in a general position. This second site solvent region is disordered and was modeled with three THF molecules restrained to be similar. Each was assigned a separate free variable for occupancy and temperature factor. The final model has a total occupancy of one and one-half and is consistent with the initial calculated electron density map.

Table S8.	Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å ² x 10^3) for 5b-Pd- <i>syn</i> .	U(eq) is
defined as	the trace of the orthogonalized U^{ij} tensor.	

	х	У	Z	U _{eq}	Occ
Pd(1)	2078(1)	4606(1)	2105(1)	17(1)	1
Al(2)	1225(1)	4706(1)	3519(1)	22(1)	1
Al(3)	3261(1)	5111(1)	1030(1)	18(1)	1
0(1)	1953(1)	4040(1)	3446(1)	21(1)	1
O(2)	3325(1)	4251(1)	1447(1)	20(1)	1
O(3)	617(1)	4037(1)	3665(1)	26(1)	1

O(4)	1812(1)	5393(1)	3355(1)	21(1)	1
O(5)	2207(1)	5178(1)	769(1)	19(1)	1
O(6)	690(1)	4725(1)	2631(1)	19(1)	1
O(7)	3269(1)	4682(1)	254(1)	20(1)	1
O(8)	3268(1)	5520(1)	1820(1)	19(1)	1
N(1)	2328(1)	4072(1)	2962(1)	18(1)	1
N(2)	3027(1)	4179(1)	1977(1)	19(1)	1
N(3)	1663(1)	4766(1)	4559(1)	26(1)	1
N(4)	439(1)	5457(1)	3752(1)	23(1)	1
N(5)	1804(1)	5109(1)	1232(1)	16(1)	1
N(6)	1050(1)	4895(1)	2160(1)	19(1)	1
N(7)	3354(1)	6054(1)	555(1)	18(1)	1
N(8)	4470(1)	5156(1)	1256(1)	21(1)	1
C(1)	2922(1)	3705(1)	3008(2)	18(1)	1
C(2)	3294(1)	3751(1)	2442(2)	18(1)	1
C(3)	3343(1)	3246(1)	3502(2)	18(1)	1
C(4)	3277(1)	2999(1)	4110(2)	25(1)	1
C(5)	3833(2)	2558(1)	4459(2)	31(1)	1
C(6)	4423(2)	2359(1)	4202(2)	29(1)	1
C(7)	4488(1)	2584(1)	3571(2)	23(1)	1
C(8)	5041(2)	2399(1)	3219(2)	30(1)	1
C(9)	5031(2)	2651(2)	2598(2)	31(1)	1
C(10)	4477(1)	3113(1)	2270(2)	27(1)	1
C(11)	3942(1)	3306(1)	2601(2)	20(1)	1
C(12)	3952(1)	3031(1)	3238(2)	19(1)	1
C(13)	1145(2)	5150(1)	4880(2)	28(1)	1
C(14)	753(2)	5710(2)	4434(2)	29(1)	1
C(15)	1776(2)	4073(2)	4862(2)	34(1)	1
C(16)	1091(2)	3647(2)	4782(2)	34(1)	1
C(17)	1004(2)	3226(2)	5306(2)	46(1)	1
C(18)	392(2)	2805(2)	5251(2)	57(1)	1
C(19)	-125(2)	2817(2)	4653(2)	60(1)	1
C(20)	-76(2)	3225(2)	4107(2)	42(1)	1
C(21)	560(2)	3649(2)	4179(2)	32(1)	1
C(22)	318(2)	2340(2)	5822(2)	88(2)	1
C(23)	-633(2)	3215(2)	3468(2)	58(1)	1
C(24)	2411(2)	5090(2)	4698(2)	34(1)	1
C(25)	2438(2)	5790(2)	4420(2)	32(1)	1
C(26)	2767(2)	6321(2)	4824(2)	47(1)	1
C(27)	2831(2)	6960(2)	4552(2)	58(1)	1
C(28)	2574(2)	7055(2)	3877(2)	48(1)	1
C(29)	2238(2)	6535(2)	3455(2)	32(1)	1
C(30)	2155(1)	5896(2)	3741(2)	25(1)	1
C(31)	3203(2)	7538(2)	4995(2)	102(2)	1
C(32)	1975(2)	6633(2)	2714(2)	37(1)	1
C(33)	315(1)	6044(1)	3287(2)	31(1)	1
C(34)	-304(1)	5149(1)	3724(2)	31(1)	1
C(35)	1121(1)	5320(1)	1102(1)	16(1)	1
C(36)	706(1)	5181(1)	1619(2)	17(1)	1
C(37)	-64(1)	5384(1)	1351(1)	20(1)	1
C(38)	-717(1)	5316(1)	1562(1)	23(1)	1
C(39)	-1371(1)	5520(1)	1122(2)	28(1)	1
C(40)	-1395(1)	5783(1)	496(2)	26(1)	1
C(41)	-725(1)	5860(1)	265(2)	20(1)	1
C(42)	-651(1)	6088(1)	-369(2)	23(1)	1
C(43)	29(1)	6080(1)	-534(2)	25(1)	1
C(44)	674(1)	5841(1)	-89(2)	22(1)	1
C(45)	625(1)	5631(1)	533(2)	18(1)	1
C(46)	-81(1)	5652(1)	709(2)	18(1)	1
C(47)	4141(1)	6158(1)	521(2)	24(1)	1
C(48)	4667(1)	5870(1)	1129(2)	24(1)	1
C(49)	2882(1)	6068(1)	-130(2)	23(1)	1

C(50)	3048(1)	5540(1)	-598(2)	21(1)	1
C(51)	2984(1)	5698(2)	-1271(2)	28(1)	1
C(52)	3079(2)	5215(2)	-1744(2)	30(1)	1
C(53)	3257(1)	4562(2)	-1510(2)	29(1)	1
C(54)	3336(1)	4378(1)	-840(2)	23(1)	1
C(55)	3218(1)	4868(1)	-374(2)	20(1)	1
C(56)	2981(2)	5400(2)	-2476(2)	48(1)	1
C(57)	3524(2)	3668(1)	-602(2)	32(1)	1
C(58)	3088(1)	6624(1)	925(2)	24(1)	1
C(59)	3451(1)	6698(1)	1648(2)	21(1)	1
C(60)	3703(1)	7327(2)	1919(2)	27(1)	1
C(61)	3971(2)	7411(2)	2598(2)	30(1)	1
C(62)	3986(1)	6848(2)	3010(2)	30(1)	1
C(63)	3746(1)	6211(2)	2761(2)	24(1)	1
C(64)	3486(1)	6135(2)	2071(2)	20(1)	1
C(65)	4243(2)	8087(2)	2889(2)	46(1)	1
C(66)	3733(1)	5611(1)	3218(2)	30(1)	1
C(67)	4789(1)	4679(1)	834(1)	26(1)	1
C(68)	4807(1)	4990(1)	1959(2)	27(1)	1
C(1C)	5549(2)	4362(2)	3764(2)	92(2)	1
C(2C)	5104(2)	4348(2)	4333(2)	85(2)	1
C(3C)	5254(2)	5000(2)	4748(2)	71(1)	1
O(1D)	1545(3)	3032(4)	6972(3)	134(2)	0.524(2)
C(1D)	1778(5)	3442(4)	7571(5)	134(2)	0.524(2)
C(2D)	2111(5)	2987(5)	8101(4)	134(2)	0.524(2)
C(3D)	2293(5)	2409(4)	7805(5)	134(2)	0.524(2)
C(4D)	2125(5)	2493(4)	7096(5)	134(2)	0.524(2)
O(1E)	3996(4)	2865(4)	6427(4)	52(2)	0.309(4)
C(1E)	4152(5)	3220(6)	7078(5)	52(2)	0.309(4)
C(2E)	3554(5)	3676(5)	7098(5)	52(2)	0.309(4)
C(3E)	3140(5)	3775(5)	6428(5)	52(2)	0.309(4)
C(4E)	3304(5)	3184(6)	6028(5)	52(2)	0.309(4)
O(1F)	3830(4)	3611(4)	6025(4)	206(3)	0.617(5)
C(1F)	3283(6)	3036(6)	5905(5)	206(3)	0.617(5)
C(2F)	3449(6)	2593(5)	6491(6)	206(3)	0.617(5)
C(3F)	3412(6)	3200(6)	6937(5)	206(3)	0.617(5)
C(4F)	4022(6)	3634(5)	6779(5)	206(3)	0.617(5)

 Table S9.
 Selected bond lengths [Å] and angles [°] for 5b-Pd-syn.

$f^{-1}(1) = 1/(1/(2))$
-N(6) 81.68(9)
)-N(6) 97.86(9)
)-N(2) 98.33(9)
-N(2) 81.77(9)

	5a-Fe-O-bridge	8 ^{tBu}	12 ^{NO2}
CCDC Deposition #	861067		861069
Empirical formula	$C_{72}H_{80}N_8O_8Al_2Fe$	$C_{94}H_{114}Al_2FeN_{10}O_8$	$\begin{array}{c} C_{86}H_{90}N_{14}O_{16}Al_{2}Fe \bullet \\ C_{4}H_{10}O \bullet 3.5(C_{4}H_{8}O) \end{array}$
Formula weight	1295.25	1621.76	2012.01
Crystallization Solvent	THF/hexane	THF/pentane	THF/diethyl ether
Crystal Habit	Block	Plate	Block
Crystal size, mm ³	0.13 x 0.08 x 0.04	0.23 x 0.19 x 0.19	0.27 x 0.19 x 0.09
Crystal color	Purple	Purple	Purple/red
θ range for lattice determination	2.40 to 19.40°		2.28 to 20.39°
a, Å	22.511(4)	14.7358(11)	23.9420(6)
b, Å	10.8586(19)	20.2952(15)	27.0271(6)
c, Å	28.663(5)	33.354(3)	15.5154(3)
a, °	90	77.202(2)	90
b, °	109.657(2)	88.031(2)	90
g, °	90	74.307(2)	90
Volume, Å ³	6598(2)	9361.2(12)	10039.7(4)
Z	4	4	4
Crystal system	Monoclinic	Triclinic	Orthorhombic
Space group	C 2/ <i>c</i>	Р	P 2 ₁ 2 ₁ 2 (#18)
Density (calculated)	1.304 Mg/m^3	1.151 Mg/m ³	1.331 Mg/m ³
F(000)	2736	3456	4264
θ range for data collection, °	2.40 to 27.52	1.55 to 25.00	1.86 to 23.28
Completeness to $\theta = 26.43^{\circ}$	99.8%	96.4%	99.8%
	$-29 \le h \le 27$	-17≤h≤17	$-26 \le h \le 26$
Index ranges	$0 \le k \le 14$	-24≤k≤24	$-28 \le k \le 30$
Data collection scan	$\omega \ge 1 \ge 57$ $\omega \text{ scans: 7 settings}$	-3721237	$-1/ \ge 1 \ge 1/$ w scans: 7 settings
type Reflections collected	7060	162520	110120
Independent	/ 707	102320	110120
reflections	7969 [$R_{int} = 0.0695$]	$31783 [R_{int} = 0.0881]$	14452 [$R_{int} = 0.0903$]
coefficient. mm ⁻¹	0.318		0.246
Absorption correction	Semi-empirical from equivalents (TWINABS)	Semi-empirical from equivalents	None
Max. and min. transmission	0.7455 and 0.5816	0.7456 and 0.6949	0.9782 and 0.9367

Table S10. Crystal and refinement data for **5a-Fe-O-bridge**, 8^{tBu} , and 12^{NO2}

Hydrogen placement Structure refinement program	Geometric positions SHELXL-97 (Sheldrick, 2008)	Geometric positions SHELXL-97 (Sheldrick, 2008)	Geometric positions SHELXL-97 (Sheldrick, 2008)
Refinement method	Full matrix least- squares on F ²	Full matrix least- squares on F ²	Full matrix least- squares on F ²
Data / restraints / parameters	7969 / 0 / 448	31783/ 12 / 2140	14452 / 36 / 1258
Treatment of hydrogen atoms	Riding	Riding	Riding
Goodness-of-fit on F2	1.423	1.009	1.681
Final R indices [I>2s(I), 4802 reflections]	R1 = 0.0537 wR2 = 0.0804	R1 = 0.0650 wR2 = 0.1428	R1 = 0.0570 wR2 = 0.0558
R indices (all data)	R1 = 0.0931 wR2 = 0.0866	R1 = 0.1279 wR2 = 0.1609	R1 = 0.0877 wR2 = 0.0577
Type of weighting scheme used	Sigma	Sigma	Sigma
Weighting scheme used	$w=1/s^2(Fo^2)$	$w=1/s^2(Fo^2)$	$w=1/s^2(Fo^2)$
Max shift/error	0.002		0.011
Average shift/error	0		0
Largest diff. peak and hole, e.Å ⁻³	0.634 and -0.475	1.799 and -1.030	0.831 and -0.527
Type of diffractometer	Bruker KAPPA APEX II	Bruker KAPPA APEX II	Bruker KAPPA APEX II
Wavelength, Å MoKa	0.71073	0.71073	0.71073
Data Collection Temperature	100(2) K	100(2) K	100(2) K
Structure solution program	SHELXS-97 (Sheldrick, 2008)	SHELXS-97 (Sheldrick, 2008)	SHELXS-97 (Sheldrick, 2008)
Primary solution method	Direct methods	Direct methods	Direct methods
Secondary solution method	Difference Fourier map	Difference Fourier map	Difference Fourier map

Figure S38. Structural drawing of 5a-Fe-O-bridge with 50% thermal probability ellipsoids.

Special Refinement Details for 5a-Fe-O-bridge. Crystals were mounted on a glass fiber using Paratone oil then placed on the diffractometer under a nitrogen stream at 100K. The crystal is a non-merohedral twin. The twin relationship was defined using CELL_NOW where 119 of 143 reflections fit domain one and the remaining 24 reflections fitting domain two. There were 61 overlapped reflections. Simultaneous integration of both domains led to an HKLF5 format reflection file. The final refined twin ratio is 70:30. Additionally, the molecule sits on a two-fold rotation axis and the ethane bridge between N3 and N4 is disordered resulting in alternate positions for C34-C36 (A and B). The ratio of the populations for the disordered atoms is 62:38.

Table S11. Atomic coordinates (x 10^4) and equivalent isotropic displacement parameters (Å²x 10^3) for **5a-Fe-O-bridge**. U(eq) is defined as the trace of the orthogonalized U^{ij} tensor.

	Х	у	Z	U _{eq}	Occ
Fe(1)	0	2074(1)	2500	14(1)	1
Al(1)	1142(1)	2104(1)	3610(1)	16(1)	1
O(1)	451(1)	1228(1)	3632(1)	20(1)	1
O(2)	-1319(1)	1276(1)	1895(1)	18(1)	1
O(3)	1688(1)	1061(1)	4035(1)	24(1)	1
O(4)	568(1)	3173(1)	3135(1)	15(1)	1
N(1)	-7(1)	1074(2)	3183(1)	17(1)	1
N(2)	-930(1)	1348(2)	2368(1)	15(1)	1
N(3)	1900(1)	3343(2)	3686(1)	21(1)	1
N(4)	1123(1)	3079(2)	4273(1)	20(1)	1

C(1)	-548(1)	707(2)	3190(1)	17(1)	1
C(2)	-1040(1)	607(2)	2690(1)	16(1)	1
C(3)	-720(1)	522(2)	3646(1)	20(1)	1
C(4)	-379(1)	-245(2)	4029(1)	32(1)	1
C(5)	-571(1)	-413(3)	4434(1)	40(1)	1
C(6)	-1086(1)	207(3)	4473(1)	38(1)	1
C(7)	-1420(1)	983(2)	4097(1)	34(1)	1
C(8)	-1243(1)	1119(2)	3683(1)	25(1)	1
C(9)	-1533(1)	-355(2)	2578(1)	18(1)	1
C(10)	-1396(1)	-1459(2)	2843(1)	19(1)	1
C(11)	-1817(1)	-2428(2)	2733(1)	23(1)	1
C(12)	-2399(1)	-2312(2)	2360(1)	26(1)	1
C(13)	-2546(1)	-1216(2)	2099(1)	26(1)	1
C(14)	-2123(1)	-250(2)	2202(1)	21(1)	1
C(15)	2460(1)	2677(2)	3639(1)	28(1)	1
C(16)	2685(1)	1541(2)	3955(1)	30(1)	1
C(17)	3317(1)	1191(3)	4051(1)	43(1)	1
C(18)	3550(1)	80(3)	4286(1)	49(1)	1
C(19)	3144(2)	-666(3)	4428(1)	50(1)	1
C(20)	2521(1)	-345(2)	4347(1)	37(1)	1
C(21)	2283(1)	777(2)	4102(1)	27(1)	1
C(22)	4229(1)	-292(3)	4374(1)	72(1)	1
C(23)	2087(2)	-1165(3)	4506(1)	50(1)	1
C(24)	1730(1)	4289(2)	3276(1)	25(1)	1
C(25)	1159(1)	5038(2)	3231(1)	21(1)	1
C(26)	1180(1)	6321(2)	3252(1)	27(1)	1
C(27)	642(1)	7011(2)	3194(1)	30(1)	1
C(28)	78(1)	6379(2)	3122(1)	27(1)	1
C(29)	33(1)	5099(2)	3100(1)	19(1)	1
C(30)	584(1)	4425(2)	3152(1)	18(1)	1
C(31)	665(2)	8400(2)	3204(1)	44(1)	1
C(32)	-580(1)	4445(2)	3030(1)	24(1)	1
C(33)	2083(1)	3956(2)	4180(1)	28(1)	1
C(34A)	1532(2)	4187(4)	4340(1)	26(1)	0.619(5)
C(35A)	1329(3)	2271(5)	4707(2)	30(1)	0.619(5)
C(36A)	473(2)	3502(5)	4229(1)	23(1)	0.619(5)
C(34B)	1820(3)	3386(7)	4536(2)	26(2)	0.381(5)
C(35B)	965(4)	2172(9)	4620(3)	32(2)	0.381(5)
C(36B)	744(4)	4162(8)	4255(2)	28(2)	0.381(5)

Table S12. Selected bond lengths $[\text{\AA}]$ and angles $[^\circ]$ for 5a-Fe-O-bridge.

Fe(1)-N(2)	2.1481(18)	Al(1)-N(3)	2.1263(19)
Fe(1)-N(2)#1	2.1481(18)	Al(1)-N(4)	2.1868(18)
Fe(1)-O(4)	2.1913(13)		
Fe(1)-O(4)#1	2.1914(13)		
Fe(1)-N(1)#1	2.2427(16)		
Fe(1)-N(1)	2.2427(16)		
Al(1)-O(3)	1.8086(16)		
Al(1)-O(1)	1.8415(16)		
Al(1)-O(2)#1	1.8590(15)		
Al(1)-O(4)	1.9206(15)		

N(2)-Fe(1)-N(2)#1	136.93(9)	O(3)-Al(1)-O(4)	177.45(7)
N(2)-Fe(1)-O(4)	127.39(5)	O(1)-Al(1)-O(4)	87.83(7)
N(2)#1-Fe(1)-O(4)	78.02(6)	O(2)#1-Al(1)-O(4)	90.53(6)
N(2)-Fe(1)-O(4)#1	78.03(6)	O(3)-Al(1)-N(3)	89.27(7)
N(2)#1-Fe(1)-O(4)#1	127.39(5)	O(1)-Al(1)-N(3)	168.93(7)
O(4)-Fe(1)-O(4)#1	114.02(7)	O(2)#1-Al(1)-N(3)	90.56(7)
N(2)-Fe(1)-N(1)#1	87.81(6)	O(4)-Al(1)-N(3)	90.90(7)
N(2)#1-Fe(1)-N(1)#1	71.50(6)	O(3)-Al(1)-N(4)	85.72(7)
O(4)-Fe(1)-N(1)#1	144.55(6)	O(1)-Al(1)-N(4)	87.57(7)
O(4)#1-Fe(1)-N(1)#1	73.31(6)	O(2)#1-Al(1)-N(4)	169.35(7)
N(2)-Fe(1)-N(1)	71.50(6)	O(4)-Al(1)-N(4)	96.82(7)
N(2)#1-Fe(1)-N(1)	87.81(6)	N(3)-Al(1)-N(4)	81.66(7)
O(4)-Fe(1)-N(1)	73.31(6)		
O(4)#1-Fe(1)-N(1)	144.55(6)	Symmetry transformations	used to generate
N(1)#1-Fe(1)-N(1)	122.06(9)	equivalent atoms:	
O(3)-Al(1)-O(1)	92.49(7)	#1 -x,y,-z+1/2	
O(3)-Al(1)-O(2)#1	86.92(7)		
O(1)-Al(1)-O(2)#1	100.44(7)		

Figure S39. Structural drawing of 8^{tBu} with 50% thermal probability ellipsoids.

Special Refinement Details for 8^{tBu}. A deep purple plate of suitable size (0.23 x 0.19 x 0.19 mm) was selected from a representative sample of crystals of the same habit using an optical microscope and mounted onto a glass fiber. Low temperature (100 K) X-ray data were obtained on a Bruker APEXII CCD based diffractometer (Mo sealed X-ray tube, $K_{\alpha} = 0.71073$ Å). All diffractometer manipulations, including data collection, integration and scaling were carried out using the Bruker APEXII software.¹ An absorption correction was applied using SADABS.² The space group was determined on the basis of systematic absences and intensity statistics and the structure was solved by direct methods and refined by full-matrix least squares on F^2 . The structure was solved in the triclinic P EMBED Equation.3 space group using XS³ (incorporated in SHELXTL). No missed symmetry was reported by the ADDSYM program in PLATON.⁴ All non-hydrogen atoms were refined by using anisotropic displacement parameters. Hydrogen atoms were placed in idealized positions and refined using a riding model. Multiple disordered toluene solvent molecules (the crystallization solvent) were found within the asymmetric unit. These could not be satisfactorily modeled and were removed using the SQUEEZE protocol included in PLATON,⁴ the results of which are appended to the end of the CIF. The structure was refined (weighted least squares refinement on F^2) to convergence using the updated reflections file. The final least-squares refinement converged to $R_1 = 0.0650$ ($I > 2\sigma(I)$, 31783 data) and $wR_2 = 0.1609$ (F^2 , 22895 data, 2140 parameters). Disorder within two phenyl moieties was addressed, however, despite use of restraints (12), the elongated thermal parameters are still evident as noted in the checkCIF. These result from unresolved disorder in the tert-butyl moieties and less than ideal crystal quality. The final CIF is available as supporting material.

	Х	у	Z	U(eq)
$\overline{C(2\Lambda)}$	2042	6225	2021	51
C(2A)	8942 0687(1)	0323 8503(1)	3921 2021(1)	34 20(1)
AI(1A) AI(2A)	5087(1) 6152(1)	6802(1)	2321(1) 4117(1)	29(1) 20(1)
AI(2R) AI(1R)	2031(1)	1945(1)	$\frac{411}{(1)}$	20(1) 33(1)
AI(1D) AI(2P)	2031(1) 1601(1)	1943(1)	1270(1) 2427(1)	33(1) 23(1)
$C(1\Lambda)$	-1001(1) 9620(2)	4033(1)	$\frac{242}{(1)}$	$\frac{23(1)}{10(1)}$
C(1A)	11244(2)	6202(1)	3/12(1) 3/182(1)	26(1)
C(JA)	12211(1)	5938(1)	3556(1)	20(1) 31(1)
$C(5\Lambda)$	12593(1)	5869(1)	3943(1)	31(1)
C(6A)	12008(2)	6065(1)	4257(1)	33(1)
C(7A)	11040(2)	6329(1)	4183(1)	27(1)
C(8A)	10658(1)	6398(1)	3796(1)	20(1)
C(9A)	9184(2)	5622(2)	4161(1)	19(1)
C(10A)	9701(2)	5073(2)	3998(1)	25(1)
C(11A)	9942(3)	4395(2)	4236(1)	29(1)
C(12A)	9660(3)	4269(2)	4638(1)	35(1)
C(13A)	9153(3)	4813(2)	4806(1)	33(1)
C(14A)	8918(3)	5486(2)	4569(1)	27(1)
C(15A)	6904(2)	8916(2)	2997(1)	23(1)
C(16A)	6663(3)	9541(3)	2640(1)	47(1)
C(17A)	6800(3)	10178(2)	2677(2)	67(2)
C(18A)	6651(4)	10741(3)	2334(3)	104(3)
C(19A)	6382(4)	10641(6)	1971(3)	132(5)
C(20A)	6238(4)	10017(5)	1925(2)	123(4)
C(21A)	6384(3)	9452(3)	2270(2)	82(2)
C(22A)	6201(2)	8650(2)	3250(1)	20(1)
C(23A)	5211(2)	9055(2)	3255(1)	22(1)
C(24A)	4997(3)	9728(2)	3327(1)	28(1)
C(25A)	4065(3)	10111(2)	3353(1)	37(1)
C(26A)	3352(3)	9820(2)	3314(1)	44(1)
C(27A)	3551(3)	9155(2)	3242(1)	48(1)
C(28A)	4476(3)	8773(2)	3212(1)	33(1)
C(29A)	11798(3)	7815(2)	2878(1)	32(1)
C(30A)	11321(3)	9091(2)	2750(1)	37(1)
C(31A)	10775(3)	9302(2)	2347(1)	43(1)
C(32A)	9321(3)	10065(2)	2538(2)	63(2)
C(33A)	11376(2)	8361(2)	3448(1)	28(1)
C(34A)	10881(3)	8977(2)	3623(1)	31(1)
C(35A)	9922(3)	9289(2)	3539(1)	32(1)
C(30A)	9464(3)	9854(2) 10087(2)	$\frac{3}{23(1)}$	$\frac{3}{(1)}$
C(3/A)	9980(3)	1008/(2)	$\frac{39}{1(1)}$	44(1)
$C(3\delta A)$	10951(5)	9780(2)	4033(1) 2876(1)	30(1)
C(39A)	11373(3) 8423(3)	9232(2) 10178(2)	38/0(1) 3637(2)	53(1)
C(40A)	6423(3) 11487(2)	10170(2) 10084(2)	3037(2)	32(1)
C(41A) C(42A)	11467(3) 12514(3)	9656(2)	4320(1)	50(1)
C(42A)	11462(3)	10844(2)	4408(1)	56(1)
C(43A)	11402(3) 11004(4)	10044(2) 10068(3)	4121(2) 4746(2)	67(2)
C(45A)	9252(3)	9360(3)	2054(2)	75(2)
C(46A)	9674(3)	8733(3)	1877(1)	61(2)
C(47A)	10031(3)	8064(3)	2130(1)	53(1)
C(48A)	10442(4)	7480(4)	1955(2)	65(2)
C(49A)	10451(5)	7593(4)	1524(2)	100(3)
C(50A)	10089(5)	8253(5)	1266(2)	104(3)
C(51A)	9717(4)	8815(4)	1449(2)	96(2)
C(52A)	10880(3)	6770(3)	2238(2)	67(2)
C(53A)	10163(8)	8350(7)	798(2)	176(5)

Table S13. Atomic coordinates $(x \ 10^4)$ and equivalent isotropic displacement parameters $(Å^2x \ 10^3)$ for **8^{tBu}**. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

C(54A)	9182(8)	8823(6)	603(2)	218(7)
C(55A)	10806(6)	8807(5)	636(2)	196(5)
C(56A)	10328(9)	7704(5)	652(2)	217(6)
C(57A)	6583(3)	5774(2)	4949(1)	29(1)
C(58A)	5023(2)	6038(2)	4653(1)	26(1)
C(59A)	4603(3)	6779(2)	4709(1)	28(1)
C(60A)	3983(2)	7392(2)	4026(1)	30(1)
C(61A)	4644(2)	7990(2)	4434(1)	26(1)
C(62A)	5288(3)	7972(2)	4776(1)	25(1)
C(63A)	6226(3)	7556(2)	4808(1)	24(1)
C(64A)	6810(3)	7559(2)	5136(1)	26(1)
C(65A)	6429(3)	7969(2)	5414(1)	32(1)
C(66A)	5496(3)	8388(2)	5391(1)	32(1)
C(67A)	4942(3)	8370(2)	5069(1)	29(1)
C(68A)	7816(3)	7126(2)	5170(1)	34(1)
C(69A)	5124(3)	8840(2)	5706(1)	41(1)
C(70A)	5564(3)	9447(2)	5629(1)	51(1)
C(71A)	5368(5)	8417(2)	6136(1)	96(2)
C(72A)	4055(4)	9166(3)	5656(2)	103(2)
C(73A)	6397(2)	5315(2)	4364(1)	24(1)
C(74A)	5802(2)	5329(2)	4003(1)	23(1)
C(75A)	5454(2)	5964(2)	3704(1)	20(1)
C(76A)	4892(2)	5957(2)	3377(1)	22(1)
C(77A)	4695(2)	5333(2)	3349(1)	25(1)
C(78A)	5002(3)	4715(2)	3643(1)	26(1)
C(79A)	5560(2)	4732(2)	3967(1)	25(1)
C(80A)	4470(3)	6626(2)	3069(1)	29(1)
C(81A)	4733(3)	4034(2)	3635(1)	30(1)
C(82A)	5622(3)	3445(2)	3622(1)	42(1)
C(83A)	4107(3)	4134(2)	3254(1)	44(1)
C(84A)	4177(3)	3835(2)	4018(1)	38(1)
C(85A)	8878(3)	8172(2)	4077(1)	28(1)
C(86A)	8969(3)	8499(2)	4388(1)	42(1)
C(8/A)	8186(3)	8803(2)	4585(1)	48(1)
C(88A)	7324(3)	8/92(2)	4458(1)	35(1)
C(89A)	7273(3)	8453(2)	4146(1)	26(1)
C(90A)	6959(2)	7033(2)	2963(1)	23(1)
C(91A)	6720(2)	6892(2)	2602(1)	24(1)
C(92A)	/293(3)	6955(2)	2265(1)	28(1)
C(93A)	8105(3)	/151(2)	2309(1)	30(1)
C(94A)	8303(3)	$\frac{128}{(2)}$	$\frac{267}{(1)}$	30(1)
C(1B)	-740(3)	2346(2)	1430(1)	29(1)
C(2D)	-1403(3)	2804(2) 1040(2)	1027(1) 1122(1)	23(1)
C(3D)	-899(3)	1949(2)	1132(1) 737(1)	$\frac{4}{(0)}$
C(4D)	-1200(4) 1405(4)	2200(2) 1861(2)	737(1)	43(4)
C(5B)	-1403(4) 1178(4)	1001(3) 1125(3)	4/2(1)	70(0)
C(0B) C(7P)	-11/8(4)	816(2)	003(2)	117(10) 102(7)
C(PB)	-611(4) 671(3)	1223(2)	1263(2)	103(7) 89(7)
C(3D)	-0/1(3)	1223(2) 1873(2)	1203(2) 1203(1)	$\frac{39(7)}{28(3)}$
C(3C)	-878(3)	1075(2) 1977(3)	784(1)	41(2)
C(5C)	-1132(4)	1562(3)	552(1)	59(3)
C(6C)	-1557(4)	1042(3)	738(2)	71(3)
C(7C)	-1729(4)	938(2)	1156(2)	51(2)
C(8C)	-1475(4)	1353(2)	1389(1)	31(2)
C(9B)	-2481(3)	2927(2)	1549(1)	28(1)
C(10B)	-3142(12)	2732(8)	1882(5)	36(4)
C(11B)	-4090(16)	2878(10)	1798(7)	52(5)
C(12B)	-4410(3)	3188(3)	1417(2)	68(2)
C(13B)	-3834(11)	3387(9)	1079(5)	57(3)
C(14B)	-2856(13)	3212(10)	1159(5)	54(5)
C(10C)	-2920(11)	2493(9)	1744(5)	75(5)
-()	(11)			

C(11C)	-3885(13)	2603(11)	1689(6)	90(6)
C(12C)	-4410(3)	3188(3)	1417(2)	68(2)
C(13C)	-3957(10)	3649(9)	1228(4)	57(3)
C(14C)	-2980(10)	3507(7)	1271(4)	44(4)
C(15B)	1937(3)	2874(2)	2244(1)	23(1)
C(16B)	1208(3)	3265(2)	2473(1)	23(1)
C(17B)	2946(3)	2658(2)	2368(1)	27(1)
C(18B)	3410(3)	3117(2)	2454(2)	53(1)
C(19B)	4342(3)	2866(3)	2604(2)	76(2)
C(20B)	4796(3)	2168(3)	2670(2)	66(2)
C(21B)	4356(3)	1708(2)	2582(1)	46(1)
C(22B)	3443(3)	1954(2)	2431(1)	35(1)
C(23B)	1414(3)	3495(2)	2845(1)	31(1)
C(24B)	1267(3)	4212(3)	2825(2)	48(1)
C(25B)	1434(3)	4454(4)	3157(2)	/5(2)
C(26B)	1/5/(4)	4001(5)	3507(2)	91(3)
C(2/B)	1919(4)	3290(4)	3555(2)	88(2)
C(28B)	1/28(3)	3033(3)	3206(1)	61(2)
C(29B)	1515(3)	1/10(2)	443(1)	48(1)
C(30B)	3115(3)	1141(2) 1755(2)	696(1)	51(1)
C(31D)	3330(3)	1/33(2) 1508(2)	$\frac{0}{2}(1)$	40(1)
C(32D)	4204(3)	1308(2)	1302(1) 2204(1)	43(1) 22(1)
C(33D)	-3/23(3)	4181(2) 5167(2)	2394(1) 2557(1)	20(1)
C(34D)	-3290(3)	$\frac{3107(2)}{4873(2)}$	2337(1) 2071(1)	29(1) 26(1)
C(35B)	-2/82(2) 1228(3)	4073(2)	2971(1) 2823(1)	20(1) 28(1)
C(30B)	-1338(3) 1790(3)	5232(2) 676(2)	2823(1) 987(1)	20(1)
C(38B)	2417(3)	173(2)	1329(1)	40(1)
C(30B)	2760(3)	418(2)	1527(1) 1637(1)	36(1)
C(40B)	3369(3)	-61(2)	1037(1) 1945(1)	34(1)
C(41B)	3603(3)	-776(2)	1943(1)	44(1)
C(42B)	3257(3)	-1030(2)	1641(1)	47(1)
C(43B)	2676(3)	-543(2)	1333(1)	48(1)
C(44B)	3780(3)	195(2)	2265(1)	37(1)
C(45B)	3554(5)	-1823(3)	1642(2)	109(2)
C(46B)	4434(7)	-2207(3)	1872(3)	205(6)
C(47B)	3704(5)	-1923(3)	1208(2)	107(2)
C(48B)	2723(4)	-2096(3)	1768(2)	109(2)
C(49B)	3541(3)	2690(2)	1021(1)	38(1)
C(50B)	2887(3)	3240(2)	701(1)	36(1)
C(51B)	1962(3)	3220(2)	645(1)	33(1)
C(52B)	1388(3)	3740(2)	337(1)	33(1)
C(53B)	1749(3)	4273(2)	110(1)	41(1)
C(54B)	2663(3)	4314(2)	173(1)	42(1)
C(55B)	3220(3)	3780(2)	465(1)	43(1)
C(56B)	395(3)	3720(2)	270(1)	40(1)
C(57B)	3029(3)	4917(2)	-77(1)	51(1)
C(58B)	2255(4)	5598(2)	-186(2)	71(2)
C(59B)	3453(4)	4714(3)	-469(2)	95(2)
C(60B)	3782(5)	5046(3)	162(2)	117(3)
C(61B)	-1264(3)	4161(2)	3297(1)	25(1)
C(62B)	-1609(2)	3521(2)	3469(1)	22(1)
C(63B)	-1915(2)	3161(2)	3213(1)	21(1)
C(64B)	-2214(2)	2561(2)	3394(1)	23(1)
C(65B)	-2156(2)	2328(2)	3818(1)	28(1)
C(66B)	-1849(3)	2681(2)	4081(1)	30(1)
C(6/B)	-1583(2)	3281(2)	3893(1)	$2^{\prime}(1)$
C(68B)	-2613(3)	2201(2)	3125(1)	28(1)
C(69B)	-1/95(3)	242/(2)	4551(1)	$3^{7}(1)$
C(70B)	-2102(4)	3044(2) 10(8(2)	4/61(1)	60(2)
C(72B)	-2455(5)	1968(3)	4/00(2)	106(3)
C(72B)	-/85(4)	2035(3)	4682(2)	116(3)

C(73B)	-3237(3)	4983(2)	1851(1)	31(1)
C(74B)	-2674(3)	5498(2)	1688(1)	25(1)
C(75B)	-1739(3)	5365(2)	1812(1)	24(1)
C(76B)	-1228(3)	5856(2)	1646(1)	28(1)
C(77B)	-1662(3)	6446(2)	1353(1)	32(1)
C(78B)	-2585(3)	6581(2)	1213(1)	33(1)
C(79B)	-3083(3)	6102(2)	1389(1)	30(1)
C(80B)	-221(3)	5713(2)	1787(1)	35(1)
C(81B)	-3025(3)	7250(2)	882(1)	43(1)
C(82B)	-3073(4)	7899(2)	1059(2)	74(2)
C(83B)	-3997(3)	7280(2)	736(2)	66(2)
C(84B)	-2389(4)	7266(3)	503(1)	68(2)
C(85B)	-201(2)	2059(2)	2681(1)	26(1)
C(86B)	-48(3)	1512(2)	3017(1)	34(1)
C(87B)	685(3)	916(2)	3017(1)	42(1)
C(88B)	1215(3)	898(2)	2671(1)	36(1)
C(89B)	1027(3)	1464(2)	2343(1)	28(1)
C(90B)	-633(3)	4267(2)	1296(1)	32(1)
C(91B)	-680(3)	4887(2)	1013(1)	36(1)
C(92B)	140(3)	5059(2)	884(1)	38(1)
C(93B)	983(3)	4600(2)	1046(1)	36(1)
C(94B)	974(3)	3986(2)	1327(1)	32(1)
Fe(1A)	7904(1)	7662(1)	3481(1)	19(1)
Fe(1B)	233(1)	2918(1)	1897(1)	23(1)
N(1A)	9256(2)	7315(2)	3477(1)	20(1)
N(2A)	8057(2)	6752(1)	3847(1)	19(1)
N(3A)	6553(2)	8026(1)	3488(1)	19(1)
N(4A)	7766(2)	8529(2)	3076(1)	22(1)
N(5A)	11157(2)	8430(1)	3004(1)	27(1)
N(6A)	9758(2)	9373(2)	2433(1)	47(1)
N(7A)	6036(2)	5932(1)	4556(1)	22(1)
N(8A)	4742(2)	7290(1)	4331(1)	23(1)
N(9A)	8033(2)	8143(1)	3948(1)	21(1)
N(10A)	7729(2)	7252(1)	3004(1)	23(1)
N(1B)	123(2)	2356(2)	1509(1)	29(1)
N(2B)	-1126(2)	3115(2)	1869(1)	26(1)
N(3B)	348(2)	3372(1)	2338(1)	20(1)
N(4B)	1592(2)	2699(1)	1935(1)	24(1)
N(5B)	2120(2)	1321(2)	815(1)	40(1)
N(6B)	3427(2)	1968(2)	1073(1)	39(1)
N(7B)	-3061(2)	4632(2)	2297(1)	25(1)
N(8B)	-1750(2)	4624(1)	2911(1)	22(1)
N(9B)	338(2)	2056(2)	2343(1)	24(1)
N(10B)	183(2)	3806(2)	1459(1)	26(1)
O(1A)	9892(2)	7669(1)	3318(1)	22(1)
O(2A)	7365(2)	6443(1)	3990(1)	21(1)
O(3A)	5938(2)	7760(1)	3745(1)	21(1)
O(4A)	8414(2)	8702(1)	2807(1)	33(1)
O(5A)	9426(2)	9073(1)	3290(1)	32(1)
O(6A)	10024(2)	7962(1)	2538(1)	37(1)
O(7A)	6595(2)	7164(1)	4538(1)	24(1)
O(8A)	5630(2)	6560(1)	3739(1)	22(1)
O(1B)	814(2)	1877(1)	1370(1)	33(1)
O(2B)	-1776(2)	3598(1)	2021(1)	26(1)
O(3B)	-341(2)	3655(1)	2575(1)	23(1)
O(4B)	2230(2)	2390(1)	1686(1)	28(1)
O(5B)	2542(2)	1104(1)	1635(1)	36(1)
O(6B)	1600(2)	2738(1)	878(1)	33(1)
O(7B)	-1984(2)	3383(1)	2804(1)	26(1)
O(8B)	-1285(2)	4780(1)	2080(1)	24(1)

T.LL 614	$\mathbf{D} = 11 \dots (1 - 1^{k}) \dots (1 - 1^{k}) \mathbf{C} = 0^{T} \mathbf{B}^{T}$
Table S14.	Bond lengths [A] and angles [°] for 8 ^{tha} .

Al(1A)-O(5A)	1.833(3)	O(4A)-Al(1A)-N(5A)	171.35(12)
Al(1A)-O(6A)	1.837(3)	O(1A)-Al(1A)-N(5A)	86.83(11)
Al(1A)-O(4A)	1.844(3)	N(6A)-Al(1A)-N(5A)	82.65(13)
Al(1A)-O(1A)	1.862(2)	O(7A)-Al(2A)-O(8A)	173.18(11)
Al(1A)-N(6A)	2.144(3)	O(7A)-Al(2A)-O(2A)	91.43(11)
Al(1A)-N(5A)	2.155(3)	O(8A)-Al(2A)-O(2A)	91.87(11)
Al(2A)-O(7A)	1.817(3)	O(7A)-Al(2A)-O(3A)	96.10(11)
Al(2A)-O(8A)	1.832(3)	O(8A)-Al(2A)-O(3A)	89.08(11)
Al(2A)-O(2A)	1.856(2)	O(2A)-Al(2A)-O(3A)	101.56(10)
Al(2A)-O(3A)	1.872(2)	O(7A)-Al(2A)-N(8A)	87.45(11)
Al(2A)-N(8A)	2.173(3)	O(8A)-Al(2A)-N(8A)	88.48(11)
Al(2A)-N(7A)	2.206(3)	O(2A)-Al(2A)-N(8A)	172.25(11)
Fe(1A)-N(1A)	1.926(3)	O(3A)-Al(2A)-N(8A)	86.19(10)
Fe(1A)-N(3A)	1.928(3)	O(7A)-Al(2A)-N(7A)	88.71(11)
Fe(1A)-N(4A)	1.932(3)	O(8A)-Al(2A)-N(7A)	85.27(11)
Fe(1A)-N(2A)	1.936(3)	O(2A)-Al(2A)-N(7A)	91.02(10)
Fe(1A)-N(10A)	2.006(3)	O(3A)-Al(2A)-N(7A)	166.39(11)
Fe(1A)-N(9A)	2.051(3)	N(8A)-Al(2A)-N(7A)	81.29(11)
N(1A)-O(1A)	1.356(3)	N(1A)-Fe(1A)-N(3A)	178.93(12)
N(2A)-O(2A)	1.356(3)	N(1A)-Fe(1A)-N(4A)	98.15(12)
N(3A)-O(3A)	1.362(3)	N(3A)-Fe(1A)-N(4A)	81.25(12)
N(4A)-O(4A)	1.350(3)	N(1A)-Fe(1A)-N(2A)	80.85(12)
		N(3A)-Fe(1A)-N(2A)	99.83(12)
O(5A)-Al(1A)-O(6A)	175.54(13)	N(4A)-Fe(1A)-N(2A)	174.99(12)
O(5A)-Al(1A)-O(4A)	89.55(12)	N(1A)-Fe(1A)-N(10A)	92.39(11)
O(6A)-Al(1A)-O(4A)	93.76(13)	N(3A)-Fe(1A)-N(10A)	88.45(11)
O(5A)-Al(1A)-O(1A)	95.09(12)	N(4A)-Fe(1A)-N(10A)	85.40(12)
O(6A)-Al(1A)-O(1A)	87.18(12)	N(2A)-Fe(1A)-N(10A)	89.73(11)
O(4A)-Al(1A)-O(1A)	101.63(11)	N(1A)-Fe(1A)-N(9A)	89.76(11)
O(5A)-Al(1A)-N(6A)	90.97(14)	N(3A)-Fe(1A)-N(9A)	89.36(11)
O(6A)-Al(1A)-N(6A)	86.09(14)	N(4A)-Fe(1A)-N(9A)	91.38(11)
O(4A)-Al(1A)-N(6A)	89.14(12)	N(2A)-Fe(1A)-N(9A)	93.52(11)
O(1A)-Al(1A)-N(6A)	167.66(13)	N(10A)-Fe(1A)-N(9A)	176.36(11)
O(5A)-Al(1A)-N(5A)	87.88(12)	Symmetry transformations us	ed to generate
$O(6A) \wedge I(1A) \otimes N(5A)$	00.41(10)		1/2

Figure S40. Structural drawing of 12^{NO2} with 50% thermal probability ellipsoids.

Special Refinement Details for 12^{NO2}. Crystals were mounted on a glass fiber using Paratone oil then placed on the diffractometer under a nitrogen stream at 100K. The crystal contains numerous solvent sites, one containing diethyl ether, and four others which contain THF. One of the THF sites sits on the two-fold along the c-axis.

Table S15. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters ($Å^2x 10^3$) for **12^{NO2}**. U(eq) is defined as the trace of the orthogonalized U^{ij} tensor.

	x	у	Z	Ueq
Fe(1)	3157(1)	1488(1)	8227(1)	25(1)
Al(1)	2020(1)	1149(1)	9720(1)	27(1)
Al(2)	4264(1)	2039(1)	6912(1)	26(1)
O(1)	2782(1)	1182(1)	9950(2)	29(1)
O(2)	4335(1)	1542(1)	7714(2)	25(1)
O(3)	2014(1)	1152(1)	8537(2)	26(1)
O(4)	3501(1)	2021(1)	6673(2)	30(1)
O(5)	1892(1)	1820(1)	9731(2)	29(1)
O(6)	2092(1)	465(1)	9731(2)	26(1)
O(7)	1912(2)	3257(1)	12862(2)	46(1)
O(8)	1822(2)	3768(1)	11806(2)	54(1)
O(9)	1121(2)	-1560(1)	8561(3)	65(1)
O(10)	410(2)	-1096(1)	8292(3)	62(1)
O(11)	4358(1)	1590(1)	6026(2)	30(1)

O(12)	4219(1)	2495(1)	7789(2)	27(1)
O(13)	6534(2)	523(2)	4878(3)	82(2)
O(14)	5950(2)	225(2)	3970(3)	74(1)
O(15)	3743(2)	4664(1)	8849(3)	58(1)
O(16)	3578(2)	4717(1)	7485(3)	65(1)
N(1)	3200(2)	1220(1)	9371(2)	20(1)
N(2)	3960(2)	1443(1)	8344(2)	23(1)
N(3)	2367(2)	1418(1)	8029(3)	27(1)
N(4)	3105(2)	1766(1)	7089(2)	27(1)
N(5)	1908(2)	1151(1)	11065(2)	25(1)
N(6)	1142(2)	1024(1)	9686(3)	27(1)
N(7)	1861(2)	3341(2)	12097(3)	39(1)
N(8)	897(2)	-1150(2)	8569(3)	52(2)
N(9)	5154(1)	2127(1)	6912(2)	22(1)
N(10)	4302(2)	2640(1)	6025(2)	26(1)
N(11)	6054(2)	495(2)	4588(3)	60(2)
N(12)	3707(2)	4472(2)	8129(4)	51(1)
N(13)	3229(2)	811(1)	7706(2)	27(1)
N(14)	3072(2)	2173(1)	8727(3)	29(1)
C(1)	3696(2)	1090(2)	9634(3)	19(1)
C(2)	4130(2)	1196(2)	9024(3)	21(1)
C(3)	3820(2)	852(2)	10484(3)	26(1)
C(4)	4075(2)	393(2)	10512(3)	34(1)
C(5)	4073(2)	166(2)	10312(3) 11274(4)	51(2)
C(6)	4109(2)	421(2)	112/4(4) 120/8(4)	63(2)
C(0)	$\frac{410}{(2)}$	421(2) 880(2)	12040(4) 12040(3)	49(2)
C(7)	3713(2)	1100(2)	11255(3)	$\frac{4}{2}$
C(8)	3713(2)	1100(2) 1058(2)	0146(3)	30(2)
C(3)	4733(2)	1038(2) 1222(2)	9140(3)	30(1)
C(10)	5566(2)	1222(2) 1081(2)	9872(3)	49(2)
C(11)	5922(2)	1081(2)	9991(3)	03(2)
C(12)	5546(2)	(73(3))	9431(3) 8600(4)	83(3) 52(2)
C(13)	3340(2)	010(2)	8090(4)	32(2)
C(14)	4987(2)	137(2)	8300(3)	42(2)
C(15)	1200(2)	1100(2)	11232(3) 12162(2)	30(1)
C(10)	1122(2)	1029(2)	12103(3) 12282(2)	38(2) 28(2)
C(17)	498(2)	1002(2)	12283(3)	38(2)
C(18)	254(2)	636(2) 804(2)	11000(3)	41(2)
C(19)	364(2)	804(2)	10/44(3)	40(2)
C(20)	990(2) 2104(2)	836(2)	10567(3)	29(1)
C(21)	2194(2)	1581(2)	1140/(3)	2/(1)
C(22)	1994(2)	2082(2)	11192(3)	24(1)
C(23)	1988(2)	2466(2)	11/2(3)	29(1)
C(24)	1844(2)	2938(2)	11494(3)	26(1)
C(25)	1666(2)	3022(2)	10648(3)	38(2)
C(26)	1650(2)	2638(2)	10065(3)	29(1)
C(27)	1858(2)	2165(2)	10318(3)	25(1)
C(28)	1429(2)	2/17(2)	9164(3)	43(2)
C(29)	2178(2)	705(2)	11458(3)	31(1)
C(30)	1008(2)	654(2)	9001(3)	34(2)
C(31)	1245(2)	161(2)	9102(3)	29(1)
C(32)	954(2)	-253(2)	8823(3)	37(2)
C(33)	1198(2)	-718(2)	8854(3)	37(2)
C(34)	1738(2)	-790(2)	9165(3)	34(1)
C(35)	2030(2)	-391(2)	9477(3)	30(1)

C(37) 2602(2) -449(2) 981(3) 40(2) C(38) 828(2) 1477(2) 9442(3) 36(1) C(39) 2188(2) 1530(2) 7259(3) 34(1) C(40) 2611(2) 1757(2) 6739(3) 34(1) C(41) 1632(2) 1507(2) 6936(4) 55(2) C(43) 623(2) 1507(2) 6936(4) 55(2) C(44) 1536(2) 894(2) 6706(3) 44(2) C(45) 994(2) 718(2) 6547(3) 57(2) C(46) 1536(2) 894(2) 6706(3) 43(2) C(47) 2497(2) 219(3) 4394(4) 111(4) C(48) 215(3) 2757(2) 5200(5) 97(3) C(48) 2135(3) 2757(2) 5200(5) 97(3) C(51) 2135(3) 2757(2) 5200(5) 97(3) C(53) 6039(2) 2659(2) 6233(3) 35(2) C(54) 5097(2) 303(2) <td< th=""><th>C(36)</th><th>1800(2)</th><th>93(2)</th><th>9440(3)</th><th>28(1)</th></td<>	C(36)	1800(2)	93(2)	9440(3)	28(1)
C(38) £28(2) 1477(2) 9442(3) 36(1) C(39) 2188(2) 1530(2) 7259(3) 25(1) C(40) 2611(2) 1757(2) 6739(3) 34(1) C(41) 1622(2) 1381(2) 6981(3) 36(2) C(42) 1163(2) 1665(2) 7083(3) 41(2) C(43) 623(2) 1507(2) 6936(4) 55(2) C(44) 543(2) 1028(2) 6675(4) 65(2) C(45) 994(2) 718(2) 6547(3) 57(2) C(46) 1536(2) 894(2) 5152(4) 70(2) C(48) 2715(2) 1864(2) 5152(4) 70(2) C(49) 22637(3) 2581(3) 4436(5) 108(4) C(51) 2135(3) 2757(2) 5200(5) 97(3) C(52) 2207(2) 2467(2) 5937(4) 66(2) C(53) 5308(2) 2452(2) 6178(3) 30(1) C(54) 5899(2) 320(2)	C(37)	2602(2)	-449(2)	9881(3)	40(2)
C(39) 2188(2) 1530(2) 7259(3) 25(1) C(40) 2611(2) 1757(2) 6739(3) 34(1) C(41) 162(2) 1381(2) 6981(3) 36(2) C(42) 1163(2) 1685(2) 7083(3) 41(2) C(43) 623(2) 1507(2) 6936(4) 55(2) C(44) 543(2) 1028(2) 6675(4) 667(2) C(46) 1536(2) 894(2) 6706(3) 43(2) C(47) 2497(2) 2024(2) 5520(4) 43(2) C(48) 2715(2) 1864(2) 5152(4) 70(2) C(49) 2267(3) 2581(3) 4436(5) 108(4) C(51) 2135(3) 2757(2) 5200(5) 97(3) C(53) 5308(2) 2452(2) 6178(3) 30(1) C(54) 5899(2) 203(2) 545(3) 40(2) C(55) 6027(2) 300(2) 5455(3) 40(2) C(55) 5607(2) 320(2)	C(38)	828(2)	1477(2)	9442(3)	36(1)
C(40) 2611(2) 1757(2) 6739(3) 34(1) C(41) 1622(2) 1381(2) 6981(3) 36(2) C(42) 1163(2) 1685(2) 7083(3) 41(2) C(43) 622(2) 1507(2) 6936(4) 55(2) C(44) 543(2) 718(2) 6547(3) 57(2) C(46) 1536(2) 894(2) 6706(3) 43(2) C(47) 2497(2) 2024(2) 5920(4) 43(2) C(48) 2715(2) 1864(2) 5152(4) 70(2) C(49) 2649(3) 2139(3) 4394(4) 111(4) C(50) 2367(3) 2757(2) 5200(5) 97(3) C(51) 2135(3) 2757(2) 5200(5) 97(3) C(53) 508(2) 2452(2) 6178(3) 30(1) C(54) 5899(2) 2659(2) 6233(3) 35(2) C(55) 6029(2) 3003(2) 545(3) 40(2) C(56) 5677(2) 3404(2)	C(39)	2188(2)	1530(2)	7259(3)	25(1)
C(41) 1622(2) 1381(2) 6981(3) 36(2) C(42) 1163(2) 1088(2) 7083(3) 41(2) C(43) 623(2) 1507(2) 6936(4) 55(2) C(44) 543(2) 1028(2) 6675(4) 65(2) C(45) 994(2) 718(2) 6647(3) 577(2) C(46) 1336(2) 294(2) 5920(4) 43(2) C(47) 2497(2) 2024(2) 5920(4) 43(2) C(48) 2715(2) 1864(2) 5152(4) 70(2) C(49) 2639(3) 2581(3) 4436(5) 108(4) C(51) 2135(3) 2757(2) 5200(5) 97(3) C(52) 2207(2) 2467(2) 5937(4) 63(2) C(55) 6029(2) 300(2) 545(3) 40(2) C(56) 5607(2) 34042) 5453(3) 40(2) C(56) 5607(2) 320(2) 657(3) 35(1) C(57) 5020(2) 328(2) <td< td=""><td>C(40)</td><td>2611(2)</td><td>1757(2)</td><td>6739(3)</td><td>34(1)</td></td<>	C(40)	2611(2)	1757(2)	6739(3)	34(1)
$\begin{array}{ccccc} C(42) & 1163(2) & 1685(2) & 7083(3) & 41(2) \\ C(43) & 623(2) & 1507(2) & 6936(4) & 55(2) \\ C(44) & 543(2) & 1028(2) & 6675(4) & 665(2) \\ C(45) & 994(2) & 718(2) & 6547(3) & 57(2) \\ C(46) & 1536(2) & 894(2) & 6706(3) & 43(2) \\ C(47) & 2497(2) & 2024(2) & 5920(4) & 43(2) \\ C(48) & 2715(2) & 1864(2) & 5152(4) & 70(2) \\ C(49) & 2649(3) & 2139(3) & 4394(4) & 111(4) \\ C(50) & 2367(3) & 2581(3) & 4436(5) & 108(4) \\ C(51) & 2135(3) & 2757(2) & 5200(5) & 97(3) \\ C(52) & 2207(2) & 2467(2) & 5937(4) & 65(2) \\ C(55) & 6029(2) & 3003(2) & 5456(3) & 43(2) \\ C(55) & 6029(2) & 3003(2) & 5456(3) & 43(2) \\ C(56) & 5507(2) & 3404(2) & 5433(3) & 40(2) \\ C(57) & 5020(2) & 3200(2) & 5332(3) & 35(1) \\ C(58) & 4875(2) & 2659(2) & 6233(3) & 32(1) \\ C(58) & 4875(2) & 1630(2) & 6649(3) & 28(1) \\ C(61) & 5317(2) & 1343(2) & 6048(3) & 28(1) \\ C(61) & 5317(2) & 1343(2) & 6048(3) & 28(1) \\ C(61) & 5317(2) & 1343(2) & 6048(3) & 28(1) \\ C(61) & 5317(2) & 1343(2) & 6048(3) & 28(1) \\ C(61) & 5317(2) & 1343(2) & 6048(3) & 28(1) \\ C(61) & 5359(3) & 749(2) & 4611(3) & 44(2) \\ C(64) & 4668(2) & 1028(2) & 4604(3) & 56(2) \\ C(67) & 5352(2) & 2326(2) & 7176(3) & 33(1) \\ C(66) & 4068(2) & 1028(2) & 4604(3) & 56(2) \\ C(67) & 3557(2) & 335(2) & 7763(3) & 33(1) \\ C(66) & 4068(2) & 1028(2) & 4604(3) & 56(2) \\ C(67) & 3552(2) & 2326(2) & 7117(3) & 31(1) \\ C(70) & 3606(2) & 3748(2) & 8735(3) & 34(2) \\ C(73) & 4196(2) & 3213(2) & 8661(3) & 31(1) \\ C(70) & 3606(2) & 3748(2) & 8735(3) & 34(2) \\ C(75) & 4459(2) & 2928(2) & 9379(3) & 41(2) \\ C(75) & 4459(2) & 2928(2) & 9379(3) & 41(2) \\ C(75) & 4459(2) & 2928(2) & 9379(3) & 31(2) \\ C(75) & 4459(2) & 2928(2) & 9379(3) & 41(2) \\ C(75) & 4459(2) & 2928(2) & 9379(3) & 31(1) \\ C(79) & 3325(2) & -141(2) & 6779(3) & 37(2) \\ C(80) & 3601(2) & 558(2) & 628(3) & 38(2) \\ C(75) & 4459(2) & 2928(2) & 9379(3) & 41(2) \\ C(75) & 4459(2) & 2928(2) & 9379(3) & 41(2) \\ C(75) & 24325(2) & 2736(2) & 8677(4) & 31(1) \\ C(75) & 2632(2) & 2736(2) & 8677(4) & 31(2) \\ C(84) & 2881(2) & 3119(2) & 9444(4) & 50(2) \\ C(85) & 2730(2) $	C(41)	1622(2)	1381(2)	6981(3)	36(2)
$\begin{array}{cccc} C(43) & 623(2) & 1507(2) & 6936(4) & 55(2) \\ C(44) & 543(2) & 1028(2) & 6675(4) & 65(2) \\ C(45) & 994(2) & 718(2) & 6547(3) & 57(2) \\ C(46) & 1536(2) & 894(2) & 6706(3) & 43(2) \\ C(47) & 2497(2) & 2024(2) & 5920(4) & 43(2) \\ C(48) & 2715(2) & 1864(2) & 5152(4) & 70(2) \\ C(49) & 2649(3) & 2139(3) & 4334(4) & 111(4) \\ C(50) & 2367(3) & 2581(3) & 4436(5) & 108(4) \\ C(51) & 2135(3) & 2757(2) & 5200(5) & 973(4) \\ C(52) & 2207(2) & 2467(2) & 5937(4) & 66(2) \\ C(53) & 5308(2) & 2452(2) & 6178(3) & 30(1) \\ C(54) & 5899(2) & 2659(2) & 6233(3) & 35(2) \\ C(55) & 6029(2) & 3003(2) & 5456(3) & 442(2) \\ C(56) & 5607(2) & 3404(2) & 5435(3) & 440(2) \\ C(57) & 5020(2) & 3200(2) & 5332(3) & 35(1) \\ C(58) & 4875(2) & 2862(2) & 6079(3) & 27(1) \\ C(59) & 5435(2) & 1630(2) & 6849(3) & 34(1) \\ C(60) & 5317(2) & 1343(2) & 6048(3) & 28(1) \\ C(61) & 5738(2) & 1083(2) & 5657(3) & 36(2) \\ C(62) & 5611(3) & 782(2) & 4963(4) & 49(2) \\ C(63) & 5090(3) & 749(2) & 4611(3) & 44(2) \\ C(64) & 4668(2) & 1036(2) & 4967(3) & 39(2) \\ C(65) & 4767(2) & 1335(2) & 5702(3) & 28(1) \\ C(66) & 4068(2) & 1028(2) & 4604(3) & 56(2) \\ C(66) & 4068(2) & 1028(2) & 4604(3) & 56(2) \\ C(66) & 4068(2) & 1028(2) & 4604(3) & 56(2) \\ C(67) & 3537(2) & 3260(2) & 7117(3) & 31(1) \\ C(70) & 3806(2) & 3748(2) & 7232(4) & 34(2) \\ C(71) & 3849(2) & 3959(2) & 8027(4) & 33(1) \\ C(72) & 4048(2) & 3708(2) & 8735(3) & 34(2) \\ C(73) & 4196(2) & 3213(2) & 8661(3) & 31(1) \\ C(74) & 419(2) & 2967(2) & 7849(3) & 34(2) \\ C(75) & 4459(2) & 2928(2) & 9379(3) & 41(2) \\ C(76) & 4162(2) & 2479(2) & 5136(3) & 31(1) \\ C(78) & 3003(2) & -65(2) & 7689(3) & 30(1) \\ C(79) & 3325(2) & -141(2) & 6979(3) & 37(2) \\ C(80) & 3001(2) & 258(2) & 6628(3) & 38(2) \\ C(75) & 4459(2) & 2928(2) & 9379(3) & 44(2) \\ C(75) & 4459(2) & 2928(2) & 9379(3) & 44(2) \\ C(75) & 4459(2) & 2928(2) & 9379(3) & 30(1) \\ C(79) & 3325(2) & -141(2) & 6979(3) & 37(2) \\ C(80) & 3003(2) & -65(2) & 7689(3) & 30(1) \\ C(79) & 3325(2) & -141(2) & 6979(3) & 37(2) \\ C(81) & 3235(2) & -734(2) & 7002(3) & 30(1) \\ C(75) & 4459(2) & $	C(42)	1163(2)	1685(2)	7083(3)	41(2)
$\begin{array}{cccc} C(44) & 543(2) & 1028(2) & 6675(4) & 65(2) \\ C(45) & 994(2) & 718(2) & 6547(3) & 57(2) \\ C(46) & 1536(2) & 894(2) & 6706(3) & 43(2) \\ C(47) & 2497(2) & 2024(2) & 5920(4) & 43(2) \\ C(48) & 2715(2) & 1864(2) & 5152(4) & 70(2) \\ C(49) & 2649(3) & 2139(3) & 4394(4) & 111(4) \\ C(50) & 2367(3) & 2581(3) & 4436(5) & 108(4) \\ C(51) & 2135(3) & 2757(2) & 5200(5) & 97(3) \\ C(52) & 2207(2) & 2467(2) & 5937(4) & 662(2) \\ C(53) & 5308(2) & 2452(2) & 6178(3) & 30(1) \\ C(54) & 5899(2) & 2659(2) & 6233(3) & 35(2) \\ C(55) & 6029(2) & 3003(2) & 5456(3) & 443(2) \\ C(57) & 5020(2) & 3200(2) & 5332(3) & 35(1) \\ C(58) & 4875(2) & 2862(2) & 6079(3) & 27(1) \\ C(59) & 5435(2) & 1630(2) & 6849(3) & 28(1) \\ C(61) & 5738(2) & 1083(2) & 5657(3) & 36(2) \\ C(62) & 5611(3) & 782(2) & 4063(4) & 28(1) \\ C(61) & 5738(2) & 1083(2) & 5657(3) & 39(2) \\ C(65) & 4767(2) & 1335(2) & 5702(3) & 23(1) \\ C(66) & 4068(2) & 1036(2) & 4967(3) & 39(2) \\ C(65) & 4767(2) & 1335(2) & 5702(3) & 33(1) \\ C(66) & 4088(2) & 1038(2) & 7763(3) & 33(1) \\ C(70) & 3806(2) & 3748(2) & 7232(4) & 34(2) \\ C(71) & 3849(2) & 3798(2) & 8737(3) & 33(1) \\ C(76) & 416(2) & 2479(2) & 7763(3) & 33(1) \\ C(76) & 4459(2) & 2928(2) & 7763(3) & 33(1) \\ C(76) & 4459(2) & 2928(2) & 9379(3) & 442(2) \\ C(71) & 3849(2) & 3798(2) & 8737(3) & 34(2) \\ C(75) & 4459(2) & 2928(2) & 9379(3) & 34(2) \\ C(75) & 4459(2) & 2928(2) & 9379(3) & 34(2) \\ C(75) & 4459(2) & 2928(2) & 9379(3) & 34(2) \\ C(75) & 4459(2) & 2928(2) & 9379(3) & 34(2) \\ C(75) & 4459(2) & 2928(2) & 9379(3) & 34(2) \\ C(75) & 4459(2) & 2928(2) & 9379(3) & 34(2) \\ C(75) & 4459(2) & 2928(2) & 7689(3) & 30(1) \\ C(78) & 3003(2) & -65(2) & 7689(3) & 30(1) \\ C(79) & 3325(2) & -141(2) & 6978(3) & 31(1) \\ C(78) & 3003(2) & -65(2) & 7689(3) & 30(1) \\ C(79) & 3325(2) & -141(2) & 6978(3) & 31(2) \\ C(86) & 2825(2) & 2536(2) & 8272(4) & 41(2) \\ C(86) & 2825(2) & 2536(2) & 8272(4) & 41(2) \\ C(86) & 2825(2) & 2536(2) & 8272(4) & 41(2) \\ C(86) & 2825(2) & 2536(2) & 8272(4) & 41(2) \\ C(86) & 2825(2) & 2536(2) & 8272(4) & 41(2) \\ C(86) & 2825(2)$	C(43)	623(2)	1507(2)	6936(4)	55(2)
$\begin{array}{cccc} C(45) & 9942) & 718(2) & 6547(3) & 57(2) \\ C(46) & 1536(2) & 894(2) & 6706(3) & 43(2) \\ C(47) & 2497(2) & 2024(2) & 5920(4) & 43(2) \\ C(48) & 2715(2) & 1864(2) & 5132(4) & 70(2) \\ C(49) & 2649(3) & 2139(3) & 4394(4) & 111(4) \\ C(50) & 2367(3) & 2581(3) & 4436(5) & 108(4) \\ C(51) & 2135(3) & 2757(2) & 5200(5) & 97(3) \\ C(52) & 2207(2) & 2467(2) & 5937(4) & 661(2) \\ C(53) & 5308(2) & 2455(2) & 6178(3) & 30(1) \\ C(54) & 5899(2) & 2659(2) & 6233(3) & 35(2) \\ C(55) & 6029(2) & 3003(2) & 5456(3) & 43(2) \\ C(56) & 5607(2) & 3404(2) & 5435(3) & 43(2) \\ C(56) & 5607(2) & 3404(2) & 5435(3) & 43(2) \\ C(56) & 5607(2) & 3404(2) & 5435(3) & 43(2) \\ C(57) & 5020(2) & 3200(2) & 5332(3) & 35(1) \\ C(58) & 4875(2) & 2862(2) & 6079(3) & 27(1) \\ C(59) & 5435(2) & 1630(2) & 6849(3) & 34(1) \\ C(60) & 5317(2) & 1343(2) & 6048(3) & 28(1) \\ C(61) & 5738(2) & 1083(2) & 5657(3) & 36(2) \\ C(62) & 5611(3) & 782(2) & 4965(4) & 49(2) \\ C(63) & 5090(3) & 749(2) & 4611(3) & 44(2) \\ C(64) & 4668(2) & 1036(2) & 4967(3) & 39(2) \\ C(65) & 4767(2) & 1335(2) & 5702(3) & 28(1) \\ C(66) & 4068(2) & 1028(2) & 4604(3) & 56(2) \\ C(67) & 3525(2) & 3236(2) & 7763(3) & 33(1) \\ C(70) & 3806(2) & 3748(2) & 7232(4) & 34(2) \\ C(71) & 3849(2) & 3959(2) & 8027(4) & 33(1) \\ C(72) & 4048(2) & 3708(2) & 8735(3) & 35(2) \\ C(77) & 2962(2) & 418(2) & 8048(3) & 31(1) \\ C(74) & 4119(2) & 2967(2) & 7849(3) & 34(2) \\ C(75) & 4459(2) & 2928(2) & 9379(3) & 44(2) \\ C(75) & 4459(2) & 2928(2) & 9379(3) & 34(2) \\ C(75) & 4459(2) & 2928(2) & 9379(3) & 34(2) \\ C(75) & 4459(2) & 2928(2) & 9379(3) & 34(2) \\ C(75) & 4459(2) & 2928(2) & 9379(3) & 34(2) \\ C(75) & 4459(2) & 2928(2) & 9379(3) & 34(2) \\ C(76) & 3136(2) & 258(2) & 6628(3) & 36(2) \\ C(81) & 3235(2) & -141(2) & 6978(3) & 36(2) \\ C(84) & 2881(2) & 3119(2) & 9444(4) & 50(2) \\ C(85) & 2730(2) & 2536(2) & 8677(4) & 31(2) \\ C(86) & 2825(2) & 2536(2) & 8077(4) & 3160 \\ C(85) & 2730(2) & 3006(2) & 8077(4) & 3160 \\ C(85) & 2730(2) & 3006(2) & 8077(4) & 3160 \\ C(85) & 2253(2) & 25356(2) & 8272(4) & 41(2) \\ C(3B) & 4563(4) & 2$	C(44)	543(2)	1028(2)	6675(4)	65(2)
C(46)1536(2)894(2)6706(3)44(2)C(47)2497(2)2024(2)5920(4)43(2)C(48)2715(2)1864(2)5152(4)70(2)C(49)2649(3)2139(3)4394(4)111(4)C(50)2367(3)2581(3)4436(5)108(4)C(51)2135(3)2757(2)5200(5)97(3)C(52)2207(2)2467(2)5937(4)63(2)C(53)5308(2)2452(2)6178(3)30(1)C(54)5899(2)2659(2)6233(3)35(2)C(55)6602(2)3003(2)5435(3)44(2)C(56)5607(2)3404(2)5435(3)44(2)C(57)5020(2)3200(2)5332(3)35(1)C(58)4875(2)1630(2)6849(3)34(1)C(60)5317(2)1343(2)6048(3)28(1)C(61)5738(2)1083(2)5657(3)36(2)C(62)5611(3)782(2)4963(4)49(2)C(63)5090(3)749(2)4611(3)44(2)C(64)4668(2)1036(2)4767(3)38(1)C(66)3873(2)3015(2)256(3)35(2)C(67)5352(2)2326(2)7763(3)33(1)C(66)3806(2)3748(2)7232(4)34(2)C(71)3806(2)3748(2)7232(4)34(2)C(71)3806(2)3748(2)7232(4)34(2)C(75)4459(2)2958(2)8661(3)31(1) <td>C(45)</td> <td>994(2)</td> <td>718(2)</td> <td>6547(3)</td> <td>57(2)</td>	C(45)	994(2)	718(2)	6547(3)	57(2)
C(47)2497(2)2224(2)5920(4)43(2)C(48)2715(2)1864(2)5152(4)70(2)C(49)2649(3)2139(3)4394(4)111(4)C(50)2367(3)2581(3)4436(5)108(4)C(51)2135(3)2757(2)5200(5)97(3)C(52)2207(2)2467(2)937(4)63(2)C(54)5899(2)2659(2)6233(3)35(2)C(55)6029(2)3003(2)5456(3)44(2)C(56)5607(2)3404(2)5435(3)40(2)C(57)5020(2)3200(2)5332(3)35(1)C(58)4875(2)2862(2)6079(3)27(1)C(59)5435(2)1630(2)6849(3)28(1)C(60)5317(2)1343(2)6048(3)28(1)C(61)5738(2)1083(2)5657(3)36(2)C(62)5611(3)782(2)4963(4)44(2)C(64)4668(2)1036(2)4767(3)39(2)C(65)4767(2)1335(2)5702(3)28(1)C(66)4068(2)1028(2)4604(3)56(2)C(67)5352(2)2326(2)7763(3)33(1)C(70)3806(2)3748(2)7232(4)34(2)C(71)3849(2)3599(2)805(3)34(2)C(71)3806(2)3748(2)7232(4)34(2)C(73)4196(2)3213(2)8661(3)31(1)C(74)419(2)2967(2)7849(3)34(2) <td>C(46)</td> <td>1536(2)</td> <td>894(2)</td> <td>6706(3)</td> <td>43(2)</td>	C(46)	1536(2)	894(2)	6706(3)	43(2)
$\begin{array}{c cccc} (48) & 2715(2) & 1864(2) & 5152(4) & 70(2) \\ (C49) & 2649(3) & 2139(3) & 4394(4) & 111(4) \\ (C50) & 2367(3) & 2581(3) & 4436(5) & 108(4) \\ (C51) & 2135(3) & 2757(2) & 520(6) & 97(3) \\ (C52) & 2207(2) & 2467(2) & 5937(4) & 63(2) \\ (C53) & 5308(2) & 2452(2) & 6178(3) & 30(1) \\ (C(4) & 5899(2) & 2659(2) & 6233(3) & 35(2) \\ (C(5) & 6029(2) & 3003(2) & 5456(3) & 432(2) \\ (C(5) & 6029(2) & 3003(2) & 5456(3) & 432(2) \\ (C(5) & 5607(2) & 3404(2) & 5435(3) & 40(2) \\ (C(5) & 5607(2) & 3404(2) & 5435(3) & 40(2) \\ (C(5) & 5607(2) & 3404(2) & 5435(3) & 40(2) \\ (C(5) & 5607(2) & 3200(2) & 5332(3) & 35(1) \\ (C(58) & 4875(2) & 2862(2) & 6079(3) & 27(1) \\ (C(58) & 4875(2) & 1630(2) & 6849(3) & 34(1) \\ (C(60) & 5317(2) & 1343(2) & 6048(3) & 28(1) \\ (C(61) & 5738(2) & 1083(2) & 5657(3) & 36(2) \\ (C(62) & 5611(3) & 782(2) & 4965(4) & 49(2) \\ (C(53) & 5090(3) & 749(2) & 4611(3) & 44(2) \\ (C(64) & 4668(2) & 1036(2) & 4967(3) & 39(2) \\ (C(65) & 4767(2) & 1335(2) & 5702(3) & 28(1) \\ (C(66) & 4068(2) & 1028(2) & 4604(3) & 56(2) \\ (C(7) & 5352(2) & 2236(2) & 77163(3) & 33(1) \\ (C(69) & 3927(2) & 3260(2) & 7117(3) & 31(1) \\ (C70) & 3806(2) & 3748(2) & 7232(4) & 34(2) \\ (C(71) & 3849(2) & 3959(2) & 8027(4) & 33(1) \\ (C(71) & 3849(2) & 3959(2) & 8027(4) & 33(1) \\ (C(73) & 4196(2) & 3213(2) & 8661(3) & 31(1) \\ (C(74) & 4119(2) & 2967(2) & 7849(3) & 34(2) \\ (C(75) & 4459(2) & 2228(2) & 9379(3) & 41(2) \\ (C(75) & 4459(2) & 2228(2) & 9379(3) & 34(2) \\ (C(75) & 4459(2) & 2238(2) & 628(3) & 38(2) \\ (C(75) & 4459(2) & 2249(2) & 5136(3) & 35(2) \\ (C(77) & 2962(2) & 418(2) & 8048(3) & 31(1) \\ (C(78) & 3003(2) & -65(2) & 7689(3) & 30(1) \\ (C(78) & 3003(2) & -65(2) & 7689(3) & 30(1) \\ (C(78) & 3003(2) & -65(2) & 738(3) & 34(2) \\ (C(80) & 3601(2) & 258(2) & 628(3) & 38(2) \\ (R(8) & 3535(2) & 734(2) & 7002(3) & 30(1) \\ (C(8) & 3535(2) & 734(2) & 7002(3) & 30(1) \\ (C(8) & 3535(2) & 734(2) & 7002(3) & 30(1) \\ (C(8) & 2851(2) & 3119(2) & 9444(4) & 50(2) \\ (C(8) & 2851(2) & 3119(2) & 9444(4) & 50(2) \\ (C(85) & 2730(2) & 3006(2) & 8607(4) & 51(2$	C(47)	2497(2)	2024(2)	5920(4)	43(2)
$\begin{array}{c} C(49) & 2649(3) & 2139(3) & 4394(4) & 111(4) \\ C(50) & 2367(3) & 2581(3) & 4436(5) & 108(4) \\ C(51) & 2135(3) & 2757(2) & 5200(5) & 97(3) \\ C(52) & 2207(2) & 2467(2) & 5937(4) & 63(2) \\ C(53) & 5308(2) & 2452(2) & 6178(3) & 30(1) \\ C(54) & 5899(2) & 2659(2) & 6233(3) & 35(2) \\ C(55) & 6029(2) & 3003(2) & 5456(3) & 43(2) \\ C(56) & 5607(2) & 3404(2) & 5435(3) & 40(2) \\ C(57) & 5020(2) & 3200(2) & 5332(3) & 35(1) \\ C(58) & 4875(2) & 2862(2) & 6079(3) & 27(1) \\ C(59) & 5435(2) & 1630(2) & 6849(3) & 28(1) \\ C(60) & 5317(2) & 1343(2) & 6048(3) & 28(1) \\ C(61) & 5738(2) & 1083(2) & 5657(3) & 36(2) \\ C(62) & 5611(3) & 782(2) & 4461(3) & 44(2) \\ C(64) & 4668(2) & 1036(2) & 4967(3) & 39(2) \\ C(65) & 4767(2) & 1335(2) & 5702(3) & 28(1) \\ C(66) & 4068(2) & 1028(2) & 4604(3) & 562 \\ C(67) & 352(2) & 2236(2) & 7763(3) & 33(1) \\ C(68) & 3873(2) & 3015(2) & 6256(3) & 35(2) \\ C(69) & 3927(2) & 3260(2) & 77117(3) & 31(1) \\ C(70) & 3806(2) & 3748(2) & 7232(4) & 34(2) \\ C(73) & 4196(2) & 3748(2) & 7232(4) & 34(2) \\ C(75) & 4459(2) & 2928(2) & 9379(3) & 41(2) \\ C(75) & 4459(2) & 2928(2) & 9379(3) & 41(2) \\ C(75) & 4459(2) & 2928(2) & 9379(3) & 34(2) \\ C(75) & 4459(2) & 2928(2) & 9379(3) & 34(2) \\ C(75) & 4459(2) & 2928(2) & 9379(3) & 34(2) \\ C(75) & 4459(2) & 2928(2) & 9379(3) & 34(2) \\ C(75) & 4459(2) & 2928(2) & 9379(3) & 34(2) \\ C(75) & 4459(2) & 2928(2) & 9379(3) & 34(2) \\ C(75) & 4459(2) & 2928(2) & 9379(3) & 34(2) \\ C(75) & 4459(2) & 2928(2) & 9379(3) & 34(2) \\ C(75) & 4459(2) & 2928(2) & 9379(3) & 34(2) \\ C(75) & 4459(2) & 2928(2) & 9379(3) & 34(2) \\ C(75) & 4459(2) & 2928(2) & 9379(3) & 34(2) \\ C(75) & 4459(2) & 2928(2) & 9379(3) & 34(2) \\ C(75) & 4459(2) & 2928(2) & 9379(3) & 34(2) \\ C(75) & 4459(2) & 2928(2) & 9379(3) & 34(2) \\ C(75) & 4459(2) & 2928(2) & 9379(3) & 34(2) \\ C(75) & 4459(2) & 2928(2) & 9379(3) & 34(2) \\ C(75) & 4459(2) & 2928(2) & 9379(3) & 30(1) \\ C(77) & 3325(2) & -141(2) & 6979(3) & 37(2) \\ C(80) & 300(1) & 258(2) & 6628(3) & 38(2) \\ C(81) & 3535(2) & 7730(2) & 3006(2) & 8607(4) & 51(2) \\ C(86) & $	C(48)	2715(2)	1864(2)	5152(4)	70(2)
$\begin{array}{ccccc} (50) & 250(3) & 258(3) & 433(5) & 108(4) \\ (C(51) & 2135(3) & 2757(2) & 5200(5) & 97(3) \\ (C(52) & 2207(2) & 2467(2) & 937(4) & 63(2) \\ (C(54) & 5899(2) & 2659(2) & 6233(3) & 35(2) \\ (C(54) & 5899(2) & 2659(2) & 6233(3) & 35(2) \\ (C(55) & 6029(2) & 3003(2) & 5456(3) & 43(2) \\ (C(56) & 5607(2) & 3404(2) & 5435(3) & 40(2) \\ (C(57) & 5020(2) & 3200(2) & 5332(3) & 35(1) \\ (C(58) & 4875(2) & 2862(2) & 6079(3) & 27(1) \\ (C(59) & 5435(2) & 1630(2) & 6849(3) & 34(1) \\ (C(60) & 5317(2) & 1343(2) & 6048(3) & 28(1) \\ (C(61) & 5738(2) & 1083(2) & 5657(3) & 36(2) \\ (C(62) & 5611(3) & 782(2) & 4963(4) & 49(2) \\ (C(63) & 5090(3) & 749(2) & 4611(3) & 44(2) \\ (C(64) & 4668(2) & 1036(2) & 4967(3) & 39(2) \\ (C(65) & 4767(2) & 1335(2) & 5702(3) & 28(1) \\ (C(66) & 4068(2) & 1028(2) & 4004(3) & 56(2) \\ (C(67) & 5352(2) & 2326(2) & 7763(3) & 33(1) \\ (C(70) & 3806(2) & 3748(2) & 7232(4) & 34(2) \\ (C(71) & 3849(2) & 3959(2) & 8027(4) & 33(1) \\ (C(72) & 4048(2) & 3708(2) & 8735(3) & 34(2) \\ (C(73) & 4196(2) & 3213(2) & 8661(3) & 31(1) \\ (C(74) & 4119(2) & 2967(2) & 7849(3) & 34(2) \\ (C(75) & 4459(2) & 2928(2) & 9379(3) & 41(2) \\ (C(76) & 4162(2) & 2479(2) & 5136(3) & 35(2) \\ (C(77) & 2962(2) & 418(2) & 8048(3) & 31(1) \\ (C(78) & 3003(2) & -65(2) & 7689(3) & 30(1) \\ (C(79) & 3325(2) & -141(2) & 6979(3) & 37(2) \\ (C(76) & 4162(2) & 2479(2) & 5136(3) & 31(2) \\ (C(75) & 4459(2) & 22928(2) & 9379(3) & 41(2) \\ (C(76) & 4162(2) & 2479(2) & 5136(3) & 35(2) \\ (C(77) & 2962(2) & 418(2) & 8048(3) & 31(1) \\ (C(78) & 3003(2) & -65(2) & 7689(3) & 30(1) \\ (C(78) & 3003(2) & -65(2) & 7689(3) & 30(1) \\ (C(78) & 3003(2) & -65(2) & 7689(3) & 30(1) \\ (C(78) & 3003(2) & -65(2) & 7689(3) & 30(1) \\ (C(78) & 3003(2) & -65(2) & 7689(3) & 30(1) \\ (C(78) & 3003(2) & -65(2) & 7689(3) & 30(1) \\ (C(78) & 3003(2) & -65(2) & 7689(3) & 30(1) \\ (C(78) & 3003(2) & -65(2) & 7689(3) & 30(1) \\ (C(78) & 3003(2) & -65(2) & 7689(3) & 30(1) \\ (C(78) & 3003(2) & -65(2) & 734(2) & 702(3) & 30(1) \\ (C(79) & 3256(2) & 22536(2) & 8272(4) & 41(2) \\ (C(86) & 2825(2) & 2536($	C(49)	2(19(2)) 2649(3)	2139(3)	4394(4)	111(4)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	C(50)	2367(3)	2581(3)	4436(5)	108(4)
$\begin{array}{ccccc} (52) & 2107(2) & 2467(2) & 5937(4) & 65(2) \\ C(53) & 5308(2) & 2457(2) & 6178(3) & 30(1) \\ C(54) & 5899(2) & 2659(2) & 6233(3) & 35(2) \\ C(55) & 6029(2) & 3003(2) & 5436(3) & 43(2) \\ C(56) & 5607(2) & 3404(2) & 5435(3) & 40(2) \\ C(57) & 5020(2) & 3200(2) & 5332(3) & 35(1) \\ C(58) & 4875(2) & 2862(2) & 6079(3) & 27(1) \\ C(59) & 5435(2) & 1630(2) & 6849(3) & 34(1) \\ C(60) & 5137(2) & 1343(2) & 6048(3) & 28(1) \\ C(61) & 5738(2) & 1083(2) & 5657(3) & 36(2) \\ C(62) & 5611(3) & 782(2) & 4963(4) & 49(2) \\ C(63) & 5090(3) & 749(2) & 4611(3) & 44(2) \\ C(64) & 4668(2) & 1036(2) & 4967(3) & 39(2) \\ C(65) & 4767(2) & 1335(2) & 5702(3) & 28(1) \\ C(66) & 4068(2) & 1028(2) & 4604(3) & 56(2) \\ C(67) & 5352(2) & 2326(2) & 7763(3) & 33(1) \\ C(68) & 3873(2) & 3015(2) & 6256(3) & 35(2) \\ C(69) & 3927(2) & 3260(2) & 7117(3) & 31(1) \\ C(70) & 3806(2) & 3748(2) & 7232(4) & 34(2) \\ C(71) & 3849(2) & 3959(2) & 8027(4) & 33(1) \\ C(73) & 4196(2) & 3213(2) & 8661(3) & 31(1) \\ C(74) & 4119(2) & 2967(2) & 7849(3) & 34(2) \\ C(75) & 4459(2) & 2928(2) & 9379(3) & 41(2) \\ C(75) & 4459(2) & 2928(2) & 9379(3) & 41(2) \\ C(75) & 4459(2) & 2928(2) & 9379(3) & 34(2) \\ C(75) & 4459(2) & 2928(2) & 9379(3) & 34(2) \\ C(75) & 4459(2) & 2928(2) & 9379(3) & 34(2) \\ C(75) & 4459(2) & 2928(2) & 9379(3) & 34(2) \\ C(75) & 4459(2) & 2928(2) & 9379(3) & 34(2) \\ C(75) & 4459(2) & 2928(2) & 9379(3) & 34(2) \\ C(75) & 4459(2) & 2928(2) & 9379(3) & 34(2) \\ C(75) & 4459(2) & 2928(2) & 9379(3) & 34(2) \\ C(75) & 4459(2) & 2928(2) & 9379(3) & 34(2) \\ C(75) & 4459(2) & 2928(2) & 9379(3) & 34(2) \\ C(75) & 3003(2) & -65(2) & 7689(3) & 30(1) \\ C(78) & 3003(2) & -65(2) & 7689(3) & 30(1) \\ C(78) & 3003(2) & -65(2) & 7689(3) & 30(1) \\ C(78) & 3033(2) & -65(2) & 7689(3) & 30(1) \\ C(80) & 3535(2) & 734(2) & 7002(3) & 30(1) \\ C(81) & 3535(2) & 734(2) & 7002(3) & 30(1) \\ C(82) & 2330(2) & 2294(2) & 9540(4) & 39(2) \\ C(83) & 3142(2) & 2747(2) & 9928(3) & 4322 \\ C(84) & 2881(2) & 3119(2) & 8046(4) & 4299(6) \\ C(85) & 2730(2) & 8036(2) & 807(4) & 51(2) \\ C(86) & 2825(2) & 25$	C(51)	2135(3)	2331(3) 2757(2)	5200(5)	97(3)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	C(52)	2100(5) 2207(2)	2757(2) 2467(2)	5037(A)	63(2)
$\begin{array}{ccccc} (54) & 5369(2) & 2452(2) & 6176(3) & 301(1) \\ (54) & 5899(2) & 2659(2) & 6233(3) & 35(2) \\ (55) & 6029(2) & 3003(2) & 5456(3) & 43(2) \\ (56) & 5607(2) & 3404(2) & 5435(3) & 40(2) \\ (57) & 5020(2) & 3200(2) & 5332(3) & 35(1) \\ (58) & 4875(2) & 2862(2) & 6079(3) & 27(1) \\ (59) & 5435(2) & 1630(2) & 6849(3) & 34(1) \\ (60) & 5317(2) & 1343(2) & 6048(3) & 28(1) \\ (61) & 5738(2) & 1083(2) & 5657(3) & 36(2) \\ (62) & 5611(3) & 782(2) & 4963(4) & 49(2) \\ (63) & 5090(3) & 749(2) & 4611(3) & 444(2) \\ (64) & 4668(2) & 1036(2) & 4967(3) & 39(2) \\ (65) & 4767(2) & 1335(2) & 5702(3) & 28(1) \\ (66) & 4068(2) & 1028(2) & 4604(3) & 566(2) \\ (67) & 5352(2) & 2326(2) & 7763(3) & 33(1) \\ (768) & 3873(2) & 3015(2) & 6256(3) & 35(2) \\ (77) & 3806(2) & 3748(2) & 7232(4) & 34(2) \\ (71) & 3849(2) & 3959(2) & 8027(4) & 33(1) \\ (74) & 4196(2) & 3213(2) & 8661(3) & 31(1) \\ (74) & 4196(2) & 3213(2) & 8661(3) & 31(1) \\ (77) & 2962(2) & 418(2) & 8048(3) & 31(1) \\ (77) & 2962(2) & 418(2) & 8048(3) & 31(1) \\ (77) & 2962(2) & 418(2) & 8048(3) & 31(1) \\ (77) & 2962(2) & 418(2) & 8048(3) & 31(1) \\ (77) & 2962(2) & 418(2) & 8048(3) & 31(1) \\ (77) & 2962(2) & 418(2) & 8048(3) & 31(1) \\ (78) & 3003(2) & -65(2) & 7689(3) & 30(1) \\ (79) & 3325(2) & -141(2) & 6979(3) & 37(2) \\ (80) & 3601(2) & 258(2) & 6628(3) & 38(2) \\ (81) & 3535(2) & 734(2) & 7002(3) & 30(1) \\ (68) & 3601(2) & 258(2) & 6628(3) & 38(2) \\ (81) & 3535(2) & 734(2) & 7002(3) & 30(1) \\ (68) & 2831(2) & 213(2) & 8607(4) & 51(2) \\ (83) & 3142(2) & 2747(2) & 9228(3) & 438(2) \\ (84) & 2881(2) & 3119(2) & 9444(4) & 50(2) \\ (86) & 2825(2) & 2536(2) & 827(4) & 41(2) \\ (03B) & 4563(4) & 2212(3) & 222(5) & 270(4) \\ (1B) & 5614(4) & 1914(3) & 3356(6) & 216(5) \\ (2B) & 5177(4) & 20444(4) & 2499(6) & 184(5) \\ (84) & 5614(4) & 914(3) & 3356(6) & 216(5) \\ (2B) & 5177(4) & 2044(4) & 2499(6) & 184(5) \\ (84) & 2881(2) & 517(4) & 2044(4) & 2499(6) & 184(5) \\ (84) & 2881(2) & 517(4) & 2044(4) & 2499(6) & 184(5) \\ (84) & 2881(2) & 517(4) & 2044(4) & 2499(6) & 184(5) \\ (84) & 2881(2) & 517(4) & 2044$	C(52)	5308(2)	2407(2) 2452(2)	5757(4) 6178(3)	30(1)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	C(53)	5800(2)	2432(2) 2659(2)	6233(3)	30(1) 35(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(54)	5899(2) 6020(2)	2039(2)	5456(3)	33(2)
$\begin{array}{ccccc} 3404(2) & 3404(2) & 3433(3) & 40(2) \\ C(57) & 5020(2) & 3200(2) & 5332(3) & 35(1) \\ C(58) & 4875(2) & 2862(2) & 6079(3) & 27(1) \\ C(59) & 5435(2) & 1630(2) & 6849(3) & 34(1) \\ C(60) & 5317(2) & 1343(2) & 6048(3) & 28(1) \\ C(61) & 5738(2) & 1083(2) & 5657(3) & 36(2) \\ C(62) & 5611(3) & 782(2) & 4963(4) & 49(2) \\ C(63) & 5090(3) & 749(2) & 4611(3) & 444(2) \\ C(64) & 4668(2) & 1036(2) & 4967(3) & 39(2) \\ C(65) & 4767(2) & 1335(2) & 5702(3) & 28(1) \\ C(66) & 4068(2) & 1028(2) & 4604(3) & 56(2) \\ C(67) & 5352(2) & 2326(2) & 7763(3) & 33(1) \\ C(68) & 3873(2) & 3015(2) & 6256(3) & 35(2) \\ C(69) & 3927(2) & 3260(2) & 7117(3) & 31(1) \\ C(70) & 3806(2) & 3748(2) & 7232(4) & 34(2) \\ C(71) & 3849(2) & 3959(2) & 8027(4) & 33(1) \\ C(72) & 4048(2) & 3708(2) & 8735(3) & 34(2) \\ C(73) & 4196(2) & 3213(2) & 8661(3) & 31(1) \\ C(74) & 4119(2) & 2967(2) & 7849(3) & 34(2) \\ C(75) & 4459(2) & 2928(2) & 9379(3) & 41(2) \\ C(76) & 4162(2) & 2479(2) & 5136(3) & 35(2) \\ C(77) & 2962(2) & 418(2) & 8048(3) & 31(1) \\ C(78) & 3003(2) & -65(2) & 7689(3) & 30(1) \\ C(78) & 3003(2) & -65(2) & 7689(3) & 30(1) \\ C(78) & 3003(2) & -65(2) & 7689(3) & 30(1) \\ C(78) & 3003(2) & -65(2) & 7689(3) & 30(1) \\ C(78) & 3003(2) & -258(2) & 6628(3) & 38(2) \\ C(77) & 2962(2) & 418(2) & 8048(3) & 31(1) \\ C(78) & 3003(2) & -25(2) & 7689(3) & 30(1) \\ C(78) & 3003(2) & -25(2) & 7689(3) & 30(1) \\ C(78) & 3003(2) & -258(2) & 6628(3) & 38(2) \\ C(84) & 281(2) & 3119(2) & 9444(4) & 50(2) \\ C(85) & 2730(2) & 3006(2) & 8607(4) & 51(2) \\ C(86) & 2825(2) & 2536(2) & 8272(4) & 41(2) \\ C(84) & 281(2) & 3119(2) & 9444(4) & 50(2) \\ C(85) & 2730(2) & 3006(2) & 8607(4) & 51(2) \\ C(86) & 2825(2) & 2536(2) & 8272(4) & 41(2) \\ O(38) & 4563(4) & 2212(3) & 2922(5) & 270(4) \\ C(1B) & 5614(4) & 1914(3) & 3352(6) & 216(5) \\ C(2B) & 5177(4) & 2044(4) & 2499(6) & 184(5) \\ \end{array}$	C(55)	5607(2)	3003(2)	5430(3)	43(2)
$\begin{array}{ccccccc} C(5) & 3200(2) & 3200(2) & 532(3) & 35(1) \\ C(58) & 4875(2) & 2862(2) & 6079(3) & 27(1) \\ C(59) & 5435(2) & 1630(2) & 6849(3) & 34(1) \\ C(60) & 5317(2) & 1343(2) & 6048(3) & 28(1) \\ C(61) & 5738(2) & 1083(2) & 5657(3) & 36(2) \\ C(62) & 5611(3) & 782(2) & 4963(4) & 49(2) \\ C(63) & 5090(3) & 749(2) & 4611(3) & 44(2) \\ C(64) & 4668(2) & 1036(2) & 4967(3) & 39(2) \\ C(65) & 4767(2) & 1335(2) & 5702(3) & 28(1) \\ C(66) & 4068(2) & 1028(2) & 4604(3) & 56(2) \\ C(67) & 5352(2) & 2326(2) & 7763(3) & 33(1) \\ C(68) & 3873(2) & 3015(2) & 6256(3) & 35(2) \\ C(69) & 3927(2) & 3260(2) & 7117(3) & 31(1) \\ C(70) & 3806(2) & 3748(2) & 7232(4) & 34(2) \\ C(71) & 3849(2) & 3959(2) & 8027(4) & 33(1) \\ C(72) & 4048(2) & 3708(2) & 8735(3) & 34(2) \\ C(73) & 4196(2) & 3213(2) & 8661(3) & 31(1) \\ C(74) & 4119(2) & 2967(2) & 7849(3) & 34(2) \\ C(75) & 4459(2) & 2928(2) & 9379(3) & 41(2) \\ C(76) & 4162(2) & 2479(2) & 5136(3) & 35(2) \\ C(77) & 2962(2) & 418(2) & 8048(3) & 31(1) \\ C(78) & 3003(2) & -65(2) & 7689(3) & 30(1) \\ C(79) & 3325(2) & -141(2) & 6979(3) & 37(2) \\ C(80) & 3601(2) & 258(2) & 6628(3) & 38(2) \\ C(73) & 1142(2) & 2747(2) & 9928(3) & 30(1) \\ C(79) & 3325(2) & -141(2) & 6979(3) & 37(2) \\ C(80) & 3601(2) & 258(2) & 6628(3) & 38(2) \\ C(81) & 3535(2) & 734(2) & 7002(3) & 30(1) \\ C(78) & 3003(2) & -65(2) & 7689(3) & 30(1) \\ C(78) & 3003(2) & -65(2) & 7689(3) & 30(1) \\ C(78) & 3003(2) & -65(2) & 7689(3) & 30(1) \\ C(78) & 3003(2) & -65(2) & 7689(3) & 30(1) \\ C(78) & 3003(2) & -65(2) & 7689(3) & 30(1) \\ C(78) & 3003(2) & -254(2) & 928(3) & 38(2) \\ C(81) & 3535(2) & 734(2) & 7002(3) & 30(1) \\ C(82) & 3230(2) & 2294(2) & 9540(4) & 39(2) \\ C(83) & 3142(2) & 2747(2) & 9928(3) & 43(2) \\ C(84) & 2881(2) & 3119(2) & 9444(4) & 50(2) \\ C(85) & 2730(2) & 3006(2) & 8607(4) & 51(2) \\ C(86) & 2825(2) & 2536(2) & 8272(4) & 41(2) \\ O(38) & 4563(4) & 2212(3) & 2922(5) & 270(4) \\ C(18) & 5614(4) & 1914(3) & 3356(6) & 216(5) \\ C(28) & 5177(4) & 2044(4) & 2499(6) & 184(5) \\ \end{array}$	C(56)	5607(2)	3404(2)	5455(5)	40(2)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(57)	5020(2)	3200(2)	5552(5) (070(2)	35(1)
$\begin{array}{ccccc} (59) & 5435(2) & 1630(2) & 6848(3) & 34(1) \\ C(60) & 5317(2) & 1343(2) & 6048(3) & 28(1) \\ C(61) & 5738(2) & 1083(2) & 5657(3) & 36(2) \\ C(62) & 5611(3) & 782(2) & 4967(3) & 49(2) \\ C(63) & 5090(3) & 749(2) & 4611(3) & 44(2) \\ C(64) & 4668(2) & 1036(2) & 4967(3) & 39(2) \\ C(65) & 4767(2) & 1335(2) & 5702(3) & 28(1) \\ C(66) & 4068(2) & 1028(2) & 4604(3) & 56(2) \\ C(67) & 5352(2) & 2326(2) & 7763(3) & 33(1) \\ C(68) & 3873(2) & 3015(2) & 6256(3) & 35(2) \\ C(69) & 3927(2) & 3260(2) & 7117(3) & 31(1) \\ C(70) & 3806(2) & 3748(2) & 7232(4) & 34(2) \\ C(71) & 3849(2) & 3959(2) & 8027(4) & 33(1) \\ C(72) & 4048(2) & 3708(2) & 8735(3) & 34(2) \\ C(73) & 4196(2) & 3213(2) & 8661(3) & 31(1) \\ C(74) & 4119(2) & 2967(2) & 7849(3) & 34(2) \\ C(75) & 4459(2) & 2928(2) & 9379(3) & 41(2) \\ C(76) & 4162(2) & 2479(2) & 5136(3) & 35(2) \\ C(77) & 2962(2) & 418(2) & 8048(3) & 31(1) \\ C(78) & 3003(2) & -65(2) & 7689(3) & 30(1) \\ C(79) & 3325(2) & -141(2) & 6979(3) & 37(2) \\ C(80) & 3601(2) & 258(2) & 6628(3) & 38(2) \\ C(71) & 3535(2) & 734(2) & 7002(3) & 30(1) \\ C(79) & 3325(2) & -141(2) & 6979(3) & 37(2) \\ C(80) & 3601(2) & 258(2) & 6628(3) & 38(2) \\ C(81) & 3535(2) & 734(2) & 7002(3) & 30(1) \\ C(82) & 3230(2) & 2294(2) & 9540(4) & 39(2) \\ C(83) & 3142(2) & 2747(2) & 9928(3) & 43(2) \\ C(84) & 2881(2) & 3119(2) & 9444(4) & 50(2) \\ C(85) & 2730(2) & 3006(2) & 8607(4) & 51(2) \\ C(86) & 2825(2) & 2536(2) & 8272(4) & 41(2) \\ O(3B) & 4563(4) & 2212(3) & 2922(5) & 270(4) \\ C(1B) & 5614(4) & 1914(3) & 3356(6) & 216(5) \\ C(2B) & 517(4) & 2044(4) & 2499(6) & 184(5) \\ \end{array}$	C(58)	48/5(2)	2862(2)	6079(3)	2/(1)
$\begin{array}{ccccc} C(60) & 531/2 & 1343(2) & 6048(3) & 28(1) \\ C(61) & 5738(2) & 1083(2) & 5657(3) & 36(2) \\ C(62) & 5611(3) & 782(2) & 4963(4) & 49(2) \\ C(63) & 5090(3) & 749(2) & 4611(3) & 44(2) \\ C(64) & 4668(2) & 1036(2) & 4967(3) & 39(2) \\ C(65) & 4767(2) & 1335(2) & 5702(3) & 28(1) \\ C(66) & 4068(2) & 1028(2) & 4604(3) & 56(2) \\ C(67) & 5352(2) & 2326(2) & 7763(3) & 33(1) \\ C(68) & 3873(2) & 3015(2) & 6256(3) & 35(2) \\ C(69) & 3927(2) & 3260(2) & 7117(3) & 31(1) \\ C(70) & 3806(2) & 3748(2) & 7232(4) & 34(2) \\ C(71) & 3849(2) & 3959(2) & 8027(4) & 33(1) \\ C(72) & 4048(2) & 3708(2) & 8735(3) & 34(2) \\ C(73) & 4196(2) & 3213(2) & 8661(3) & 31(1) \\ C(74) & 4119(2) & 2967(2) & 7849(3) & 34(2) \\ C(75) & 4459(2) & 2928(2) & 9379(3) & 41(2) \\ C(76) & 4162(2) & 2479(2) & 5136(3) & 35(2) \\ C(77) & 2962(2) & 418(2) & 8048(3) & 31(1) \\ C(78) & 3003(2) & -65(2) & 7689(3) & 30(1) \\ C(79) & 3325(2) & -141(2) & 6979(3) & 37(2) \\ C(80) & 3601(2) & 258(2) & 6628(3) & 38(2) \\ C(73) & 3142(2) & 2747(2) & 9540(4) & 39(2) \\ C(81) & 3535(2) & 734(2) & 7002(3) & 30(1) \\ C(82) & 3230(2) & 2294(2) & 9540(4) & 39(2) \\ C(84) & 2881(2) & 3119(2) & 9444(4) & 50(2) \\ C(84) & 2881(2) & 3119(2) & 9444(4) & 50(2) \\ C(85) & 2730(2) & 3006(2) & 8607(4) & 51(2) \\ C(86) & 2825(2) & 2536(2) & 8272(4) & 41(2) \\ O(3B) & 4563(4) & 2212(3) & 2926(6) & 184(5) \\ C(1B) & 5614(4) & 1914(3) & 3356(6) & 216(5) \\ C(2B) & 5177(4) & 2044(4) & 2499(6) & 184(5) \\ \end{array}$	C(59)	5435(2)	1630(2)	6849(3)	34(1)
C(61) $5738(2)$ $1083(2)$ $5657(3)$ $36(2)$ C(62) $5611(3)$ $782(2)$ $963(4)$ $49(2)$ C(63) $5090(3)$ $749(2)$ $4611(3)$ $44(2)$ C(64) $4668(2)$ $1036(2)$ $4967(3)$ $39(2)$ C(65) $4767(2)$ $1335(2)$ $5702(3)$ $28(1)$ C(66) $4068(2)$ $1028(2)$ $4604(3)$ $56(2)$ C(67) $5352(2)$ $2326(2)$ $7763(3)$ $33(1)$ C(68) $3873(2)$ $3015(2)$ $6256(3)$ $35(2)$ C(69) $3927(2)$ $3260(2)$ $7117(3)$ $31(1)$ C(70) $3806(2)$ $3748(2)$ $7232(4)$ $34(2)$ C(71) $3849(2)$ $3959(2)$ $8027(4)$ $33(1)$ C(72) $4048(2)$ $3708(2)$ $8735(3)$ $34(2)$ C(73) $4196(2)$ $2213(2)$ $8661(3)$ $31(1)$ C(74) $4119(2)$ $2967(2)$ $7849(3)$ $34(2)$ C(75) $4459(2)$ $2928(2)$ $9379(3)$ $41(2)$ C(76) $4162(2)$ $2479(2)$ $5136(3)$ $35(2)$ C(77) $2962(2)$ $418(2)$ $8048(3)$ $31(1)$ C(78) $3003(2)$ $-65(2)$ $7689(3)$ $30(1)$ C(78) $3003(2)$ $-65(2)$ $7689(3)$ $30(1)$ C(78) $3325(2)$ $734(2)$ $7002(3)$ $30(1)$ C(78) $3142(2)$ $2747(2)$ $9928(3)$ $43(2)$ C(80) $361(2)$ $258(2)$ $8607(4)$ $51(2)$	C(60)	5317(2)	1343(2)	6048(3)	28(1)
C(62) $5611(3)$ $782(2)$ $4963(4)$ $49(2)$ C(63) $5090(3)$ $749(2)$ $4611(3)$ $44(2)$ C(64) $4668(2)$ $1036(2)$ $4967(3)$ $39(2)$ C(65) $4767(2)$ $1335(2)$ $5702(3)$ $28(1)$ C(66) $4068(2)$ $1028(2)$ $4604(3)$ $56(2)$ C(67) $5352(2)$ $2326(2)$ $7763(3)$ $33(1)$ C(68) $3873(2)$ $3015(2)$ $6256(3)$ $35(2)$ C(69) $3927(2)$ $3260(2)$ $7117(3)$ $31(1)$ C(70) $3806(2)$ $3748(2)$ $7232(4)$ $34(2)$ C(71) $3849(2)$ $3959(2)$ $8027(4)$ $33(1)$ C(72) $4048(2)$ $3708(2)$ $8735(3)$ $34(2)$ C(73) $4196(2)$ $3213(2)$ $8661(3)$ $31(1)$ C(74) $4119(2)$ $2967(2)$ $7849(3)$ $34(2)$ C(75) $4459(2)$ $2928(2)$ $9379(3)$ $41(2)$ C(76) $4162(2)$ $2479(2)$ $5136(3)$ $35(2)$ C(77) $2962(2)$ $418(2)$ $8048(3)$ $31(1)$ C(78) $3003(2)$ $-65(2)$ $768(3)$ $38(2)$ C(79) $3325(2)$ $-141(2)$ $6979(3)$ $37(2)$ C(80) $3601(2)$ $258(2)$ $6628(3)$ $38(2)$ C(78) $3003(2)$ $-25(2)$ $768(3)$ $30(1)$ C(81) $3535(2)$ $734(2)$ $7002(3)$ $30(1)$ C(82) $2230(2)$ $2294(2)$ $9540(4)$ $39(2)$	C(61)	5738(2)	1083(2)	5657(3)	36(2)
C(63) $5090(3)$ $749(2)$ $4611(3)$ $44(2)$ $C(64)$ $4668(2)$ $1036(2)$ $4967(3)$ $39(2)$ $C(65)$ $4767(2)$ $1335(2)$ $5702(3)$ $28(1)$ $C(66)$ $4068(2)$ $1028(2)$ $4604(3)$ $56(2)$ $C(67)$ $5352(2)$ $2326(2)$ $7763(3)$ $33(1)$ $C(68)$ $3873(2)$ $3015(2)$ $6256(3)$ $35(2)$ $C(69)$ $3927(2)$ $3260(2)$ $7117(3)$ $31(1)$ $C(70)$ $3806(2)$ $3748(2)$ $7232(4)$ $34(2)$ $C(71)$ $3849(2)$ $3959(2)$ $8027(4)$ $33(1)$ $C(72)$ $4048(2)$ $3708(2)$ $8735(3)$ $34(2)$ $C(73)$ $4196(2)$ $3213(2)$ $8661(3)$ $31(1)$ $C(74)$ $4119(2)$ $2967(2)$ $7849(3)$ $34(2)$ $C(75)$ $4459(2)$ $2928(2)$ $9379(3)$ $41(2)$ $C(76)$ $4162(2)$ $2479(2)$ $5136(3)$ $35(2)$ $C(77)$ $2962(2)$ $418(2)$ $8048(3)$ $31(1)$ $C(78)$ $3003(2)$ $-65(2)$ $7689(3)$ $30(1)$ $C(78)$ $3003(2)$ $-65(2)$ $7689(3)$ $30(1)$ $C(78)$ $3235(2)$ $-141(2)$ $6779(3)$ $37(2)$ $C(80)$ $3601(2)$ $258(2)$ $6628(3)$ $38(2)$ $C(81)$ $35142(2)$ $2747(2)$ $9928(3)$ $43(2)$ $C(84)$ $2881(2)$ $3119(2)$ $9444(4)$ $50(2)$ $C(84)$ $2825(2)$ 253	C(62)	5611(3)	782(2)	4963(4)	49(2)
C(64) $4668(2)$ $1036(2)$ $4967(3)$ $39(2)$ $C(65)$ $4767(2)$ $1335(2)$ $5702(3)$ $28(1)$ $C(66)$ $4068(2)$ $1028(2)$ $4604(3)$ $56(2)$ $C(67)$ $5352(2)$ $2326(2)$ $7763(3)$ $33(1)$ $C(68)$ $3873(2)$ $3015(2)$ $6256(3)$ $35(2)$ $C(69)$ $3927(2)$ $3260(2)$ $7117(3)$ $31(1)$ $C(70)$ $3806(2)$ $3748(2)$ $7232(4)$ $34(2)$ $C(71)$ $3849(2)$ $3959(2)$ $8027(4)$ $33(1)$ $C(72)$ $4048(2)$ $3708(2)$ $8735(3)$ $34(2)$ $C(73)$ $4196(2)$ $2213(2)$ $8661(3)$ $31(1)$ $C(74)$ $4119(2)$ $2967(2)$ $7849(3)$ $34(2)$ $C(75)$ $4459(2)$ $2928(2)$ $9379(3)$ $41(2)$ $C(76)$ $4162(2)$ $2479(2)$ $5136(3)$ $35(2)$ $C(77)$ $2962(2)$ $418(2)$ $8048(3)$ $31(1)$ $C(78)$ $3003(2)$ $-65(2)$ $7689(3)$ $30(1)$ $C(79)$ $3325(2)$ $-141(2)$ $6979(3)$ $37(2)$ $C(80)$ $3601(2)$ $258(2)$ $6628(3)$ $38(2)$ $C(81)$ $3535(2)$ $734(2)$ $7002(3)$ $30(1)$ $C(82)$ $3230(2)$ $2294(2)$ $9540(4)$ $39(2)$ $C(84)$ $2881(2)$ $3119(2)$ $9444(4)$ $50(2)$ $C(85)$ $2730(2)$ $3006(2)$ $8607(4)$ $51(2)$ $C(86)$ $2825(2)$ 253	C(63)	5090(3)	749(2)	4611(3)	44(2)
C(65) $4767(2)$ $1335(2)$ $5702(3)$ $28(1)$ $C(66)$ $4068(2)$ $1028(2)$ $4604(3)$ $56(2)$ $C(67)$ $5352(2)$ $2326(2)$ $7763(3)$ $33(1)$ $C(68)$ $3873(2)$ $3015(2)$ $6256(3)$ $35(2)$ $C(69)$ $3927(2)$ $3260(2)$ $7117(3)$ $31(1)$ $C(70)$ $3806(2)$ $3748(2)$ $7232(4)$ $34(2)$ $C(71)$ $3849(2)$ $3959(2)$ $8027(4)$ $33(1)$ $C(72)$ $4048(2)$ $3708(2)$ $8735(3)$ $34(2)$ $C(73)$ $4196(2)$ $2213(2)$ $8661(3)$ $31(1)$ $C(74)$ $4119(2)$ $2967(2)$ $7849(3)$ $34(2)$ $C(75)$ $4459(2)$ $2928(2)$ $9379(3)$ $41(2)$ $C(76)$ $4162(2)$ $2479(2)$ $5136(3)$ $35(2)$ $C(77)$ $2962(2)$ $418(2)$ $8048(3)$ $31(1)$ $C(78)$ $3003(2)$ $-65(2)$ $7689(3)$ $30(1)$ $C(79)$ $3325(2)$ $-141(2)$ $6979(3)$ $37(2)$ $C(80)$ $3601(2)$ $258(2)$ $6628(3)$ $38(2)$ $C(81)$ $3535(2)$ $734(2)$ $7002(3)$ $30(1)$ $C(82)$ $3230(2)$ $2294(2)$ $9540(4)$ $39(2)$ $C(84)$ $2881(2)$ $3119(2)$ $9444(4)$ $50(2)$ $C(84)$ $2881(2)$ $3119(2)$ $9444(4)$ $50(2)$ $C(85)$ $2730(2)$ $3006(2)$ $867(4)$ $51(2)$ $C(86)$ $2825(2)$ 2536	C(64)	4668(2)	1036(2)	4967(3)	39(2)
C(66) $4068(2)$ $1028(2)$ $4604(3)$ $56(2)$ C(67) $5352(2)$ $2326(2)$ $7763(3)$ $33(1)$ C(68) $3873(2)$ $3015(2)$ $6256(3)$ $35(2)$ C(69) $3927(2)$ $3260(2)$ $7117(3)$ $31(1)$ C(70) $3806(2)$ $3748(2)$ $7232(4)$ $34(2)$ C(71) $3849(2)$ $3959(2)$ $8027(4)$ $33(1)$ C(72) $4048(2)$ $3708(2)$ $8735(3)$ $34(2)$ C(73) $4196(2)$ $3213(2)$ $8661(3)$ $31(1)$ C(74) $4119(2)$ $2967(2)$ $7849(3)$ $34(2)$ C(75) $4459(2)$ $2928(2)$ $9379(3)$ $41(2)$ C(76) $4162(2)$ $2479(2)$ $5136(3)$ $35(2)$ C(77) $2962(2)$ $418(2)$ $8048(3)$ $31(1)$ C(78) $3003(2)$ $-65(2)$ $7689(3)$ $30(1)$ C(79) $3325(2)$ $-141(2)$ $6979(3)$ $37(2)$ C(80) $3601(2)$ $2284(2)$ $9540(4)$ $39(2)$ C(81) $3535(2)$ $734(2)$ $7002(3)$ $30(1)$ C(82) $3230(2)$ $2294(2)$ $9540(4)$ $39(2)$ C(83) $3142(2)$ $2747(2)$ $9928(3)$ $43(2)$ C(84) $2881(2)$ $3119(2)$ $9444(4)$ $50(2)$ C(85) $2730(2)$ $3006(2)$ $8607(4)$ $51(2)$ C(86) $2825(2)$ $2356(2)$ $8272(4)$ $41(2)$ O(3B) $4563(4)$ $2212(3)$ $2922(5)$ $270(4)$ <td>C(65)</td> <td>4767(2)</td> <td>1335(2)</td> <td>5702(3)</td> <td>28(1)</td>	C(65)	4767(2)	1335(2)	5702(3)	28(1)
C(67) $5352(2)$ $2326(2)$ $7763(3)$ $33(1)$ $C(68)$ $3873(2)$ $3015(2)$ $6256(3)$ $35(2)$ $C(69)$ $3927(2)$ $3260(2)$ $7117(3)$ $31(1)$ $C(70)$ $3806(2)$ $3748(2)$ $7232(4)$ $34(2)$ $C(71)$ $3849(2)$ $3959(2)$ $8027(4)$ $33(1)$ $C(72)$ $4048(2)$ $3708(2)$ $8735(3)$ $34(2)$ $C(73)$ $4196(2)$ $3213(2)$ $8661(3)$ $31(1)$ $C(74)$ $4119(2)$ $2967(2)$ $7849(3)$ $34(2)$ $C(75)$ $4459(2)$ $2928(2)$ $9379(3)$ $41(2)$ $C(76)$ $4162(2)$ $2479(2)$ $5136(3)$ $35(2)$ $C(77)$ $2962(2)$ $418(2)$ $8048(3)$ $31(1)$ $C(78)$ $3003(2)$ $-65(2)$ $7689(3)$ $30(1)$ $C(79)$ $3325(2)$ $-141(2)$ $6979(3)$ $37(2)$ $C(80)$ $3601(2)$ $258(2)$ $6628(3)$ $38(2)$ $C(81)$ $3535(2)$ $734(2)$ $702(3)$ $30(1)$ $C(82)$ $2320(2)$ $2294(2)$ $9540(4)$ $39(2)$ $C(83)$ $3142(2)$ $2747(2)$ $9928(3)$ $43(2)$ $C(84)$ $2881(2)$ $3119(2)$ $9444(4)$ $50(2)$ $C(85)$ $2730(2)$ $3006(2)$ $8607(4)$ $51(2)$ $C(86)$ $2825(2)$ $2536(2)$ $8272(4)$ $41(2)$ $O(3B)$ $4563(4)$ $2212(3)$ $2922(5)$ $270(4)$ $C(1B)$ $5614(4)$ 191	C(66)	4068(2)	1028(2)	4604(3)	56(2)
C(68) $3873(2)$ $3015(2)$ $6256(3)$ $35(2)$ C(69) $3927(2)$ $3260(2)$ $7117(3)$ $31(1)$ C(70) $3806(2)$ $3748(2)$ $7232(4)$ $34(2)$ C(71) $3849(2)$ $3959(2)$ $8027(4)$ $33(1)$ C(72) $4048(2)$ $3708(2)$ $8735(3)$ $34(2)$ C(73) $4196(2)$ $3213(2)$ $8661(3)$ $31(1)$ C(74) $4119(2)$ $2967(2)$ $7849(3)$ $34(2)$ C(75) $4459(2)$ $2928(2)$ $9379(3)$ $41(2)$ C(76) $4162(2)$ $2479(2)$ $5136(3)$ $35(2)$ C(77) $2962(2)$ $418(2)$ $8048(3)$ $31(1)$ C(78) $3003(2)$ $-65(2)$ $7689(3)$ $30(1)$ C(79) $3325(2)$ $-141(2)$ $6979(3)$ $37(2)$ C(80) $3601(2)$ $258(2)$ $6628(3)$ $38(2)$ C(81) $3535(2)$ $734(2)$ $7002(3)$ $30(1)$ C(82) $3230(2)$ $2294(2)$ $9540(4)$ $39(2)$ C(83) $3142(2)$ $2747(2)$ $9928(3)$ $43(2)$ C(84) $2881(2)$ $3119(2)$ $9444(4)$ $50(2)$ C(85) $2730(2)$ $3006(2)$ $8607(4)$ $51(2)$ C(86) $2825(2)$ $2536(2)$ $8272(4)$ $41(2)$ O(3B) $4563(4)$ $2212(3)$ $2922(5)$ $270(4)$ C(1B) $5614(4)$ $1914(3)$ $3356(6)$ $216(5)$ C(2B) $5177(4)$ $2044(4)$ $2499(6)$ $184(5)$ </td <td>C(67)</td> <td>5352(2)</td> <td>2326(2)</td> <td>7763(3)</td> <td>33(1)</td>	C(67)	5352(2)	2326(2)	7763(3)	33(1)
C(69) $3927(2)$ $3260(2)$ $7117(3)$ $31(1)$ C(70) $3806(2)$ $3748(2)$ $7232(4)$ $34(2)$ C(71) $3849(2)$ $3959(2)$ $8027(4)$ $33(1)$ C(72) $4048(2)$ $3708(2)$ $8735(3)$ $34(2)$ C(73) $4196(2)$ $3213(2)$ $8661(3)$ $31(1)$ C(74) $4119(2)$ $2967(2)$ $7849(3)$ $34(2)$ C(75) $4459(2)$ $2928(2)$ $9379(3)$ $41(2)$ C(76) $4162(2)$ $2479(2)$ $5136(3)$ $35(2)$ C(77) $2962(2)$ $418(2)$ $8048(3)$ $31(1)$ C(78) $3003(2)$ $-65(2)$ $7689(3)$ $30(1)$ C(79) $3325(2)$ $-141(2)$ $6979(3)$ $37(2)$ C(80) $3601(2)$ $258(2)$ $6628(3)$ $38(2)$ C(81) $3535(2)$ $734(2)$ $7002(3)$ $30(1)$ C(82) $3230(2)$ $2294(2)$ $9540(4)$ $39(2)$ C(83) $3142(2)$ $2747(2)$ $9928(3)$ $43(2)$ C(84) $2881(2)$ $3119(2)$ $9444(4)$ $50(2)$ C(85) $2730(2)$ $3006(2)$ $8607(4)$ $51(2)$ C(86) $2825(2)$ $2536(2)$ $8272(4)$ $41(2)$ O(3B) $4563(4)$ $2212(3)$ $2922(5)$ $270(4)$ C(1B) $5614(4)$ $1914(3)$ $3356(6)$ $216(5)$ C(2B) $5177(4)$ $2044(4)$ $2499(6)$ $184(5)$	C(68)	3873(2)	3015(2)	6256(3)	35(2)
C(70) $3806(2)$ $3748(2)$ $7232(4)$ $34(2)$ $C(71)$ $3849(2)$ $3959(2)$ $8027(4)$ $33(1)$ $C(72)$ $4048(2)$ $3708(2)$ $8735(3)$ $34(2)$ $C(73)$ $4196(2)$ $3213(2)$ $8661(3)$ $31(1)$ $C(74)$ $4119(2)$ $2967(2)$ $7849(3)$ $34(2)$ $C(75)$ $4459(2)$ $2928(2)$ $9379(3)$ $41(2)$ $C(76)$ $4162(2)$ $2479(2)$ $5136(3)$ $35(2)$ $C(77)$ $2962(2)$ $418(2)$ $8048(3)$ $31(1)$ $C(78)$ $3003(2)$ $-65(2)$ $7689(3)$ $30(1)$ $C(79)$ $3325(2)$ $-141(2)$ $6979(3)$ $37(2)$ $C(80)$ $3601(2)$ $258(2)$ $6628(3)$ $38(2)$ $C(81)$ $3535(2)$ $734(2)$ $7002(3)$ $30(1)$ $C(82)$ $3230(2)$ $2294(2)$ $9540(4)$ $39(2)$ $C(83)$ $3142(2)$ $2747(2)$ $9928(3)$ $43(2)$ $C(84)$ $2881(2)$ $3119(2)$ $9444(4)$ $50(2)$ $C(85)$ $2730(2)$ $3006(2)$ $8607(4)$ $51(2)$ $C(86)$ $2825(2)$ $2536(2)$ $8272(4)$ $41(2)$ $O(3B)$ $4563(4)$ $2212(3)$ $2922(5)$ $270(4)$ $C(1B)$ $5614(4)$ $1914(3)$ $3356(6)$ $216(5)$ $C(2B)$ $5177(4)$ $2044(4)$ $2499(6)$ $184(5)$	C(69)	3927(2)	3260(2)	7117(3)	31(1)
C(71) $3849(2)$ $3959(2)$ $8027(4)$ $33(1)$ $C(72)$ $4048(2)$ $3708(2)$ $8735(3)$ $34(2)$ $C(73)$ $4196(2)$ $3213(2)$ $8661(3)$ $31(1)$ $C(74)$ $4119(2)$ $2967(2)$ $7849(3)$ $34(2)$ $C(75)$ $4459(2)$ $2928(2)$ $9379(3)$ $41(2)$ $C(76)$ $4162(2)$ $2479(2)$ $5136(3)$ $35(2)$ $C(77)$ $2962(2)$ $418(2)$ $8048(3)$ $31(1)$ $C(78)$ $3003(2)$ $-65(2)$ $7689(3)$ $30(1)$ $C(79)$ $3325(2)$ $-141(2)$ $6979(3)$ $37(2)$ $C(80)$ $3601(2)$ $258(2)$ $6628(3)$ $38(2)$ $C(81)$ $3535(2)$ $734(2)$ $7002(3)$ $30(1)$ $C(82)$ $3230(2)$ $2294(2)$ $9540(4)$ $39(2)$ $C(83)$ $3142(2)$ $2747(2)$ $9928(3)$ $43(2)$ $C(84)$ $2881(2)$ $3119(2)$ $9444(4)$ $50(2)$ $C(85)$ $2730(2)$ $3006(2)$ $8607(4)$ $51(2)$ $C(86)$ $2825(2)$ $2536(2)$ $8272(4)$ $41(2)$ $O(3B)$ $4563(4)$ $2212(3)$ $2922(5)$ $270(4)$ $C(1B)$ $5614(4)$ $1914(3)$ $3356(6)$ $216(5)$ $C(2B)$ $5177(4)$ $2044(4)$ $2499(6)$ $184(5)$	C(70)	3806(2)	3748(2)	7232(4)	34(2)
C(72) $4048(2)$ $3708(2)$ $8735(3)$ $34(2)$ $C(73)$ $4196(2)$ $3213(2)$ $8661(3)$ $31(1)$ $C(74)$ $4119(2)$ $2967(2)$ $7849(3)$ $34(2)$ $C(75)$ $4459(2)$ $2928(2)$ $9379(3)$ $41(2)$ $C(76)$ $4162(2)$ $2479(2)$ $5136(3)$ $35(2)$ $C(77)$ $2962(2)$ $418(2)$ $8048(3)$ $31(1)$ $C(78)$ $3003(2)$ $-65(2)$ $7689(3)$ $30(1)$ $C(79)$ $3325(2)$ $-141(2)$ $6979(3)$ $37(2)$ $C(80)$ $3601(2)$ $258(2)$ $6628(3)$ $38(2)$ $C(81)$ $3535(2)$ $734(2)$ $7002(3)$ $30(1)$ $C(82)$ $3230(2)$ $2294(2)$ $9540(4)$ $39(2)$ $C(84)$ $2881(2)$ $3119(2)$ $9444(4)$ $50(2)$ $C(84)$ $2881(2)$ $3119(2)$ $9444(4)$ $50(2)$ $C(85)$ $2730(2)$ $3006(2)$ $8607(4)$ $51(2)$ $C(86)$ $2825(2)$ $2536(2)$ $8272(4)$ $41(2)$ $O(3B)$ $4563(4)$ $2212(3)$ $2922(5)$ $270(4)$ $C(1B)$ $5614(4)$ $1914(3)$ $3356(6)$ $216(5)$ $C(2B)$ $5177(4)$ $2044(4)$ $2499(6)$ $184(5)$	C(71)	3849(2)	3959(2)	8027(4)	33(1)
C(73) $4196(2)$ $3213(2)$ $8661(3)$ $31(1)$ $C(74)$ $4119(2)$ $2967(2)$ $7849(3)$ $34(2)$ $C(75)$ $4459(2)$ $2928(2)$ $9379(3)$ $41(2)$ $C(76)$ $4162(2)$ $2479(2)$ $5136(3)$ $35(2)$ $C(77)$ $2962(2)$ $418(2)$ $8048(3)$ $31(1)$ $C(78)$ $3003(2)$ $-65(2)$ $7689(3)$ $30(1)$ $C(79)$ $3325(2)$ $-141(2)$ $6979(3)$ $37(2)$ $C(80)$ $3601(2)$ $258(2)$ $6628(3)$ $38(2)$ $C(81)$ $3535(2)$ $734(2)$ $7002(3)$ $30(1)$ $C(82)$ $3230(2)$ $2294(2)$ $9540(4)$ $39(2)$ $C(84)$ $2881(2)$ $3119(2)$ $9444(4)$ $50(2)$ $C(84)$ $2881(2)$ $3119(2)$ $9444(4)$ $50(2)$ $C(85)$ $2730(2)$ $3006(2)$ $8607(4)$ $51(2)$ $C(86)$ $2825(2)$ $2536(2)$ $8272(4)$ $41(2)$ $O(3B)$ $4563(4)$ $2212(3)$ $2922(5)$ $270(4)$ $C(1B)$ $5614(4)$ $1914(3)$ $3356(6)$ $216(5)$ $C(2B)$ $5177(4)$ $2044(4)$ $2499(6)$ $184(5)$	C(72)	4048(2)	3708(2)	8735(3)	34(2)
C(74) $4119(2)$ $2967(2)$ $7849(3)$ $34(2)$ $C(75)$ $4459(2)$ $2928(2)$ $9379(3)$ $41(2)$ $C(76)$ $4162(2)$ $2479(2)$ $5136(3)$ $35(2)$ $C(77)$ $2962(2)$ $418(2)$ $8048(3)$ $31(1)$ $C(78)$ $3003(2)$ $-65(2)$ $7689(3)$ $30(1)$ $C(79)$ $3325(2)$ $-141(2)$ $6979(3)$ $37(2)$ $C(80)$ $3601(2)$ $258(2)$ $6628(3)$ $38(2)$ $C(81)$ $3535(2)$ $734(2)$ $7002(3)$ $30(1)$ $C(82)$ $3230(2)$ $2294(2)$ $9540(4)$ $39(2)$ $C(83)$ $3142(2)$ $2747(2)$ $9928(3)$ $43(2)$ $C(84)$ $2881(2)$ $3119(2)$ $9444(4)$ $50(2)$ $C(85)$ $2730(2)$ $3006(2)$ $8607(4)$ $51(2)$ $C(86)$ $2825(2)$ $2536(2)$ $8272(4)$ $41(2)$ $O(3B)$ $4563(4)$ $2212(3)$ $2922(5)$ $270(4)$ $C(1B)$ $5614(4)$ $1914(3)$ $3356(6)$ $216(5)$ $C(2B)$ $5177(4)$ $2044(4)$ $2499(6)$ $184(5)$	C(73)	4196(2)	3213(2)	8661(3)	31(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(74)	4119(2)	2967(2)	7849(3)	34(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(75)	4459(2)	2928(2)	9379(3)	41(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(76)	4162(2)	2479(2)	5136(3)	35(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(77)	2962(2)	418(2)	8048(3)	31(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(78)	3003(2)	-65(2)	7689(3)	30(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(79)	3325(2)	-141(2)	6979(3)	37(2)
$\begin{array}{cccccccc} C(81) & 3535(2) & 734(2) & 7002(3) & 30(1) \\ C(82) & 3230(2) & 2294(2) & 9540(4) & 39(2) \\ C(83) & 3142(2) & 2747(2) & 9928(3) & 43(2) \\ C(84) & 2881(2) & 3119(2) & 9444(4) & 50(2) \\ C(85) & 2730(2) & 3006(2) & 8607(4) & 51(2) \\ C(86) & 2825(2) & 2536(2) & 8272(4) & 41(2) \\ O(3B) & 4563(4) & 2212(3) & 2922(5) & 270(4) \\ C(1B) & 5614(4) & 1914(3) & 3356(6) & 216(5) \\ C(2B) & 5177(4) & 2044(4) & 2499(6) & 184(5) \\ \end{array}$	C(80)	3601(2)	258(2)	6628(3)	38(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(81)	3535(2)	734(2)	7002(3)	30(1)
C(83)3142(2)2747(2)9928(3)43(2)C(84)2881(2)3119(2)9444(4)50(2)C(85)2730(2)3006(2)8607(4)51(2)C(86)2825(2)2536(2)8272(4)41(2)O(3B)4563(4)2212(3)2922(5)270(4)C(1B)5614(4)1914(3)3356(6)216(5)C(2B)5177(4)2044(4)2499(6)184(5)	C(82)	3230(2)	2294(2)	9540(4)	39(2)
C(84)2881(2)3119(2)9444(4)50(2)C(85)2730(2)3006(2)8607(4)51(2)C(86)2825(2)2536(2)8272(4)41(2)O(3B)4563(4)2212(3)2922(5)270(4)C(1B)5614(4)1914(3)3356(6)216(5)C(2B)5177(4)2044(4)2499(6)184(5)	C(83)	3142(2)	2747(2)	9928(3)	43(2)
C(85)2730(2)3006(2)8607(4)51(2)C(86)2825(2)2536(2)8272(4)41(2)O(3B)4563(4)2212(3)2922(5)270(4)C(1B)5614(4)1914(3)3356(6)216(5)C(2B)5177(4)2044(4)2499(6)184(5)	C(84)	2881(2)	3119(2)	9444(4)	50(2)
C(86)2825(2)2536(2)8272(4)41(2)O(3B)4563(4)2212(3)2922(5)270(4)C(1B)5614(4)1914(3)3356(6)216(5)C(2B)5177(4)2044(4)2499(6)184(5)	C(85)	2730(2)	3006(2)	8607(4)	51(2)
O(3B)4563(4)2212(3)2922(5)270(4)C(1B)5614(4)1914(3)3356(6)216(5)C(2B)5177(4)2044(4)2499(6)184(5)	C(86)	2825(2)	2536(2)	8272(4)	41(2)
C(1B) $5614(4)$ $1914(3)$ $3356(6)$ $216(5)$ C(2B) $5177(4)$ $2044(4)$ $2499(6)$ $184(5)$	O(3B)	4563(4)	2212(3)	2922(5)	270(4)
C(2B) 5177(4) 2044(4) 2499(6) 184(5)	C(1B)	5614(4)	1914(3)	3356(6)	216(5)
	C(2B)	5177(4)	2044(4)	2499(6)	184(5)

C(4B)	4332(3)	2305(3)	1977(5)	136(3)
C(5B)	3714(3)	2346(3)	2418(5)	170(4)
O(1C)	1298(2)	8857(2)	5502(4)	114(2)
C(1C)	1861(3)	8919(3)	5247(5)	107(3)
C(2C)	2174(3)	9094(3)	6032(5)	107(3)
C(3C)	1787(3)	9028(5)	6716(5)	292(9)
C(4C)	1277(3)	8871(4)	6415(5)	160(4)
O(1D)	0	10000	5329(5)	168(5)
C(2D)	402(5)	9802(5)	4753(5)	219(6)
C(3D)	281(4)	9862(4)	3974(5)	161(5)
O(1E)	2181(3)	963(2)	3690(3)	108(2)
C(1E)	1769(3)	701(3)	4250(5)	130(3)
C(2E)	2001(4)	264(3)	4591(6)	128(4)
C(3E)	2586(4)	425(4)	4661(7)	226(7)
C(4E)	2690(3)	721(4)	3833(5)	190(6)
O(1F)	1661(4)	3623(4)	7264(6)	288(5)
C(1F)	2137(5)	3770(4)	6849(8)	236(6)
C(2F)	2356(5)	4277(5)	7060(9)	315(8)
C(3F)	2065(5)	4452(4)	7714(7)	258(7)
C(4F)	1595(4)	4064(4)	7845(6)	172(4)

Table S16. Selected bond lengths [Å] and angles [°] for 12^{NO2} .

Fe(1)-N(1)	1.920(4)	N(1)-Fe(1)-N(4)	178.92(17)
Fe(1)-N(4)	1.923(4)	N(1)-Fe(1)-N(3)	99.41(17)
Fe(1)-N(3)	1.926(4)	N(4)-Fe(1)-N(3)	80.11(17)
Fe(1)-N(2)	1.935(4)	N(1)-Fe(1)-N(2)	80.56(17)
Fe(1)-N(13)	2.007(4)	N(4)-Fe(1)-N(2)	100.08(18)
Fe(1)-N(14)	2.018(4)	N(3)-Fe(1)-N(2)	170.04(16)
		N(1)-Fe(1)-N(13)	91.41(15)
		N(4)-Fe(1)-N(13)	89.52(15)
		N(3)-Fe(1)-N(13)	86.07(16)
		N(2)-Fe(1)-N(13)	83.97(15)
		N(1)-Fe(1)-N(14)	89.73(15)
		N(4)-Fe(1)-N(14)	89.33(16)
		N(3)-Fe(1)-N(14)	92.94(16)
		N(2)-Fe(1)-N(14)	97.02(16)
		N(13)-Fe(1)-N(14)	178.60(17)

References:

- (1) Pangborn, A. B.; Giardello, M. A.; Grubbs, R. H.; Rosen, R. K.; Timmers, F. J. Organometallics 1996, 15, 1518.
- (2) Tshuva, E. Y.; Groysman, S.; Goldberg, I.; Kol, M.; Goldschmidt, Z. Organometallics 2002, 21, 662.
- (3) Vaska, L.; Yamaji, T. J. Am. Chem. Soc. 1971, 93, 6673.
- (4) Tshuva, E. Y.; Goldberg, I.; Kol, M. J. Am. Chem. Soc. 2000, 122, 10706.
- (5) Wong, Y.-L.; Yan, Y.; S. H. Chan, E.; Yang, Q.; C. W. Mak, T.; K. P. Ng, D. J. Chem. Soc., Dalton Trans. 1998, 3057.
- (6) Chen, C.-T.; Huang, C.-A.; Huang, B.-H. Dalton Trans. 2003, 3799.
- (7) Du, H.; Velders, A. H.; Dijkstra, P. J.; Sun, J.; Zhong, Z.; Chen, X.; Feijen, J. Chem. Eur. J. 2009, 15, 9836.
- (8) Yeori, A.; Goldberg, I.; Shuster, M.; Kol, M. J. Am. Chem. Soc. 2006, 128, 13062.
- (9) Cooper, R. I.; Gould, R. O.; Parsons, S.; Watkin, D. J. J. Appl. Crystallogr. 2002, 35, 168.
- (10) Spek, A. L. Acta Crystallogr. Sect. A: Found. Crystallogr. 1990, 46, C34.