Supporting information for:

[NH₂(C₂H₄)₂O]MX₅: a new family of morpholinium nonlinear materials among halogenoantimonate(III) and halogenobismuthate(III) compounds. Structural characterization, dielectric and piezoelectric properties.

Magdalena Owczarek, ^a Przemysław Szklarz, ^a Ryszard Jakubas, ^{*a} and Andrzej Miniewicz^b

^aFaculty of Chemistry, University of Wrocław, F. Joliot Curie 14, 50-383 Wrocław, Poland ^bInstitute of Physical and Theoretical Chemistry, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland

le	S1. Selected bond l	engths (Å) and a	angles (deg) for [N	IX ₅] ²⁻ moieties at 1
		Μ	CA	
	Sb-Cl(1)	2.4091(7)	Cl(1)-Sb-Cl(5)	83.99(3)
	Sb-Cl(2)	2.8888(8)	Cl(4)-Sb-Cl(5)	90.81(2)
	Sb-Cl(3)	2.5058(7)	Cl(3)-Sb-Cl(5)	171.77(2)
	Sb-Cl(4)	2.4408(7)	Cl(1)-Sb-Cl(2)	84.03(2)
	Sb-Cl(5)	2.8380(8)	Cl(4)-Sb-Cl(2)	173.73(2)
	Cl(1)-Sb-Cl(4)	93.66(2)	Cl(3)-Sb-Cl(2)	84.74(2)
	Cl(1)-Sb-Cl(3)	87.79(3)	Cl(5)-Sb-Cl(2)	94.73(2)
	Cl(4)-Sb-Cl(3)	89.35(2)		
		Μ	BA	
	Sb-Br(1)	2.5823(5)	Br(1)-Sb- $Br(2)$	84.62(2)
	Sb-Br(2)	3.0180(6)	Br(4)-Sb- $Br(2)$	174.85(6)
	Sb-Br(3)	2.6509(5)	Br(3)-Sb- $Br(2)$	85.64(2)
	Sb-Br(4)	2.6109(5)	Br(1)-Sb- $Br(5)$	84.65(2)
	Sb-Br(5)	3.0489(7)	Br(4)-Sb- $Br(5)$	92.67(2)
	Br(1)-Sb-Br(4)	94.29(2)	Br(3)-Sb- $Br(5)$	173.79(6)
	Br(1)-Sb-Br(3)	89.34(2)	Br(2)-Sb- $Br(5)$	92.23(2)
	Br(4)-Sb-Br(3)	89.33(2)		
		Μ	BB	
	Bi-Br(1)	2.6853(6)	Br(3)-Bi-Br(2)	85.74(2)
	Bi-Br(2)	3.0041(7)	Br(1)-Bi-Br(5)	84.20(2)
	Bi-Br(3)	2.7192(6)	Br(4)-Bi-Br(5)	93.95(2)
	Bi-Br(4)	2.7093(6)	Br(3)-Bi-Br(5)	173.44(2)
	Bi-Br(5)	3.1124(8)	Br(2)-Bi-Br(5)	91.61(2)
	$Bi-Br(5)^1$	3.1843(7)	Br(1)-Bi-Br(5) ¹	175.91(2)
	$Br(5)-Bi^2$	3.1844(7)	Br(4)-Bi-Br(5) ¹	88.84(2)
	Br(1)-Bi-Br(4)	95.22(2)	$Br(3)$ -Bi-Br $(5)^1$	91.01(2)
	Br(1)-Bi-Br(3)	89.57(2)	Br(2)-Bi-Br(5) ¹	91.42(2)
	Br(4)-Bi-Br(3)	88.65(2)	$Br(5)$ -Bi-Br $(5)^1$	95.05(2)
	Br(1)-Bi-Br(2)	84.58(2)	Bi-Br(5)-Bi ²	171.51(2)
	Br(4)-Bi-Br(2)	174.39(2)		

Tabl 100 K.

MCB					
2.5557(9)	$Cl(3)$ -Bi- $Cl(5)^3$	174.83(2)			
2.5928(9)	Cl(1)-Bi-Cl(4)	83.96(3)			
2.6570(2)	Cl(2)-Bi-Cl(4)	170.74(2)			
2.7973(9)	Cl(3)-Bi-Cl(4)	87.51(2)			
2.9600(9)	$Cl(5)^{3}$ -Bi-Cl(4)	89.19(3)			
2.7866(10)	Cl(1)-Bi-Cl(5)	168.74(2)			
2.7866(10)	Cl(2)-Bi-Cl(5)	85.63(3)			
87.68(3)	Cl(3)-Bi-Cl(5)	93.63(3)			
95.35(3)	$Cl(5)^3$ -Bi-Cl(5)	83.26(3)			
89.31(2)	Cl(4)-Bi-Cl(5)	103.24(3)			
88.26(3)	Bi ⁴ -Cl(5)-Bi	170.25(3)			
94.55(3)					
	M(2.5557(9) 2.5928(9) 2.6570(2) 2.7973(9) 2.9600(9) 2.7866(10) 2.7866(10) 87.68(3) 95.35(3) 89.31(2) 88.26(3) 94.55(3)	MCB 2.5557(9) $Cl(3)$ -Bi- $Cl(5)^3$ 2.5928(9) $Cl(1)$ -Bi- $Cl(4)$ 2.6570(2) $Cl(2)$ -Bi- $Cl(4)$ 2.7973(9) $Cl(3)$ -Bi- $Cl(4)$ 2.9600(9) $Cl(5)^3$ -Bi- $Cl(4)$ 2.7866(10) $Cl(1)$ -Bi- $Cl(5)$ 2.7866(10) $Cl(2)$ -Bi- $Cl(5)$ 87.68(3) $Cl(3)$ -Bi- $Cl(5)$ 95.35(3) $Cl(5)^3$ -Bi- $Cl(5)$ 89.31(2) $Cl(4)$ -Bi- $Cl(5)$ 88.26(3) Bi ⁴ - $Cl(5)$ -Bi 94.55(3) $Cl(3)$ -Bi			

Symmetry transformations used to generate equivalent atoms: 1: x+1/2,-y+1/2,-z+1 2: x-1/2,-y+1/2,-z+13: x-1/2,-y+1/2,-z+1 4: x+1/2,-y+1/2,-z+1

Table S2. Hydrogen bonds for [NH₂(C₂H₄)₂O]₂MX₅ at 100 K.

D – HA	d(D – H)	d(HA)	d(DA)	<(DHA)
MCA				
$N(1)-H(1C)O(1)^{1}$	0.92	2.51	3.182(2)	131
N(1)-H(1C)Cl(2)	0.92	2.67	3.336(2)	130
$N(1)-H(1D)Cl(5)^{2}$	0.92	2.40	3.291(2)	162
$N(2)-H(2C)Cl(2)^{3}$	0.92	2.65	3.386(2)	137
$N(2)-H(2C)Cl(3)^{3}$	0.92	2.67	3.396(2)	136
$N(2)-H(2D)Cl(2)^4$	0.92	2.34	3.172(2)	151
MBA				
$N(1)-H(1C)O(1)^3$	0.92	2.64	3.310(2)	130
N(1)-H(1C)Br(2)	0.92	2.73	3.414(2)	132
$N(1)-H(1D)Br(5)^{5}$	0.92	2.57	3.452(2)	161
$N(2)-H(2C)Br(2)^{1}$	0.92	2.82	3.543(2)	136
$N(2)-H(2C)Br(3)^{1}$	0.92	2.80	3.522(2)	137
$N(2)-H(2D)Br(2)^{6}$	0.92	2.52	3.321(2)	145
MBB				
$N(1)-H(1C)O(1)^7$	0.92	2.53	3.231(4)	133
N(1)-H(1C)Br(2)	0.92	2.77	3.416(3)	128
$N(1)-H(1D)Br(5)^{2}$	0.92	2.62	3.499(3)	160
$N(2)-H(2C)Br(2)^{8}$	0.92	2.92	3.627(3)	134
$N(2)-H(2C)Br(3)^{8}$	0.92	2.72	3.456(3)	137
$N(2)-H(2D)Br(2)^{6}$	0.92	2.51	3.318(3)	147
MCB				
$N(1)-H(1C)O(1)^3$	0.92	2.64	3.260(3)	126
$N(1)-H(1C)Cl(1)^{2}$	0.92	2.75	3.413(3)	130
$N(1)-H(1C)Cl(3)^9$	0.92	2.78	3.399(3)	126
$N(1)-H(1D)O(2)^9$	0.92	2.03	2.862(3)	150

$N(1)-H(1D)Cl(2)^9$	0.92	2.99	3.621(3)	127
$N(2)-H(2C)Cl(3)^{10}$	0.92	2.46	3.281(3)	149
$N(2)-H(2C)Cl(1)^{6}$	0.92	2.88	3.450(3)	121
$N(2)-H(2D)Cl(4)^{6}$	0.92	2.31	3.221(3)	169
Symmetry transformation	is used to ger	nerate equivale	nt atoms:	
1: -x+1,y+1/2,-z+3/2	2: x+1/2, -y	+1/2,-z+1	3: -x+1, y-1/2, -	-z+1/2
4: -x+1/2, -y+1, z-1/2	5: x+1/2, -y	+3/2, -z+1	6: -x +1/2, -y +	1, z+1/2
7: -x+1, y+1/2, -z+1/2	8: -x+1, y-1	/2, -z+3/2	9: x-1/2, -y+1/2	, -z+1
10: -x+3/2, -y+1, z+1/2				

Figure S1. Temperature dependence of the real (a) and imaginary (b) parts of the complex electric permittivity obtained on cooling for MBB crystal.

Figure S3. Topography image of MCB crystal.

Results of the Cambridge Structural Database (CSD) survey.

Table S3. Structures of halogenoantimonates(III) and halogenobismuthates(III) containing $[MX_5]^{2-}$ units retrieved from the CSD. Entries marked with a bolded font were used for the structural analysis of the R₂MX₅ (R – cation, M = Bi, Sb, X = Cl, Br) composition.

Refcode	Empirical formula	Cation	Space group	Anionic structure type
ACIKED	$(C_5H_{16}N_2)BiCl_5$	H_3N^+ NH_3^+	<i>P</i> 2 ₁ 2 ₁ 2 ₁	cis mode chain
AFEVEM	$(C_2H_4N_3)_2SbCl_5\cdot(C_2H_4N_3)Cl$		P2 ₁ 2 ₁ 2 ₁	<i>cis</i> mode chain

BOYWIV	$(CH_6N)_2SbCl_5\cdot(CH_6N)Cl$	$H_3C-NH_3^+$	$P2_{1}/c$	cis mode chain
CAJXIV	$(C_5H_{12}N)_2BiCl_5$	NH ₂ ⁺	Pna2 ₁	<i>cis</i> mode chain
ENPTCB	$(C_5H_{20}N_4Pt)SbCl_5$	$\begin{array}{c} NH_{3}^{+}NH_{3}^{+} \\ H_{3}N_{2}^{+}CH_{3} \\ H_{3}C_{HN}^{+}N_{3}^{+}CH_{3} \\ & N_{2}^{+}CH_{3} \end{array}$	P212121	<i>cis</i> mode chain
LURXEB	$(C_2H_4N_3)_2SbCl_5$	H	P2 ₁ /n	<i>cis</i> mode chain
PIPBSB	$(C_5H_{12}N)_2SbBr_5$	NH ₂ ⁺	P2 ₁ 2 ₁ 2 ₁	cis mode chain
PIPRBI	$(C_5H_{12}N)_2BiBr_5$	NH ₂ ⁺	P212121	cis mode chain
PURLIX	$(C_{12}H_{10}N_2)BiCl_5\cdot 2H_2O$	$H^+ H^+_{\mathbf{N}^+}$	<i>P</i> 2/ <i>c</i>	<i>cis</i> mode chain
SOWPAV	$(C_6H_{18}N_2)BiCl_5$		$P2_1/n$	cis mode chain
SOWQEA	$(C_6H_{18}N_2)SbBr_5$	H ₃ N ⁺ NH ₃ ⁺	Pn2 ₁ a	cis mode chain
SUXTUB	(C5H14N2)BiCl5	H_2N^+	P2 ₁ 2 ₁ 2 ₁	cis mode chain
YOYWOY	$(CH_6N_3)_2SbCl_5 \cdot 2(CH_6N_3)Cl$	$H_2N = NH_2^+$ $H_2N = -$	P2 ₁ /c	<i>cis</i> mode chain

ZETGIO	$(C_5H_7N_5)SbCl_5 \cdot H_2O$	HN ⁺ HN ⁺ N H	<i>P</i> 2 ₁ / <i>c</i>	<i>cis</i> mode chain
GIWVUE	$(C_5H_{14}N)_2SbBr_5$	H ₃ C NH ₃ ⁺	Pna2 ₁	deformed <i>cis</i> mode chain
GIWVUE01	$(C_5H_{14}N)_2SbBr_5$	H ₃ C NH ₃ ⁺	<i>P</i> 2 ₁ 2 ₁ 2 ₁	deformed <i>cis</i> mode chain
IWIJAZ	$(C_2H_8N)_2SbBr_5$	H ₃ C NH ₃ ⁺	Pbca	deformed <i>cis</i> mode chain
IWIJAZ01	$(C_2H_8N)_2SbBr_5$	H ₃ C NH ₃ ⁺	Стса	deformed <i>cis</i> mode chain
PERNAC02	$(C_4H_{12}N)_2SbCl_5$		Pccn	deformed <i>cis</i> mode chain
RUJVOI	(C ₆ H ₈ N) ₂ SbBr ₅		Pbca	deformed cis mode chain
SOYBAK	$(C_{17}H_{20}N_3O_3F)SbCl_5\cdot H_2O$	H ₂ N ⁺ H ₃ C CH ₃ N OH	<i>P</i> 2 ₁ / <i>c</i>	deformed <i>cis</i> mode chain
ANILAC10	(C ₆ H ₈ N) ₂ SbCl ₅		<i>P</i> 2 ₁ /c	pseudo-cis mode chain
AWOXUF	$(C_{12}H_{18}N)_2SbCl_5\cdot 2H_2O$		$Cmc2_1$	<i>pseudo-cis</i> mode chain
BPCLSB01	$(C_{12}H_{18}N)_2SbCl_5$		C2/c	<i>pseudo-cis</i> mode chain
DILBUW	(C ₂ H ₇ O) ₂ SbCl ₅	Н ₃ С ^{∕ОҢ⁺} СН ₃	Pnma	pseudo-cis mode chain

LUHVOZ	$(C_{12}H_{12}N)_2SbCl_5$		P -1	<i>pseudo-cis</i> mode chain
PYCLSB01	$(C_{10}H_{10}N_2)SbCl_5$		Pbc2 ₁	pseudo-cis mode chain
PYCLSB02	$(C_{10}H_{10}N_2)SbCl_5$		Pbcm	pseudo-cis mode chain
SAWJOP	$(C_2H_8N)_2SbCl_5$	H ₃ C NH ₂ ⁺ H ₃ C	Pnma	<i>pseudo-cis</i> mode chain
SAWJOP01	(C2H8N)2SbCl5	H ₃ C NH ⁺ ₂ H ₃ C	Pnma	<i>pseudo-cis</i> mode chain
SAWJOP02	(C2H8N)2SbCl5	H_3C NH_2^+ H_3C	Pnma	<i>pseudo-cis</i> mode chain
YOTBOZ	$(C_6H_6NO_2)_2SbCl_5 \cdot H_2O$	HN ⁺ OH O	<i>P</i> 2 ₁ /c	pseudo-cis mode chain
YOTCIU	$(C_4H_{10}NO)_2SbCl_5$	H ₂ N ⁺ O	P212121	pseudo-cis mode chain
MENTIJ	$(C_4H_{14}N_2)SbCl_5$	$H_{3}N^{+} \xrightarrow{H_{3}} H_{1}N^{+} H_{3}N^{+}$	P2 ₁ /n	deformed <i>pseudo-cis</i> mode chain
MENTIJ01	$(C_4H_{14}N_2)SbCl_5$	$H_{3}N^{+} \xrightarrow{CH_{3}} H_{1}^{+}CH_{3}$	P2 ₁ /n	deformed <i>pseudo-cis</i> mode chain
MENTIJ02	$(C_4H_{14}N_2)SbCl_5$	H_3N^+ CH_3 H_4^+ H_3^+ CH_3	$P2_1/n$	deformed <i>pseudo-cis</i> mode chain

MENTIJ03	$(C_4H_{14}N_2)SbCl_5$	H_3N^+ CH_3 H_3N^+ CH_3	<i>P</i> 2 ₁ / <i>n</i>	deformed <i>pseudo-cis</i> mode chain
REYFUW	$(C_4H_{14}N_2)SbCl_5$	H_3N^+ CH_3 H_3N^+ NH^+ CH_3	<i>P</i> 2 ₁ /c	deformed <i>pseudo-cis</i> mode chain
REYFUW01	$(C_4H_{14}N_2)SbCl_5$	H_3N^+ H	<i>P</i> 2 ₁ /c	deformed <i>pseudo-cis</i> mode chain
REYFUW02	$(C_4H_{14}N_2)SbCl_5$	H_3N^+ H	<i>P</i> 2 ₁ /c	deformed <i>pseudo-cis</i> mode chain
REYFUW03	$(C_4H_{14}N_2)SbCl_5$	$H_{3}N^{+}$ $H_{$	<i>P</i> 2 ₁ /c	deformed <i>pseudo-cis</i> mode chain
REYFUW04	$(C_4H_{14}N_2)SbCl_5$	$H_{3}N^{+} \xrightarrow{CH_{3}} H_{3}N^{+}$	<i>P</i> 2 ₁ /c	deformed <i>pseudo-cis</i> mode chain
PERNAC	$(C_4H_{12}N)_2SbCl_5$	H ₃ C NH ₃ ⁺	Pccn	deformed <i>pseudo-cis</i> mode chain
PERNAC01	$(C_4H_{12}N)_2SbCl_5$	H ₃ C NH ₃ ⁺	Ibam	disordered <i>cis</i> mode chain
MADGUU	$(C_{10}H_{10}N_2)SbCl_5$	$ \begin{array}{c} H \\ N \\ \end{array} $	P2 ₁ /c	atypical <i>cis</i> mode chain
QAFHUB	$(C_3H_5N_2)_2SbCl_5$	H N H	Pbcn	atypical <i>cis</i> mode chain
[1]	$(C_3H_5N_2)_2SbCl_5$		Pna2 ₁	atypical <i>cis</i> mode chain

[1]	$(C_3H_5N_2)_2SbCl_5$		Pbcn	atypical <i>cis</i> mode chain
REGYIL	(C2H8NOS)2SbCl5	O H ₃ C∕⊂ H ₃ C∕⊂NH ₂ ⁺	C2/c	atypical cis mode chain
[2]	$(C_{12}H_{14}N_2)BiBr_5$		P2 ₁ /c	trans mode chain
[2]	$(C_{12}H_{14}N_2)BiBr_5$		P2 ₁	trans mode chain
FORYUH	$(C_4H_5N_2S)_2SbBr_5$	H+ N SH	P2 ₁ /n	disordered <i>trans</i> mode chain
BOMQUP	$(C_4H_{12}N)_2SbCl_5$	H_{3}	P2 ₁ 2 ₁ 2 ₁	<i>pseudo-trans</i> mode chain
CLPYSB	(C5H5NCl)2SbBr5		Pa	<i>pseudo-trans</i> mode chain
LUWZIM	(C ₂₆ H ₂₄ Cl ₂ P ₂)SbCl ₅		P -1	isolated, interaction with cation

TEDVED	(C ₈ H ₂₀ N) ₂ SbCl ₅	$H_{3}C \xrightarrow{H_{3}} CH_{3}$	P4/mnc	isolated
TEDVED01	(C8H20N)2SbCl5	$H_3C \xrightarrow{H_3C} CH_3$	Pcnn	isolated
TEZSIA	(C7H23N5ClCr)SbCl5	$ \begin{array}{c} CI \\ H_2N \\ NH_2 \\ NH_2 \\ NH_2 \\ NH_2 \end{array} $	Pbca	isolated, interaction with cation
TEZSOG	$(C_{11}H_{31}N_5ClCr)SbCl_5 \cdot H_3O^+Cl^- \cdot H_2O$	$H_{2}N$ $H_{2}N$ H_{2} $H_{3}C$ CH_{3} H_{2} $H_{3}C$ CH_{3}	Сс	isolated
DAKWIW	$(C_6H_8N)_2SbCl_5\cdot (C_6H_8N)Cl\cdot H_2O$		<i>P</i> -1	isolated, close to $M_2 X_{10}^{4-}$ unit
DAKWIW01	$(C_6H_8N)_2SbCl_5 \cdot (C_6H_8N)Cl \cdot H_2O$		<i>P</i> -1	isolated, close to $M_2 X_{10}^{4-}$ unit
FOTTUE	$(C_{12}H_{11}N_3)SbCl_5\cdot H_2O$	$ \begin{array}{c} $	P2 ₁ /c	isolated, close to $M_2 X_{10}^{4-}$ unit

PYCLSB	$(C_{10}H_{10}N_2)SbCl_5$		<i>P</i> -1	isolated, close to $M_2 X_{10}^{4-}$ unit
VAVRIT	$(C_3H_{12}N_2)SbCl_5$	H_3N^+ NH_3^+	<i>P</i> 2 ₁ /c	isolated, close to $M_2X_{10}^{4-}$ unit
VIKCUO	(C ₆ H ₈ N) ₂ SbCl ₅	HN ⁺ CH ₃	<i>P</i> -1	isolated, close to $M_2 X_{10}^{4-}$ unit
XISDOT	$(C_5H_{14}N_2)SbCl_5\cdot H_2O$	H ₂ N ⁺ _NH ⁺ CH ₃	<i>P</i> 2 ₁ /c	isolated, close to $M_2 X_{10}^{4-}$ unit
YIVLIZ	(C ₁₉ H ₁₅ N ₅)SbCl ₅	NH ⁺ NH ⁺ N N H H	<i>P</i> -1	isolated, close to $M_2 X_{10}^{4-}$ unit
ZETGOU	$(C_5H_6N_5)_2SbCl_5\cdot H_2O$	HN ⁺ N N H	<i>P</i> -1	isolated, close to $M_2 X_{10}^{4-}$ unit
CASPES	$(C_4H_{12}N_2)_2Bi_2Cl_{10}\cdot 3H_2O$	H_2N^+ NH_2^+	C2/c	$M_2 X_{10}^{4-}$ unit
COJXAA	$(C_2H_8N)_4Sb_2Cl_{10} \cdot 2(C_2H_8N)Cl$	H ₃ C NH ₃ ⁺	<i>P</i> -1	$M_2 X_{10}^{4-}$ unit
COJXAA01	$(C_2H_8N)_4Sb_2Cl_{10} \cdot 2(C_2H_8N)Cl$	H ₃ C NH ₃ ⁺	<i>P</i> -1	$M_2 X_{10}^{4-}$ unit
CUMPAB	$(C_2H_{10}N_4S)_2Bi_2Cl_{10}\cdot 4H_2O$	H ₃ N ⁺ NH NH ⁺ 3	<i>P</i> -1	$M_2X_{10}^{4-}$ unit
DEWKUM	$(C_3H_8N)_4Sb_2Cl_{10}\cdot 2(C_3H_8N)Cl$	H ₃ C NH ₃ ⁺	<i>P</i> -1	$M_2X_{10}^{4-}$ unit
DEWKUM01	$(C_{3}H_{8}N)_{4}Sb_{2}Cl_{10} \cdot 2(C_{3}H_{8}N)Cl$	H ₃ C NH ₃ ⁺	<i>P</i> -1	$M_2 X_{10}^{4-}$ unit

IBENAF	$(C_{10}H_{10}N)_4Sb_2Cl_{10}$	H ₃ C	C2/m	$M_2 X_{10}^{4-}$ unit
IDOKIW	$(C_{10}H_{10}N_2)_2Bi_2Br_{10}$		<i>P</i> -1	$M_2 X_{10}^{4-}$ unit
JIVZAP	$(C_2H_{10}N_2)_2Bi_2Cl_{10}\cdot 4H_2O$	H_3N^+ NH_3^+	$P2_{1}/n$	$M_2 X_{10}^{4-}$ unit
JUFKEA	$(C_2H_5N_4S)_4Bi_2Br_{10}$	$H_2N \xrightarrow{S} NH_2$ $N \xrightarrow{N-N}_H$	<i>P</i> -1	$M_2 X_{10}^{4-}$ unit
MODBIR	$\begin{array}{c} (C_{17}H_{22}N_{3}O_{3}F)_{2}Bi_{2}Cl_{10} \cdot \\ 2(C_{17}H_{22}N_{3}O_{3}F)Cl \cdot 8H_{2}O \end{array}$	H ₃ C _N ⁺ H ₁ N ₁ F ₁ OH ₁ OH	C2/m	$M_2X_{10}^{4-}$ unit
POWREZ	$(C_{12}H_{11}N_3)_2Bi_2Cl_{10}\cdot 2H_2O$	$ \begin{array}{c} $	P2 ₁ /c	$M_2 X_{10}^{4-}$ unit
QESSOX	$(C_{12}H_{18}N)_4Bi_2Cl_{10}\cdot 2H_2O$		<i>P</i> 2 ₁ / <i>c</i>	$M_2X_{10}^{4-}$ unit
QQQGRV01	$(C_{6}H_{8}N)_{4}Sb_{2}Br_{10}$		<i>P</i> -1	$M_2X_{10}^{4-}$ unit
RAGPAR	$(C_7H_{10}N)_4Sb_2Cl_{10}$		P4 ₁ 2 ₁ 2	$M_2 X_{10}^{4-}$ unit

RIHLAV	$(C_{12}H_{18}N_4OS)_2Sb_2Cl_{10}$	H ₃ C N ⁺ H	<i>P</i> -1	$M_2X_{10}^{4-}$ unit
RIZBEH	(C ₉ H ₈ N) ₄ Bi ₂ Cl ₁₀	H, N	<i>P</i> -1	$M_2 X_{10}^{4-}$ unit
RIZBIL	$(C_9H_8N)_4Bi_2Cl_{10}\cdot 2H_2O$	HN	Стса	$M_2 X_{10}^{4-}$ unit
SIWZUU	$(C_9H_8NO)_4Bi_2Cl_{10} \cdot (C_9H_8NO)_2(BiCl_5H_2O) \cdot 6H_2O$	OH H,+	C2/c	$M_2X_{10}^{4-}$ unit
VIZFAM	$(C_{3}H_{5}N_{2})_{4}Bi_{2}Br_{10}\cdot 2H_{2}O$		<i>C</i> 2/ <i>m</i>	$M_2 X_{10}^{4-}$ unit
WAVZUP	$(C_5H_{14}N_2)_2Bi_2Cl_{10}\cdot 2H_2O$	H ₂ N ⁺ NH ⁺ CH ₃	$P2_{1}/n$	$M_2 X_{10}^{4-}$ unit
XANKAZ	$(C_{16}H_{19}N_3O_3F)_4Bi_2Cl_{10}\cdot 8H_2O$	H ₂ N ⁺ N F O O O O O O O O O O O O O	C2/m	$M_2 X_{10}^{4-}$ unit
XERLIP	$(C_{10}H_{10}N_2)_2Bi_2Cl_{10}$		<i>P</i> -1	$M_2 X_{10}^{4-}$ unit
ZIKFUU	$(C_2H_8N)_4Bi_2Cl_{10}$	H ₃ C NH ⁺ ₂ H ₃ C	P21/c	$M_2 X_{10}^{4-}$ unit

PUQSAW	$(C_5H_5NBr)_4Sb_2Br_{10}$	HN ⁺ Br	<i>P</i> -1	$M_2 X_{10}^{4-}$ unit
PURLOD	$(C_{10}H_{10}N_2)_4Bi_4Cl_{20}$		P2 ₁ /c	$M_4 X_{20}^{8-}$ unit
PURLOD01	$(C_{10}H_{10}N_2)_4Bi_4Cl_{20}$		P2 ₁ /c	${{ m M}_4 { m X}_{20}}^{8-}$ unit
CEFNIK	$(C_{10}H_{10}N_2)_4Sb_4Cl_{20}$		P2 ₁ /c	${ m M_4 X_{20}}^{ m 8-}$ unit
MADHAB	$(C_{10}H_{10}N_2)_4Sb_4Cl_{20}$		P2 ₁ /c	${ m M_4 X_{20}}^{ m 8-}$ unit

[1] A. Piecha, A. Białońska, R. Jakubas, J. Mater. Chem. 22 (2012) 333

[2] W. Bi, N. Leblanc, N. Mercier, P. Auban-Senzier and C. Pasquier, Chem. Mater. 2009, 21, 4099–4101