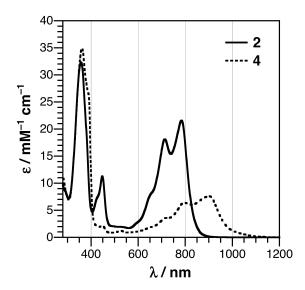
Aluminum complexes of the redox-active [ONO] pincer ligand


Géza Szigethy, Alan F. Heyduk*

Department of Chemistry, University of California, Irvine, California 92697, USA

Supporting Information

Contents

Figure S1. UV-vis-NIR spectra of [ONO^q]Al(acacPh₂)Cl (2) and [ONO^{sq}]Al(acacPh₂)(py) (4).
¹H and ¹³C{¹H} NMR spectra of diamagnetic complexes 1a, 1b, 2, and 3
Crystallographic refinement details for complexes 1b, 2, 6, and 8
S7

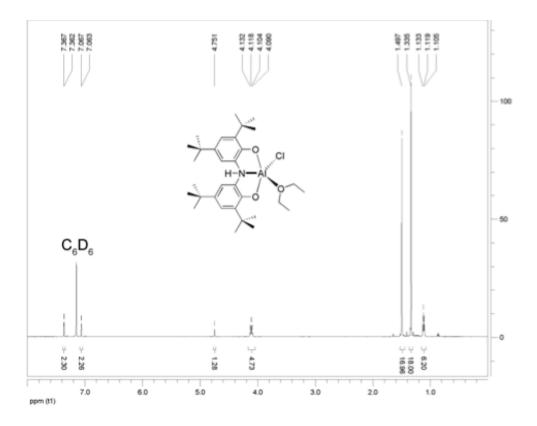
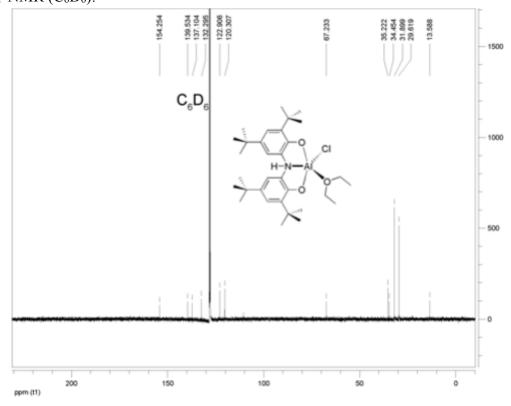
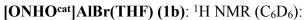
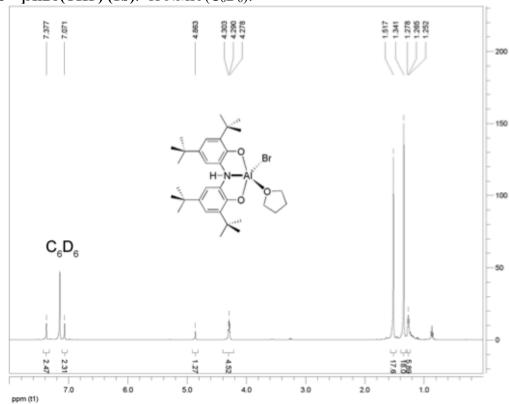
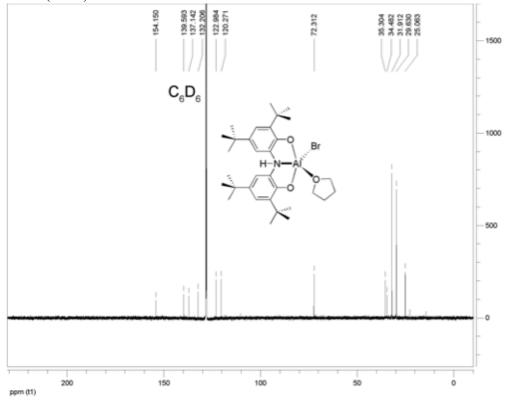


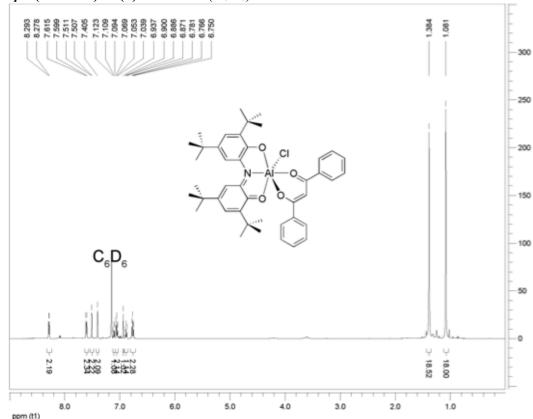
Figure S1. UV-vis-NIR spectra of [ONO^q]Al(acacPh₂)Cl (**2**) and [ONO^{sq}]Al(acacPh₂)(py) (**4**) in C₆H₆ at 298 K.

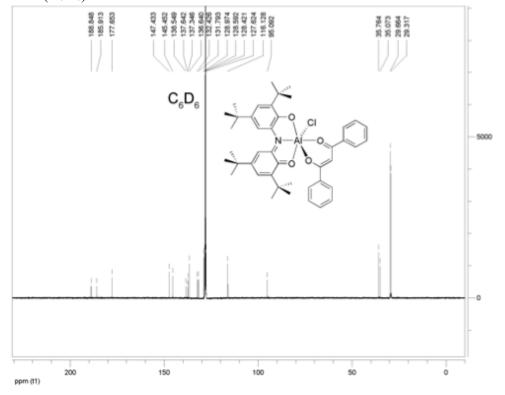

Supplemental 1H and $^{13}C\{^1H\}$ NMR Spectra of Diamagnetic Compounds

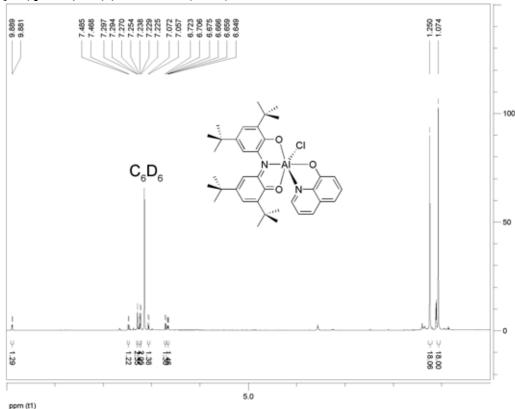

NMR spectra were collected with Bruker Avance 500 MHz spectrometers (1 H 500 MHz, 13 C 128 MHz) in either C_6D_6 or CD_3CN solvents that were degassed by several freeze-pump-thaw cycles, dried with sodium benzophenone ketyl radical or CaH_2 , respectively, and vacuum-distilled before use. 1 H and 13 C (1 H) NMR spectra were referenced to the residual 1 H and 13 C impurities in the solvent (7.15 and 128.02 for C_6D_6 ; 1.94 and 1.24 for CD_3CN , respectively). NMR spectra were measured at 298 K and chemical shifts are reported by using the standard δ notation in parts per million.

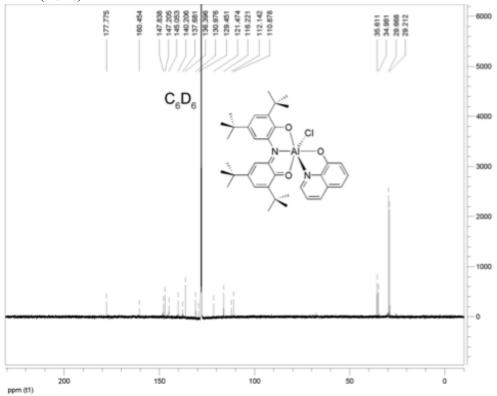

$\textbf{[ONHO}^{\textbf{cat}}\textbf{]HAlCl(OEt_2) (1a): } ^1\textbf{H} \ NMR \ (C_6D_6)\text{:}$


$^{13}C\{^{1}H\}$ NMR ($C_{6}D_{6}$):








$^{13}C\{^{1}H\}$ NMR (C₆D₆):

[**ONO**^q]**Al(quinO)Cl (3)**: ¹H NMR (C₆D₆):

$^{13}C\{^{1}H\}$ NMR ($C_{6}D_{6}$):

Crystallographic Refinement Details

[ONHO^{cat}]AlBr(THF) (1b): A hemisphere of data was collected on a colorless plate of approximate dimensions $0.57 \times 0.17 \times 0.10$ mm using a 25 sec/frame scan time. The diffraction symmetry was 2/m and the systematic absences were consistent with the monoclinic space group $P2_1/n$ that was later determined to be correct.

 $[ONO^q]Al(acacPh_2)Cl$ (2): A hemisphere of data was collected on a black prism of dimensions $0.38 \times 0.20 \times 0.19$ mm using a 45 sec/frame scan time. The diffraction symmetry was 2/m and the systematic absences were consistent with the monoclinic space group $P2_1/n$ that was later determined to be correct.

[ONO]Al(o-O₂C₆Cl₄)(py) (6): A hemisphere of diffraction data was collected on a black block of dimensions $0.20 \times 0.12 \times 0.10$ mm using a 60 sec/frame scan time. The diffraction symmetry was 2/m and the systematic absences were consistent with the monoclinic space group $P2_1/c$ that was later determined to be correct. There was a pocket of disordered solvent that was positioned across an inversion center. Although diethyl-ether molecules could be seen in this disorder, modeling them using standard modeling procedures was not very stable. Additionally, the largest Q-peak was directly on the inversion center too far from another atom to be included in reasonable disorder modeling. Thus, the program SQUEEZE¹ by Spek et. a. in the PLATON² software suite was used to calculate the electron count in this solvent pocket at 69 electrons. This corresponds roughly to 1.5 diethyl-ether molecules, resulting in a total of 3 disordered ether molecules per unit cell, consistent with the disorder observed in the structure during initial refinement.

[ONO]Al(o-O₂C₁₆H₈)(py) (8): A hemisphere of diffraction data was collected on a black plate of dimensions $0.27 \times 0.18 \times 0.06$ mm using a 35 sec/frame scan time. The diffraction

symmetry was 2/m and the systematic absences were consistent with the monoclinic space group $P2_1/c$ that was later determined to be correct. One of the two THF molecules was disordered over two positions with a freely-refined occupancy of 65:35, and was modeled using standard distance restraints.

References

- 1. P. Van Der Sluis and A. L. Spek, *Acta Cryst.*, 1990, **A46**, 194-201.
- 2. A. L. Spek, J. Appl. Cryst., 2003, 36, 7-13.