Synthesis and Characterisation of Anionic and Neutral Gallium(I) N-Heterocyclic Carbene

Analogues

Deepak Dange, Sam L. Choong, Christian Schenk, Andreas Stasch, and Cameron Jones*

School of Chemistry, PO Box 23, Monash University, VIC, 3800, Australia.

SUPPLEMENTARY INFORMATION

S2

Table S1. Summary of crystallographic data for 6a-d, 7, 8, 10, 11, DAB* 1S, Ar*NH₂ 2S, a cyclic isomer of DAB*H₂ 3S and [NaI(18-crown-6)] 4S

	6a·(toluene)	6b ·(benzene) ₃ ^{<i>a</i>}	6c ·(THF) ₂	6d ·(OEt ₂) ^{<i>a</i>}	7 ·(benzene) ₂	$8 \cdot (\text{toluene})_2$	10
empirical formula	C ₈₈ H ₈₈ GaN ₄ Na	C ₉₂ H ₉₀ GaN ₄ Na	C ₉₂ H ₁₀₄ GaN ₂ NaO ₆	$C_{82}H_{92}GaN_4NaO_6$	C ₈₆ H ₈₃ BrGaN ₄ Zn	C ₈₆ H ₈₇ CdGaIN ₄	$C_{29}H_{41}GaN_2$
formula weight	1294.33	1344.39	1426.48	1258.31	1387.56	1509.64	487.36
crystal system	triclinic	orthorhombic	monoclinic	monoclinic	monoclinic	monoclinic	triclinic
space group	<i>P</i> -1	$Pna2_1$	C2/c	<i>P</i> 2 ₁	$P2_1/n$	$P2_{1}/n$	<i>P</i> -1
<i>T</i> (K)	173(2)	173(2)	173(2)	173(2)	123(2)	123(2)	173(2)
<i>a</i> (Å)	12.329(3)	22.532(5)	36.638(7)	12.676(3)	13.5440(5)	13.573(3)	8.0968(7)
<i>b</i> (Å)	12.390(3)	14.975(3)	11.566(2)	20.958(4)	23.6390(11)	23.932(3)	13.8541(14)
<i>c</i> (Å)	24.625(5)	22.623(5)	25.970(5)	14.496(3)	22.6239(10)	23.130(16)	14.1577(16)
α (deg.)	88.71(3)	90	90	90	90	90	62.271(11)
β (deg)	83.10(3)	90	134.67(3)	111.37(3)	101.617(4)	101.35(5)	74.193(9)
γ (deg.)	74.15(3)	90	90	90	90	90	89.796(7)
vol (Å ³)	3592.1(13)	7633(3)	7827(3)	3586.4(12)	7095.0(5)	7366(6)	1338.4(2)
Z	2	4	4	2	4	4	2
ρ (calcd) (g.cm ⁻³)	1.197	1.170	1.211	1.165	1.299	1.361	1.209
$\mu \text{ (mm}^{-1})$	0.438	0.414	0.413	0.438	1.329	1.122	1.046
F(000)	1372	2848	3040	1340	2892	3100	520
reflections collected	22354	23253	14618	12281	25577	29475	14255

unique reflections	13209	13301	7663	12281	12675	12935	7651
R _{int}	0.0288	0.0421	0.0333	0.0000	0.0675	0.0440	0.1012
R1 indices $[I > 2\sigma(I)]$	0.0500	0.0862	0.0506	0.0529	0.0630	0.0624	0.0517
wR2 indices (all data)	0.1324	0.2483	0.1470	0.0908	0.1617	0.1516	0.1218
Largest peak and hole	0.83, -0.40	1.74 (near	0.79, -0.44	0.40, -0.22	1.21, -0.84	2.02 (near I(1)),	1.04, -0.77
(e.A ⁻³)		Ga(1)), -0.76				-1.25	
CCDC No.	866218	866219	866220	866221	866222	866223	866224

a the absolute structure parameters for the racemically twinned crystal structures of **6b** and **6d** were 0.488(18) and 0.438(8) respectively.

	11·(hexane)	18	28	$3S \cdot (OEt_2)$	48
empirical formula	$C_{93}H_{137}Ga_5I_4N_6$	$C_{68}H_{56}N_2$	C ₃₃ H ₂₉ N	C ₇₂ H ₆₈ N ₂ O	C ₁₂ H ₂₄ INaO ₆
formula weight	2195.29	901.15	439.57	977.28	414.20
crystal system	triclinic	triclinic	monoclinic	triclinic	monoclinic
space group	<i>P</i> -1	<i>P</i> -1	$P2_1/n$	<i>P</i> -1	P2 ₁ /n
<i>T</i> (K)	123(2)	173(2)	123(2)	173(2)	173(2)
a (Å)	14.8206(4)	9.1640(18)	9.5232(15)	13.639(3)	13.5047(3)
<i>b</i> (Å)	17.7618(5)	10.472(2)	11.2997(15)	14.388(3)	8.5025(2)
<i>c</i> (Å)	18.7240(6)	13.747(3)	22.111(3)	14.442(3)	15.2667(5)
α (deg.)	84.734(3)	99.63(3)	90	101.09(3)	90
β (deg)	89.572(2)	103.84(3)	93.139(6)	92.85(3)	106.372(3)
γ (deg.)	85.108(2)	99.14(3)	90	96.22(3)	90

S4

vol (Å ³)	4890.2(2)	1235.3(4)	2375.8(6)	2757.7(10)	1681.79(8)
Z	2	1	4	2	4
ρ (calcd) (g.cm ⁻³)	1.491	1.211	1.229	1.177	1.636
$\mu \text{ (mm}^{-1})$	2.666	0.069	0.070	0.068	1.949
F(000)	2208	478	936	1044	832
reflections collected	30630	8046	16304	20230	6907
unique reflections	17610	4316	4181	10803	2946
R _{int}	0.0466	0.0768	0.1468	0.0336	0.0209
R1 indices $[I > 2\sigma(I)]^a$	0.0553	0.0597	0.0657	0.0505	0.0343
wR2 indices (all data) ^b	0.1476	0.1550	0.1529	0.1423	0.0917
Largest peak and hole	2.00 (near	0.18, -0.16	0.28, -0.31	0.32, -0.26	1.97 (near I(1)),
(e.A ⁻³)	I(2)), -1.22				-1.32
CCDC No.	866225	866214	866215	866216	866217

Figure S1. Molecular structure of **7** (25% displacement ellipsoids are shown; hydrogens omitted). See main text for geometrical parameters.

Figure S2. Molecular structure of **1S** (25% displacement ellipsoids are shown; hydrogens omitted). Selected bond lengths (Å) and angles (°): N(1)-C(1) 1.258(3), N(1)-C(2) 1.432(3), C(1)-C(1)' 1.464(5), C(1)-N(1)-C(2) 119.1(2), N(1)-C(1)-C(1)' 121.3(3). Symmetry operation: '-x, -y+1, -z.

Figure S3. Molecular structure of 2S (25% displacement ellipsoids are shown; non-amino hydrogens omitted).

Figure S4. Molecular structure of **38** (25% displacement ellipsoids are shown; non-amino hydrogens omitted). Selected bond lengths (Å) and angles (°): N(1)-C(1) 1.468(2), C(1)-C(2) 1.526(2), C(1)-C(43) 1.558(2), N(2)-C(36) 1.395(2), N(2)-C(2) 1.448(2), C(36)-C(37) 1.408(2), C(37)-C(43) 1.536(2), N(1)-C(1)-C(2) 113.54(13), N(2)-C(2)-C(1) 110.04(14), C(36)-N(2)-C(2) 121.40(14), N(2)-C(36)-C(37) 121.35(15), C(36)-C(37)-C(43) 120.09(14), C(37)-C(43)-C(1) 107.48(13).

Selected data for **3S**: M.p. 216-218 °C; ¹H NMR (C₆D₆, 400 MHz, 296 K): $\delta = 1.87$ (s, 3H, ArCH₃), 1.98 (s, 3H, ArCH₃), 2.49 (d, ²J_{HH} = 12Hz, 1H, C(2)*H*), 2.85 (d, ²J_{HH} = 12Hz, 1H, C(2)*H*), 3.58 (br. s, 1H, N(2)*H*), 3.96 (br. d, 1H, N(1)*H*), 4.25 (br. d of t, 1H, C(1)*H*), 5.50 (s, 1H, C*H*Ph₂), 6.61 (s, 2H, C*H*Ph₂), 7.18-6.80 (m, 44H, Ar*H*); IR (Nujol) ν /cm⁻¹: 3127 (bw, NH), 1596(w), 1261(w), 1154(m), 1077 (s), 1028 (m), 850(m), 722(m); MS EI: *m*/*z* (%): 903.2 (MH⁺, 100), 440.2 (Ar*NH₃⁺, 30); acc. mass. calc for C₆₈H₅₈N₂: 902.4600, found: 902.4673.

Figure S5. Molecular structure of **4S** (25% displacement ellipsoids are shown; hydrogens omitted). Selected bond lengths (Å): I(1)-Na(1) 3.1381(14), Na(1)-O(3) 2.476(3), Na(1)-O(5) 2.496(3), Na(1)-O(1) 2.536(3), Na(1)-O(4) 2.575(3), Na(1)-O(2) 2.585(3), Na(1)-O(6) 2.631(3).

Table S2. Cartesian coordinates for the calculated structure of 11 (total energy: -13385.76182

Hartree)

I	-0.76700	3.73900	3.61400
Ga	-0.14300	3.76100	1.00700
Ga	-0.12600	1.38900	0.10900
Ν	-1.44600	5.10400	0.26400
Ν	1.45000	5.01900	0.93500
I	-0.05500	1.61800	-2.72200
Ī	2 47200	0.20300	0.60200
Ġ.	0.00500	-1 13200	0.11/00
Ga Ga	0.00500	1 27600	2 45000
Ua Ca	-0.04000	-1.27000	-2.43900
Ga	-0.20300	-3.12/00	1.05100
IN	1.30900	-1.69900	-3.93/00
N	-1.65/00	-1.64800	-3.61000
I	-0.87700	-5.21200	0.09900
Ν	1.25100	-3.85200	2.81600
Ν	-1.61700	-3.15700	3.12300
С	-1.33200	6.35200	0.78900
С	1.21900	6.31400	1.22500
С	0.88800	-4.88900	3.62800
С	0.96700	-1.45800	-5.21700
С	-1.59500	-1.24400	-4.90400
Ċ	-1.52600	-4.09300	4.07900
Ċ	-0 11400	6 81000	1 34100
\tilde{c}	-0.43400	-5.02000	4 09000
c	-0.35600	-1 0/900	-5 55700
C	2 33000	4 73700	0.80100
C	-2.33000	4.73700	-0.80100
C	-3.32700	5.73900	-0.38700
C	-2.18300	2.27400	-2.09400
C	-4.16900	3.37400	-1.65000
C	-3.53100	3.10900	0.76900
С	-3.05200	4.90300	-3.12700
С	-1.15100	6.37200	-2.41700
Η	-4.95600	2.62300	-1.46100
С	-4.05800	3.94400	-2.93400
Η	-4.52600	2.62100	0.82900
Η	-3.44400	3.84500	1.59700
Η	-2.77500	2.31800	0.98600
Η	-2.93000	5.36100	-4.12500
Н	-0.61800	6.12300	-3.36100
Н	-0.39600	6.49200	-1.61700
Н	-1.63000	7.36600	-2.57500
С	-4 99200	3 53200	-4 05000
н	-4 90300	2,44500	-4 27600
н	-4 77900	4 08900	-4 98800
н	-6.05600	3 71900	-3 78000
C	-0.03000	1 12600	0.55400
C	2.71100	4.45000	0.33400
C	2 5 1 8 0 0	4.40000	-0.81100
C	5.51800	3.77000	1.51500
C	4.32500	5.87700	-1.18200
C	2.23700	5.13100	-1.85500
C	4.73500	3.20400	1.09200
С	3.11000	3.66300	2.96400
Η	4.62900	3.91800	-2.24300
С	5.16500	3.24500	-0.24700
Η	2.69700	5.04700	-2.86200
Η	2.07400	6.21200	-1.64300
Η	1.23000	4.65900	-1.90400
Н	5.37100	2.71000	1.84700
Н	2.62800	4.58800	3.34400

Н	3.98600	3.43000	3.60600
Н	2,36600	2.84800	3 11100
C	6 46200	2 59200	-0.67100
н	6 32200	1 / 9900	-0.8/100
ц	7 25000	2 70300	0.10600
п	7.23000	2.70300	1 (1900
Н	6.84900	3.02600	-1.61800
C	-2.53800	7.35000	0.94700
С	-2.77600	7.49400	2.48000
С	-2.20800	8.74100	0.34800
С	-3.88200	6.89200	0.33900
Η	-3.65000	8.16000	2.65900
Η	-1.90300	7.93000	3.01000
Η	-2.98700	6.50600	2.94500
Н	-2.00400	8.67500	-0.74300
Н	-1 32900	9 22000	0.82800
н	-3 07500	9 42400	0.49000
ц	4 20400	5.00500	0.72800
п	-4.20400	5.90500	0.72800
Н	-3.80500	0.83700	-0.76700
Н	-4.66200	7.63200	0.62700
C	2.32000	7.40400	1.51200
С	2.16200	7.84500	2.99700
С	2.09000	8.62500	0.58000
С	3.79900	6.98900	1.33200
Η	2.29500	6.98300	3.68600
Η	1.17300	8.29900	3.21300
Н	2.94100	8.60200	3.24100
н	1.08900	9.08700	0.70800
н	2 19400	8 33600	-0.48900
н	2.15400	9.40600	0.79/00
ц	2.03400	7 87600	1 56400
11 11	4.43000	7.87000	0.20700
п	4.05800	0.07100	0.29700
H	4.10600	6.17700	2.01800
Н	-0.18200	7.79900	1.80400
С	2.56000	-2.26500	-3.49900
С	2.67600	-3.67700	-3.38000
С	3.65000	-1.42300	-3.15900
С	3.91400	-4.22400	-2.99600
С	1.50600	-4.58400	-3.67600
С	4.86300	-2.02400	-2.76300
С	3.56100	0.08100	-3.25300
Н	4.00700	-5.32300	-2.93500
C	5 02800	-3 41800	-2.69000
н	1 80500	-5 65100	-3 61000
н	1.00500	4 40600	4 68700
ц	0.68000	4 42700	-4.00700
и П	5 71800	1 26700	-2.94400
п	3.71800	-1.50/00	-2.32700
н	2.93400	0.42000	-4.10400
Н	4.57100	0.53100	-3.35600
Н	3.10200	0.51100	-2.33300
С	6.34300	-4.03600	-2.27000
Η	6.31300	-4.37500	-1.20800
Η	7.18300	-3.31400	-2.36200
Н	6.59000	-4.93000	-2.88500
С	-2.74900	-2.41200	-3.07300
С	-3.59200	-1.85600	-2.06900
Ċ	-2.97300	-3,74200	-3.52700
č	-4 67500	-2 61700	-1 59/00
c	-3 38300	_0 / 5000	_1 5/200
C	4 07500	4 15000	2 01700
C	-4.0/300	-4.45800	-3.01/00
U	-2.06/00	-4.45100	-4.51100
H	-5.34200	-2.16100	-0.84200
С	-4.94800	-3.91700	-2.05900
Η	-4.27300	-0.10800	-0.98200

Η	-3.15300	0.27500	-2.34500
Η	-2.52100	-0.40900	-0.83300
Η	-4.24900	-5.48300	-3.38800
Η	-1.47100	-5.23100	-3.98500
Η	-1.35300	-3.77300	-5.01700
Η	-2.66000	-4.97400	-5.29400
С	-6.11300	-4.71900	-1.52200
Η	-6.56000	-5.36800	-2.30700
Н	-6.91400	-4.06100	-1.12200
Н	-5.79000	-5.38900	-0.69100
C	1.91400	-1.57700	-6.47600
C	2.00900	-0.17500	-7.14600
C	1.28300	-2.58900	-7.47400
C	3.37100	-2.04600	-6.25200
H	2.68700	-0.23500	-8.02700
H	2.42900	0.57700	-6.44400
H	1.03100	0.20700	-7.50600
H	0.26800	-2.29200	-/.80900
H	1.20/00	-3.60100	-/.01900
H	1.92800	-2.6/300	-8.3/800
H	3.44100	-3.05400	-5./9600
H	3.96100	-1.34600	-5.63000
П	2.80400	-2.09/00	-7.24900
C	-2.83200	-0.90900	-3.79300
C	-2.08/00	0.30400	-0.27700
C	-2.91700	-1.64/00	-7.02800 5.00400
с ц	-4.22800	1 25700	-3.09400 5.41300
н Ц	-2.38700	0.86300	-3.41300 6 86000
н	-1.80500	0.80300	-6.93300
н	1 00000	1 70500	7 65200
н	-3 77700	-1 55900	-7.67300
н	-3.06300	-2 90500	-6 72200
н	-4 52900	-1 99900	-4 81000
н	-4 99300	-0 58500	-5 80400
Н	-4.26500	-0.33300	-4.18900
C	2.55400	-3.24600	2.82500
Č	2.97700	-2.48600	3.95300
Ĉ	3.39700	-3.32800	1.68000
C	4.25900	-1.90100	3.94200
C	2.09500	-2.23500	5.15900
С	4.66800	-2.72600	1.72300
С	2.95500	-4.01900	0.41400
Н	4.58000	-1.32700	4.82900
С	5.13000	-2.01400	2.84600
Η	2.64400	-2.43400	6.10600
Η	1.17600	-2.85200	5.16000
Η	1.78200	-1.16700	5.18800
Η	5.31700	-2.81400	0.83500
Η	2.46000	-3.29500	-0.27500
Η	2.23000	-4.83600	0.59800
Η	3.82300	-4.43000	-0.14100
С	6.49100	-1.35500	2.84700
Η	7.25000	-1.97900	2.32500
Η	6.85500	-1.16500	3.88000
Η	6.46200	-0.37200	2.32200
С	-2.63800	-2.14800	3.01400
С	-2.37500	-0.84200	3.50400
C	-3.87100	-2.44600	2.37300
C	-3.39200	0.13100	3.41900
C	-1.05800	-0.50900	4.16100
C	-4.85400	-1.44000	2.32200
С	-4.15900	-3.80700	1.78800

Н	-3.18800	1.13800	3.82000
С	-4.65000	-0.15300	2.85800
Η	-0.91400	-1.08000	5.10700
Η	-0.99200	0.57400	4.39400
Η	-0.19500	-0.76500	3.50600
Η	-5.83000	-1.68500	1.86600
Η	-3.81400	-4.63500	2.44300
Η	-3.63400	-3.95000	0.81600
Η	-5.24700	-3.93600	1.60800
С	-5.76700	0.86800	2.86300
Η	-6.26900	0.93700	1.87200
Η	-5.39700	1.87900	3.13300
Η	-6.55600	0.59500	3.60200
С	1.91000	-5.99700	4.08300
С	2.81700	-6.42000	2.90200
С	2.79100	-5.52200	5.26800
С	1.18100	-7.28600	4.55100
Η	3.48400	-5.60200	2.56800
Η	2.21100	-6.76200	2.03500
Η	3.46500	-7.26700	3.22200
Η	3.41200	-6.37400	5.62900
Η	2.16600	-5.17500	6.12000
Η	3.47700	-4.70200	4.97800
Η	1.94100	-8.08100	4.71700
Η	0.46300	-7.65800	3.78900
Η	0.64400	-7.15600	5.51500
Η	-0.45400	-0.68600	-6.58400
С	-2.51100	-4.29400	5.29400
С	-3.68300	-3.29600	5.44400
С	-3.13900	-5.71400	5.20900
С	-1.67800	-4.18000	6.60400
Η	-4.22200	-3.54600	6.38600
Η	-4.41700	-3.35800	4.61800
Η	-3.34700	-2.24300	5.52400
Η	-2.38600	-6.52900	5.25300
Η	-3.72300	-5.84300	4.27200
Η	-3.83500	-5.85900	6.06400
Η	-2.34600	-4.32300	7.48300
Η	-1.21400	-3.17300	6.69200
Η	-0.86700	-4.93400	6.66400
Η	-0.60900	-5.89000	4.72400