Revised DT-ART-20-2012-030344

Supporting Informations

for

Bis(acetonitrile)bis(acetylacetonato)ruthenium(III) mediated chemical transformations of coordinated 2-methylthioanilide

Sudipta Chatterjee,[†] Sutanuva Mandal,[†] Subhas Samanta[†] and Sreebrata Goswami^{†,*}

[†] Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, Kolkata 700 032, India.

E-mail: icsg@iacs.res.in

	TABLE OF CONTENTS		
	LIST OF TABLES	Page Number	
Table S1	Solvent Effect on the position of the Long-Wavelength v_{max} (cm ⁻¹) of 1c with dipole moment of the solvent.	4	
	LIST OF FIGURES		
Figures S1– S4	ESI-MS spectra of the compounds 1a–d . Inset: simulated isotopic pattern.	5-8	
Figures S5– S6	¹ H NMR spectra of the compounds 1b and 1d in chloroform-d solvent.	9-10	
Figures S7–S10	FT IR spectra of the compounds, 1a–d .	11-14	
Figure S11	The X-band EPR spectrum of frozen CH_2Cl_2 solutions of 1a at 140 K.	15	
Figure S12	Cyclic voltammogram of complex 1b CH ₃ CN containing 0.1 M NEt ₄ ClO ₄ and the X-band EPR spectra of frozen CH ₂ Cl ₂ solutions of 1b⁺ and 1b⁻ .	15	
Figure S13	Cyclic voltammogram of complex $1d$ in CH ₃ CN containing 0.1 M NEt ₄ ClO ₄ and the X-band EPR spectra of frozen CH ₂ Cl ₂ solutions of $1d^+$ and $1d^-$.	16	
Figure S14	EPR spectra of 1a illustrating the temperature dependent redox isomerism.	17	
Figure S15	Temperature dependent spectral change for the complex 1a .	18	
Figure S16	 UV-visible spectrum of 1c in dichloromethane. Inset: λ_{max} (nm) as a function of solvent (color code: • Water, 537 nm; • EtOH, 541 nm; CH₃CN, 549 nm; • CH₂Cl₂, 555 nm; • toluene, 569 nm; • n-hexane, 571 nm). 	18	
Figure S17	Correlation between the energy of the CT band and the dipole moment (μ) of the solvent ($E = 153.57153\mu + 17557.34741$).	19	
Figure S18	Segmented cyclic voltammogram (v = 1000 mV s ⁻¹) of complex 1c in CH ₃ CN and MeOH containing 0.1 M NEt ₄ ClO ₄ . Potentials are referenced to Ag/AgCl (satd. KCl).	19	

Figure S19	Concentration-dependent optical spectra of $1c$ in CH ₃ CN solution. Arrows indicate changes in CT bands upon dilution from 5×10^{-5} to 1.5×10^{-3} M.	20
Figure S20	Crystal packing diagrams of 1c . (a) View of the packing of the molecule in columns with a close and a more distant neighbor. (b) Direction of Dipole Moment (c) Distance between the aromatic backbones of two neighboring molecule. (d) Top view of the dimeric unit.	21

Table S1. Solvent Effect on the position of the Long-Waveleng	th v_{max} (cm ⁻¹) of 1c with
dipole moment of the solvent	

Solvent	$v (cm^{-1})$	Dipole Moment (D)
n-Heptane	17513.1348511	0.00
n-Hexane	17513.1348511	0.00
Toluene	17574.6924428	0.37
Dichloromethane	18018.018018	1.60
Dimethylformamide	18018.018018	3.82
Dimethylsulfoxide	18148.8203266	3.96
Acetonitrile	18214.9362477	3.92

Figure S1. Experimental and simulated (inset) ESI mass spectra for the complex 1a.

Figure S2. Experimental and simulated (inset) ESI mass spectra for the complex 1b.

Figure S3. Experimental and simulated (inset) ESI mass spectra for the complex 1c.

Figure S4. Experimental and simulated (inset) ESI mass spectra for 1d.

Figure S5. ¹H NMR spectrum of the complex 1b in CDCl₃.

Figure S6. ¹H NMR spectrum of the complex 1d in CDCl₃.

Figure S7. FT IR spectrum of the compound 1a.

Figure S8. FT IR spectrum of the compound 1b.

Figure S9. FT IR spectrum of the compound 1c.

Figure S10. FT IR spectrum of the compound 1d.

Figure S11. The X-band EPR spectrum of frozen CH₂Cl₂ solutions of 1a at 140 K.

Figure S12. (a) Cyclic voltammogram of complex 1b in CH_3CN containing 0.1 M NEt_4ClO_4 and the X-band EPR spectra of frozen CH_2Cl_2 solutions of $1b^+$ and $1b^-$.

Figure S13. Cyclic voltammogram of complex 1d in CH_3CN containing 0.1 M NEt₄ClO₄ and the Xband EPR spectra of frozen CH_2Cl_2 solutions of $1d^+$ and $1d^-$.

Figure S14. EPR spectra of **1a** illustrating the temperature dependent redox isomerism.

Figure S15. Temperature dependent spectral change for the complex 1a.

Figure S16. UV-visible spectrum of **1c** in dichloromethane. Inset: λ_{max} (nm) as a function of solvent (color code: • Water, 537 nm; • EtOH, 541 nm; • CH₃CN, 549 nm; • CH₂Cl₂, 555 nm; • toluene, 569 nm; • n-hexane, 571 nm).

Figure S17. Correlation between the energy of the CT band and the dipole moment (μ) of the solvent ($E = 153.57153\mu + 17557.34741$).

Figure S18. Segmented cyclic voltammogram ($v = 1000 \text{ mV s}^{-1}$) of complex **1c** in CH₃CN and CH₃OH containing 0.1 M NEt₄ClO₄. Potentials are referenced to Ag/AgCl (satd. KCl).

Figure S19. Concentration-dependent optical spectra of **1c** in CH₃CN solution. Arrows indicate changes in CT bands upon dilution from 5×10^{-5} to 1.5×10^{-3} M.

Figure S20. Crystal packing diagrams of **1c**. (a) View of the packing of the molecule in columns with a close and a more distant neighbor. (b) Direction of Dipole Moment (c) Distance between the aromatic backbones of two neighboring molecule. (d) Top view of the dimeric unit.