Electronic Supplementary Information

Photophysical and Electrochemical Properties of 1,3-bis(2pyridylimino)isoindolate Platinum(II) Derivatives

Kenneth Hanson,^a Luke Roskop,^b Niral Patel,^a Laurent Griffe,^a Peter I. Djurovich,^a Mark S. Gordon^b and Mark E. Thompson^a

^aDepartment of Chemistry, University of Southern California, Los Angeles, CA 90089 ^bDepartment of Chemistry, Iowa State University, Ames, Iowa, 50011

Contents

1.	Chart 1	Page S3
2.	Figure S1. HOMO and LUMO orbitals and energies for	
	complexes 1-12.	Page S4
3.	Figure S2. Orbitals, energies and lowest energy vertical excitation	
	of BPI and 1.	Page S5
4.	Figure S3. Room-temperature absorption spectra of complexes 1-6	
	(top) and 7-12 (bottom) in CH_2Cl_2 .	Page S6
5.	Table S1 . The relative intensities and the orbitals involved in the	
	20 lowest energy transitions of 6 found by TDDFT.	Page S7
6.	Figure S4. Room-temperature absorption spectra of complex 7 in	
	various solvents.	Page S7
7.	Figure S5. Room-temperature emission spectra of complexes 1-5	
	(top) and 7-12 (bottom) in toluene.	Page S8
8.	Figure S6. Room-temperature emission spectra of complex 7 in	
	various solvents.	Page S9
9.	Figure S7. Emission spectra of complexes 1-6 (top) and 7-14	
	(bottom) in 2-MeTHF at 77K.	Page S10
10.	Figure S8. CV traces for 1 and 6 in CH ₂ Cl ₂ .	Page S11
11.	Figure S9. CV traces for 1 and 6 in CH ₂ Cl ₂ .	Page S11
12.	Figure S10. CV traces for 1 and 6 in CH_2Cl_2 .	Page S12
13.	Figure S11. CV traces for 1 and 6 in CH_2Cl_2 .	Page S12
14.	Figure S12. 250MHz ¹ H NMR spectra of BPI (CDCl ₃).	Page S13
15.	Figure S13. 400 MHz 1 H NMR spectra of complex 1 (CDCl ₃).	Page S13
16.	Figure S14. 400 MHz 1 H (top) and 100 MHz 13 C (bottom) NMR	
	spectra of 2 (CDCl ₃).	Page S14
17.	Figure S15. 400 MHz ¹ H (top) and 100 MHz ¹³ C (bottom) NMR	
	spectra of 3 (CDCl ₃).	Page S15
18.	Figure S16. 400 MHz ¹ H (top) and 100 MHz ¹³ C (bottom) NMR	
	spectra of 4 (CDCl ₃).	Page S16
19.	Figure S17. 400 MHz ¹ H (top) and 100 MHz ¹³ C (bottom) NMR	
	spectra of 5 (CDCl ₃).	Page S17

20.	Figure S18. 400 MHz ¹ H (top) and 100 MHz ¹³ C (bottom) NMR	
	spectra of 6 (CDCl ₃).	Page S18
21.	Figure S19. 250 MHz ¹ H NMR spectra of 4-t-BuBPI (CDCl ₃).	Page S19
22.	Figure S20. 400 MHz ¹ H (top) and 100 MHz ¹³ C (bottom) NMR	
	spectra of 7 (CDCl ₃).	Page S20
23.	Figure S21. 250 MHz ¹ H NMR spectra of $3-NO_2BPI$ (CDCl ₃).	Page S21
24.	Figure S22. 400 MHz ¹ H NMR spectra of 8 (CDCl ₃).	Page S21
25.	Figure S23. 250 MHz ¹ H NMR spectra of 4 -NO ₂ BPI (CDCl ₃).	Page S22
26.	Figure S24. 400 MHz 1 H NMR spectra of 9 (CDCl ₃).	Page S22
27.	Figure S25. 250 MHz ¹ H NMR spectra of $4-OC_5H_{11}BPI$ (CDCl ₃).	Page S23
28.	Figure S26. 400 MHz ¹ H (top) and 100 MHz ¹³ C (bottom) NMR	
	spectra of 10 (CDCl ₃).	Page S24
29.	Figure S27. 250 MHz ¹ H NMR spectra of 4-IBPI (CDCl ₃).	Page S25
30.	Figure S28. 400 MHz 1 H NMR spectra of 11 (CDCl ₃).	Page S25
31.	Figure S29. 250 MHz 1 H NMR spectra of 4,5-diClBPI (CDCl ₃).	Page S26
32.	Figure S30. 400 MHz ¹ H NMR spectra of 12 (CDCl ₃).	Page S26
33.	Figure S31. ORTEP diagram of 6 with atom labels. Selected	
	hydrogen atoms omitted for clarity.	Page S27
34.	Table S2. Crystal data and structure refinement for 6.	Page S28
35.	Table S3. Atomic coordinates $(x \ 10^4)$ and equivalent isotropic	
	displacement parameters ($Å^2 \times 10^3$) for 6 .	Page S30
36.	Table S4. Bond lengths [Å] and angles [°] for 6.	Page S32
37.	Table S5. Anisotropic displacement parameters $(Å^2 \times 10^3)$ for 6.	Page S33
38.	Table S6. Hydrogen coordinates $(x \ 10^4)$ and isotropic displacement	
	parameters ($Å^2 \ge 10^3$) for 6 .	Page S34

Chart 1

R5 R4 R3						
Complex	Х	R_3	R ₄	R_5		
1	CI	Н	Н	Н		
2	F	Н	Н	Н		
3	CN	Н	Н	Н		
4	OOCCH ₃	Н	Н	Н		
5	Ph	Н	Н	Н		
6	PhNMe ₂	Н	Н	Н		
7	CI	Н	t-Bu	Н		
8	CI	NO_2	Н	Н		
9	CI	Н	NO_2	Н		
10	CI	Н	OC_5H_{11}	Н		
11	CI	Н	I	Н		
12	CI	Н	CI	CI		

Transition	Energy	Dominent Contributor (square of	Relative
Transition	(nm)	the amplitude)	intensity
1	661	HOMO \rightarrow LUMO (1.00)	7.31E-04
2	476	HOMO-1 \rightarrow LUMO (0.81)	0.23364
3	431	HOMO-2 \rightarrow LUMO (0.99)	2.10E-05
4	419	HOMO \rightarrow LUMO+1 (0.99)	4.50E-04
5	374	HOMO \rightarrow LUMO+2 (0.53)	0.10901
-	• • •	HOMO-4 \rightarrow LUMO (0.39)	
6	372	HOMO-4 \rightarrow LUMO (0.45)	0 17091
0	512	HOMO \rightarrow LUMO+2 (0.45)	0.17071
7	371	HOMO-3 \rightarrow LUMO (0.74)	0.124
8	352	HOMO-5 \rightarrow LUMO (0.82)	0.00487
9	351	HOMO-7 \rightarrow LUMO (0.79)	0.00137
10	350	HOMO \rightarrow LUMO+3 (0.95)	0.00458
11	335	HOMO-1 \rightarrow LUMO+1 (0.89)	0.05926
12	329	HOMO-6 \rightarrow LUMO (0.87)	0.29268
13	315	HOMO \rightarrow LUMO+6 (0.82)	0.00791
14	311	HOMO-8 \rightarrow LUMO (0.67)	7.22E-04
15	308	HOMO-2 \rightarrow LUMO+1 (0.98)	9.61E-04
16	306	HOMO-1 \rightarrow LUMO+2 (0.83)	0.01336
17	305	HOMO-9 \rightarrow LUMO (0.64)	0.00284
18	300	HOMO \rightarrow LUMO+4 (0.96)	1.60E-05
19	297	HOMO-10 \rightarrow LUMO (0.87)	7.68E-04
20	295	HOMO \rightarrow LUMO+5 (0.77)	0.02447

Table S1. The relative intensities and the orbitals involved in the 20 lowest energy transitions of **6** found by TDDFT.

Figure S8. CV traces for 1 and 6 in CH_2Cl_2 .

Figure S9. CV traces for 7 and 8 in CH₂Cl₂.

Figure S10. CV traces for 9 and 10 in CH₂Cl₂.

Figure S11. CV traces for 11 and 12 in CH₂Cl₂.

Figure S12. 250MHz ¹H NMR spectra of BPI (CDCl₃).

Figure S13. 400 MHz ¹H NMR spectra of complex 1 (CDCl₃).

Figure S14. 400 MHz 1 H (top) and 100 MHz 13 C (bottom) NMR spectra of **2** (CDCl₃).

Figure S15. 400 MHz ¹H (top) and 100 MHz ¹³C (bottom) NMR spectra of **3** (CDCl₃).

Figure S16. 400 MHz 1 H (top) and 100 MHz 13 C (bottom) NMR spectra of 4 (CDCl₃).

Figure S18. 400 MHz ¹H (top) and 100 MHz ¹³C (bottom) NMR spectra of 6 (CDCl₃).

Figure S19. 250 MHz ¹H NMR spectra of 4-t-BuBPI (CDCl₃).

Figure S20. 400 MHz 1 H (top) and 100 MHz 13 C (bottom) NMR spectra of 7 (CDCl₃).

Figure S21. 250 MHz ¹H NMR spectra of $3-NO_2BPI$ (CDCl₃).

Figure S22. 400 MHz ¹H NMR spectra of 8 (CDCl₃).

Figure S24. 400 MHz ¹H NMR spectra of **9** (CDCl₃).

Figure S28. 400 MHz ¹H NMR spectra of **11** (CDCl₃).

Figure S29. 250 MHz ¹H NMR spectra of 4,5-diClBPI (CDCl₃).

Figure S30. 400 MHz ¹H NMR spectra of **12** (CDCl₃).

Figure S31. ORTEP diagram of 6 with atom labels. Selected hydrogen atoms omitted for clarity.

Table S2.	Crystal	data an	d structure	refinement	for 6 .
-----------	---------	---------	-------------	------------	----------------

Empirical formula	$C_{26}H_{22}N_6Pt$		
Formula weight 613.59			
Temperature	296(2) K		
Wavelength	0.71073 Å		
Crystal system	Monoclinic		
Space group	C 2/c		
Unit cell dimensions	a = 11.1436(7) Å	$\alpha = 90^{\circ}$.	
	b = 23.4283(13) Å	$\beta = 115.0110(10)^{\circ}.$	
	c = 9.3583(6) Å	$\gamma = 90^{\circ}$.	
Volume	2214.1(2) Å ³		
Z	4		
Density (calculated)	1.841 Mg/m ³		
Absorption coefficient	6.365 mm ⁻¹		
F(000)	1192		
Crystal size	$0.29 \ x \ 0.17 \ x \ 0.10 \ mm^3$		
Theta range for data collection	2.20 to 30.53°.		
-15<=h<=15, -32<=k<=33, -13<=l<=13		<=l<=13	
Reflections collected 26464			
Independent reflections	3363 [R(int) = 0.0251]		
Completeness to theta = 30.53°	99.2 %		
Absorption correction	Semi-empirical from equivalen	ts	
Max. and min. transmission	0.54 and 0.46		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	3363 / 0 / 153		
Goodness-of-fit on F ²	1.143		
Final R indices $[I > 2\sigma(I)]$ R1 = 0.0186, wR2 = 0.0427			
R indices (all data)	R1 = 0.0221, wR2 = 0.0452		
Largest diff. peak and hole 1.301 and -1.003 e.Å ⁻³			

Table S3. Atomic coordinates $(x \ 10^4)$ and equivalent isotropic displacement parameters $(\text{\AA}^2 x \ 10^3)$ for 6. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	X	У	Z	U(eq)
C(1)	7150(3)	6858(1)	1778(3)	57(1)
C(2)	8125(3)	6904(1)	1268(4)	65(1)
C(3)	8550(4)	6422(1)	777(5)	79(1)
C(4)	7998(4)	5912(1)	877(5)	77(1)
C(5)	7021(3)	5872(1)	1458(3)	56(1)
C(6)	5780(3)	5167(1)	2045(3)	54(1)
C(7)	5470(3)	4562(1)	2202(3)	60(1)
C(8)	5956(4)	4057(1)	1874(4)	75(1)
C(9)	5460(5)	3550(1)	2193(4)	85(1)
C(10)	5000	7231(1)	2500	45(1)
C(11)	4269(2)	7553(1)	1150(3)	51(1)
C(12)	4249(3)	8146(1)	1144(4)	62(1)
C(13)	5000	8457(2)	2500	69(1)
C(14)	4308(7)	9362(2)	1067(8)	165(3)
N(1)	6555(2)	6358(1)	1870(3)	48(1)
N(2)	6653(3)	5318(1)	1558(3)	63(1)
N(3)	5000	5497(1)	2500	48(1)
N(4)	5000	9052(2)	2500	139(3)
Pt(1)	5000	6368(1)	2500	43(1)

C(1)-C(2)	1.364(4)
C(1)-N(1)	1.367(3)
C(1)-H(1)	0.9300
C(2)-C(3)	1.378(4)
C(2)-H(2)	0.9300
C(3)-C(4)	1.365(4)
C(3)-H(3)	0.9300
C(4)-C(5)	1.410(4)
C(4)-H(4)	0.9300
C(5)-N(1)	1.372(3)
C(5)-N(2)	1.376(3)
C(6)-N(2)	1.286(3)
C(6)-N(3)	1.360(3)
C(6)-C(7)	1.480(3)
C(7)-C(7)#1	1.381(6)
C(7)-C(8)	1.388(4)
C(8)-C(9)	1.395(5)
C(8)-H(8)	0.9300
C(9)-C(9)#1	1.370(9)
C(9)-H(9)	0.9300
C(10)-C(11)	1.400(3)
C(10)-C(11)#1	1.400(3)
C(10)-Pt(1)	2.022(3)
C(11)-C(12)	1.388(4)
C(11)-H(11)	0.9300
C(12)-C(13)	1.394(4)
C(12)-H(12)	0.9300
C(13)-C(12)#1	1.394(4)
C(13)-N(4)	1.395(5)
C(14)-N(4)	1.430(6)
C(14)-H(14A)	0.9600
C(14)-H(14B)	0.9600
C(14)-H(14C)	0.9600
N(1)-Pt(1)	2.053(2)

Table S4. Bond lengths [Å] and angles [°] for 6.

N(3)-C(6)#1	1.360(3)
N(3)-Pt(1)	2.038(3)
N(4)-C(14)#1	1.430(6)
Pt(1)-N(1)#1	2.053(2)
C(2) $C(1)$ $N(1)$	124 8(2)
C(2) - C(1) - N(1)	124.8(3)
V(2)-V(1)-H(1)	117.6
N(1)-C(1)-H(1)	11/.6
C(1) - C(2) - C(3)	119.2(3)
C(1)-C(2)-H(2)	120.4
C(3)-C(2)-H(2)	120.4
C(4) - C(3) - C(2)	117.8(3)
C(4)-C(3)-H(3)	121.1
C(2)-C(3)-H(3)	121.1
C(3)-C(4)-C(5)	121.9(3)
C(3)-C(4)-H(4)	119.0
C(5)-C(4)-H(4)	119.0
N(1)-C(5)-N(2)	127.1(2)
N(1)-C(5)-C(4)	120.0(2)
N(2)-C(5)-C(4)	112.9(2)
N(2)-C(6)-N(3)	129.3(2)
N(2)-C(6)-C(7)	122.8(2)
N(3)-C(6)-C(7)	107.9(2)
C(7)#1-C(7)-C(8)	121.53(19)
C(7)#1-C(7)-C(6)	106.78(15)
C(8)-C(7)-C(6)	131.7(3)
C(7)-C(8)-C(9)	116.9(3)
C(7)-C(8)-H(8)	121.6
C(9)-C(8)-H(8)	121.6
C(9)#1-C(9)-C(8)	121.6(2)
C(9)#1-C(9)-H(9)	119.2
C(8)-C(9)-H(9)	119.2
C(11)-C(10)-C(11)#1	114.7(3)
C(11)-C(10)-Pt(1)	122.67(15)
C(11)#1-C(10)-Pt(1)	122.67(15)
C(12)-C(11)-C(10)	123.1(3)

С(12)-С(11)-Н(11)	118.5
С(10)-С(11)-Н(11)	118.5
C(11)-C(12)-C(13)	121.1(3)
С(11)-С(12)-Н(12)	119.4
С(13)-С(12)-Н(12)	119.4
C(12)#1-C(13)-C(12)	116.9(3)
C(12)#1-C(13)-N(4)	121.53(17)
C(12)-C(13)-N(4)	121.53(17)
N(4)-C(14)-H(14A)	109.5
N(4)-C(14)-H(14B)	109.5
H(14A)-C(14)-H(14B)	109.5
N(4)-C(14)-H(14C)	109.5
H(14A)-C(14)-H(14C)	109.5
H(14B)-C(14)-H(14C)	109.5
C(1)-N(1)-C(5)	116.2(2)
C(1)-N(1)-Pt(1)	119.94(16)
C(5)-N(1)-Pt(1)	123.82(17)
C(6)-N(2)-C(5)	125.1(2)
C(6)-N(3)-C(6)#1	110.5(3)
C(6)-N(3)-Pt(1)	124.73(14)
C(6)#1-N(3)-Pt(1)	124.73(14)
C(13)-N(4)-C(14)	120.5(3)
C(13)-N(4)-C(14)#1	120.5(3)
C(14)-N(4)-C(14)#1	119.0(6)
C(10)-Pt(1)-N(3)	180.0
C(10)-Pt(1)-N(1)	90.66(5)
N(3)-Pt(1)-N(1)	89.34(5)
C(10)-Pt(1)-N(1)#1	90.66(5)
N(3)-Pt(1)-N(1)#1	89.34(5)
N(1)-Pt(1)-N(1)#1	178.68(10)

Symmetry transformations used to generate equivalent atoms:

#1 -x+1,y,-z+1/2

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
C(1)	53(1)	45(1)	76(2)	1(1)	30(1)	-1(1)
C(2)	56(1)	58(2)	86(2)	8(1)	34(1)	-2(1)
C(3)	73(2)	73(2)	113(3)	13(2)	61(2)	11(2)
C(4)	83(2)	59(2)	112(3)	10(2)	63(2)	18(2)
C(5)	60(1)	45(1)	69(2)	11(1)	32(1)	12(1)
C(6)	73(2)	34(1)	56(1)	5(1)	30(1)	8(1)
C(7)	92(2)	34(1)	54(1)	4(1)	32(1)	5(1)
C(8)	120(3)	40(1)	72(2)	5(1)	49(2)	17(2)
C(9)	151(4)	36(1)	71(2)	1(1)	48(2)	13(2)
C(10)	47(2)	32(1)	57(2)	0	23(1)	0
C(11)	50(1)	44(1)	58(1)	3(1)	20(1)	1(1)
C(12)	67(2)	46(1)	80(2)	20(1)	38(1)	14(1)
C(13)	89(3)	32(2)	112(4)	0	68(3)	0
C(14)	252(8)	51(2)	268(8)	60(3)	184(7)	60(3)
N(1)	49(1)	39(1)	56(1)	5(1)	22(1)	5(1)
N(2)	81(2)	40(1)	79(2)	10(1)	45(1)	16(1)
N(3)	59(2)	31(1)	55(2)	0	26(1)	0
N(4)	226(8)	35(2)	173(6)	0	102(6)	0
Pt(1)	47(1)	31(1)	51(1)	0	20(1)	0

Table S5. Anisotropic displacement parameters (Å² x 10³) for **6**. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [h² a^{*2}U¹¹ + ... + 2 h k a^{*} b^{*} U¹²]

	Х	У	Ζ	U(eq)	
H(1)	6869	7190	2086	68	
H(2)	8499	7258	1251	78	
H(3)	9193	6442	390	95	
H(4)	8273	5581	553	93	
H(8)	6582	4057	1460	90	
H(9)	5760	3204	1984	102	
H(11)	3774	7362	214	62	
H(12)	3725	8338	221	74	
H(14A)	4413	9171	219	247	
H(14B)	4663	9741	1179	247	
H(14C)	3385	9382	841	247	

Table S6. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (Å² x 10^3) for **6**.