Supporting information

Calculation methods for luminescent quantum efficiency

For europium based materials, the emission quantum efficiency (η) of the emitting ${}^{5}D_{0}$ level can be determined on the basis of emission spectra together with the lifetimes and can be calculated using the following equation¹:

$$\eta = \frac{A_r}{A_r + A_{nr}}$$

Here, A_r and A_{nr} represent the radiative and non-radiative transition rates, respectively. Among which, the A_r can be obtained by adding up the radiative rates for each ${}^5D_0 \rightarrow {}^7F_J$ (J = 0, 1, 2, 3, 4) transition.

$$A_r = \sum A_{0J} = A_{00} + A_{01} + A_{02} + A_{03} + A_{04}$$

Here, A_{0J} is the experimental coefficients of spontaneous emission. The branching ratio for ${}^{5}D_{0} \rightarrow {}^{7}F_{J}$ (J = 5, 6) have been neglected since they are not detected in experiments, and can be ignored in the depopulation of ${}^{5}D_{0}$ excited state. Meanwhile, because of the independence to chemical environments, the magnetic dipole transition ${}^{5}D_{0} \rightarrow {}^{7}F_{1}$ can be used as an internal reference to the whole spectra. Thus, the A_{0J} can be obtained using the following equation:

$$A_{0J} = A_{01} \times \frac{I_{0J}}{I_{01}} \times \frac{V_{01}}{V_{0J}}$$

Here, I_{01} and I_{0J} the integrated intensities of the ${}^{5}D_{0} \rightarrow {}^{7}F_{1}$ and ${}^{5}D_{0} \rightarrow {}^{7}F_{J}$ (J=0-4) transitions, while the v_{01} and v_{0J} the corresponding energy barycenters. According to the reports of references, A_{01} in this equation can be calculated by the expression $A_{01} = 0.31 \times 10^{-11} n^{3} (v_{01})^{3}$, and it's value can be determine to be 50 s⁻¹ approximately². Furthermore, the luminescent lifetime, radiative and non-radiative transition rates can

be related through the following equation³:

$$\frac{1}{\tau} = A_r + A_{nr}$$

¹ E. E. S. Teotonio, J. G. P. Espinola, H. F. Brito, O. L. Malta, S. F. Oliveira, D. L. A. de Faria and C. M. S. Izumi, *Polyhedron*, 2002, 21, 1837.

² W. T. Carnall, H. Crosswhite, H. M. Crosswhite, Argonne National laboratory Report, 1978, unnumbered.

³ H. J. Zhang, W. Q. Fan, J. Feng, S. Y. Song, Y. Q. Lei and S. Dang, Opt. Mater., 2011, 33, 582.