Supplementary Information

An ionicity diagram for the family of $[{Ru_2(CF_3CO_2)_4}_2(TCNQR_x)]$ (TCNQR_x = R-substituted 7,7,8,8-tetracyano-*p*-quinodimethane)

Keita Nakabayashi,^a Masaki Nishio,^a Keiko Kubo,^b Wataru Kosaka^a and Hitoshi Miyasaka^{*a}

^aDepartment of Chemistry, Division of Material Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan ^bDepartment of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki-Aza-Aoba, Aoba-ku, Sendai 980-8578, Japan

Corresponding author* Hitoshi Miyasaka Department of Chemistry, Division of Material Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan Tel: +81-76-264-5697 Fax: +81-76-264-5742 e-maul: <u>miyasaka@se.kanazawa-u.ac.jp</u> Table S1. Comparison of bond distances (Å) in TCNQMe₂ for 6 and 6-Rh and TCNQ(MeO)₂ for 7 and 7-Rh

Comp.	а	b	С	d	е	<i>c</i> /(<i>b</i> + <i>d</i>)	Calcd. ρ
TCNQ	1.140(1)	1.441(4)	1.374(3)	1.448(4)	1.346(3)	0.476	0 (fix)
RbTCNQ	1.153(7)	1.416(8)	1.420(1)	1.423(3)	1.373(1)	0.500	1 (fix)
6	1.142(6)	1.423(5)	1.393(8)	1.446(6)	1.345(5)	0.486	0.40
7	1.14(1)	1.433(9)	1.40(2)	1.433(8)	1.408(6)	0.488	0.52
	1.09(2)	1.42(2)		1.45(2)			
6-Rh	1.15(2)	1.45(2)	1.39(2)	1.46(2)	1.346(9)	0.481	0.21
	av. 1.12	av. 1.435		av. 1.455			
7-Rh	1.111(8)	1.456(7)	1.38(1)	1.428(6)	1.383(5)	0.479	0.10

The calculated ρ value was estimated by using Kinstenmacher relationship, $\rho_{c/(b+d)} = -[A\{c/(b+d)\} + B]$ (*A* = -41.667, *B* = 19.833),¹ based on dimensions in TCNQ² and RbTCNQ.³

Fig. S1. ORTEP drawings of formula unit of **6-Rh** (a) and **7-Rh** (b) (30 % probability ellipsoids), where the dotted bonds represent disordered atoms. Hydrogen atoms and interstitial solvent molecules were omitted for clarity.

Powder reflection spectra of 6 and 7

Powder reflection spectra of **6** and **7** exhibited an intense CT band of $[Ru_2^{II,II}] \rightarrow TCNQR_x$ at ca. 1.0 and 1.1 eV, respectively, and no absorption below 1 eV (Fig. S2), being characteristic of neutral form.

Fig. S2. Powder reflection spectra of 6 and 7 measured based on a BaSO₄ pellet.

Infrared Spectra of 6 and 7

In the infrared region, characteristic C=C and C=N vibrational bands of neutral TCNQR_x form were detected (Fig. S3 and S4).

Fig. S3. Infrared spectra of **6** (a) and **7** (b) with those of $[Ru_2(CF_3CO_2)_4(THF)_2]$, TCNQR₂, and Li salts of TCNQR₂ (R = Me and MeO) for comparison, which indicate characteristic C=C vibrational bands for compounds in the range of 1400 – 1600 cm⁻¹.

Fig. S4. Infrared spectra of **6** (a) and **7** (b) with those of $[Ru_2(CF_3CO_2)_4(THF)_2]$, TCNQR₂, and Li salts of TCNQR₂ (R = Me and MeO) for comparison, which indicate characteristic C=N vibrational bands for compounds in the range of 1800 – 2600 cm⁻¹.

Magnetic Properties of 6 and 7

The magnetic behaviors of **6** and **7** are consistent with those for isolated $[\text{Ru}_2^{\Pi,\Pi}]$ complexes with an S = 1 ground state affected by strong zero-field splitting (ZFS; $D \approx 230 - 320 \text{ cm}^{-1}$) (Fig. S5). The χ and χT were simulated using a Curie paramagnetic model with S = 1 taking into account zero-field splitting (*D*), temperature-independent paramagnetism (χ_{\PiP}), and impurity with S = 3/2 (ρ).⁴ In an initial try, the contribution of intermolecular interactions (*zJ*) was taken into account in the frame of the mean-field approximation, but not required to obtain adequate fitting. So, all were done with *zJ* = 0. The best-fitting parameters were: g = 2.0 (fix), $D/k_B = 344(2)$ K, $\chi_{\PiP} = 52(27) \times 10^{-6}$ cm³ mol⁻¹, and $\rho = 0.0410(4)$ for **6** and g = 2.0 (fix), $D/k_B = 364(1)$ K, $\chi_{\PiP} = 175(16) \times 10^{-6}$ cm³ mol⁻¹, and $\rho = 0.00725(5)$ for **7**.

Fig. S5. Temperature dependence of χ and χT for 6 (a) and 7 (b), where the red solid lines represent simulated curves based on a Curie paramagnetic model with S = 1 taking into account zero-field splitting (*D*), temperature-independent paramagnetism (χ_{TIP}), and impurity with S = 3/2 (ρ).

Referneces

- 2 R. E. Long, R. A. Sparks, K. N. Trueblood, Acta Crystallogr. 1965, 18.
- 3 A. Hoekstra, T. Spoelder, A. Vos, A. Acta Crystallogr. Sect. B 1972, 28, 14.

¹ T. J. Kistenmacher, T. J. Emge, A. N. Bloch, D. O. Cowan, *Acta Crystallogr., Sect. B* 1982, **38**, 1193.

⁴ H. Miyasaka, R. Clérac, C. S. Campos-Fernández, K. R. Dunbar, J. Chem. Soc., Dalton Trans. 2001, 858.