Supporting Information

[2.2]Paracyclophane Bisphosphines for the Activation of Hydrogen by FLPs: Application in Domino Hydrosilylation/Hydrogenation of Enones

Lutz Greb^a, Pascual Oña-Burgos^b, Adam Kubas^c, Florian C. Falk^a, Frank Breher^b, Karin Fink^c, Jan Paradies^{*a}

^a Karlsruhe Institute of Technology, Institute of Organic Chemistry, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany; jan.paradies@kit.edu ^b Karlsruhe Institute of Technology, Institute of Inorganic Chemistry, Engesserstrsse 15, 76131 Karlsruhe, Germany; frank.breher@kit.edu ^c Karlsruhe Institute of Technology, Institute of Nanotechnology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany; karin.fink@kit.edu.

General Information

All preparations were done under an atmosphere of dry, O₂-free Ar employing both Schlenk line techniques and an MBraun inert atmosphere glove box. Solvents (pentane, hexanes, toluene and CH₂Cl₂) were purified employing a Grubbs' type column system manufactured by MBraun and stored over molecular sieves (4 Å). Molecular sieves (4 Å) were dried at 140 °C under vacuum for 24 h prior to use. Deuterated solvents were distilled from sodium/benzophenone (C₇D₈) or CaH₂ (CD₂Cl₂). Hydrogen 5.0 were purchased from AirLiquid and passed over a column of DrieRite and activated molecular sieves. ¹H, ¹³C, ¹¹B, ¹⁹F and ³¹P-NMR spectra were recorded on a *Bruker* AC 300 (300 MHz), *Bruker* AM 400 (400 MHz) or a *Bruker* DRX 500 (500 MHz) spectrometer as solutions. Chemical shifts are expressed in parts per million (ppm, δ) downfield from tetramethylsilane (TMS) and are referenced to *d*₈-toluene (7.11 ppm) or CHCl₃ (7.26 ppm) as internal standards. ³¹P, ¹¹B and ¹⁹F NMR spectra are referenced to 85% H₃PO₄, BF₃(OEt₂) and CFCl₃ respectively. All coupling constants are absolute values and *J* values are expressed in Hertz (Hz). The description of signals include: s = singlet, br. s = broad singlet, d = doublet, t = triplet, q = quartet, m = multiplet, dd = doublet of doublets, etc. The spectra were analyzed according to first order. Arene protons of the [2.2]Paracyclophane moiety are labeled as H_{PC} . $B(C_6F_5)_3$ was purchased from ABCR and sublimed, stirred over Me₂SiClH, dried in vacuum and sublimed again prior to use. PhanePhos (**1**) and Ph₂MeSiH (**5**) was purchased from ABCR and used as received. GemPhos (**2a**) and CyGemPhos (**2b**) were prepared according to the literature procedure.^[1] All other common organic substrates were purchased and used as received.

4,13-bis-(diphenylphosphino)-[2.2]paracyclophane (2a) + $B(C_6F_5)_3$ (3)

0.020 mmol (12 mg, 1.0 equiv.) 4,13-bis-(diphenylphosphino)-[2.2]paracyclophane (**2a**) and 0.020 mmol (10 mg, 1.0 equiv.) B(C₆F₅)₃ (**3**) were dissolved in *d*₈-toluene (0.5 ml). ¹H NMR (400 MHz, *d*₈-toluene, 298 K): δ = 7.79–7.65 (m, 4H, H_{Ar}), 7.49–7.33 (m, 4H, H_{Ar}), 7.20–7.07 (m, 6H, H_{Ar}), 7.06–6.95 (m, 6H, H_{Ar}), 6.40–6.30 (m, 4H, H_{PC}), 6.27–6.20 (m, 2H, H_{PC}), 3.90–3.60 (m, 2H, CH₂), 2.71–2.48 (m, 4H, CH₂), 2.42–2.25 (m, 2H, CH₂) ppm; ³¹P {¹H} NMR (162 Mhz, *d*₈-toluene, 298 K): δ = -8.10 ppm; ¹⁹F NMR (377 Mhz, *d*₈-toluene, 298 K): δ = -129.0 (br s, *o*-C₆F₅), -142.1 (br s, *p*-C₆F₅), -160.4 (br s, *m*-C₆F₅) ppm; ¹¹B {¹H} NMR (128 Mhz, *d*₈-toluene, 298 K): δ = 58.4 ppm.

[H-4,13-bis-(diphenylphosphino)-[2.2]paracyclophane]⁺[HB(C₆F₅)₃]⁻

A solution of 0.060 mmol (35 mg, 1.0 equiv.) 4,13-bis-(diphenylphosphino)-[2.2]paracyclophane (**2a**) and 0.060 mmol (31 mg, 1.0 equiv.) $B(C_6F_5)_3$ (**3**) in toluene (2 ml) was transferred in a glovebox in a sealable flask with Teflon tap and magnetic stirbar. The solution was freeze-pump thawed for 2 cycles, charged with H₂ at 77 K and stirred for 24 h. To the colorless reaction mixture pentane (5 ml) was added,

resulting in the formation of a white precipitate. After decantation of the solvents, rinsing with pentane (5 ml) and drying in vacuum, the salt was collected as white solid (49 mg, 75%). ¹H NMR (400 MHz, d_8 -toluene, 298 K): δ = 9.84 (t, J_{PH} = 251 Hz, 1H, PH), 7.45–7.33 (m, 4H, H_{Ar}), 7.30–7.20 (m, 4H, H_{Ar}), 7.19–7.09 (m, 6H, H_{Ar}), 7.08–6.96 (m, 6H, H_{Ar}), 6.44–6.36 (m, 2H, H_{PC}), 6.35–6.29 (m, 2H, H_{PC}), 6.20–6.11 (m, 2H, H_{PC}), 4.81–4.19 (br m, 1H, BH), 3.06 (dd, J = 14.1 Hz, 4.4 Hz, 2H, CH₂), 2.63 (dd, J = 13.5 Hz, 3.8 Hz, 2H, CH₂), 2.58 (dd, J = 13.2 Hz, 4.1 Hz, 2H, CH₂), 2.27 (dd, J = 12.9 Hz, 3.5 Hz, 2H, CH₂) ppm; ¹³C-NMR (75 MHz, d_8 -toluene, 298 K): δ = 149.1 (dm, J_{CF} = 235 Hz, 6 x C, o-C₆F₅), 143.8 (m, 2 x C(CH2) _{guart. PC}), 141.3 (m, $2 \times C(CH2)_{\text{quart. PC}}$, 137.1 (dm, J_{CF} = 259 Hz, 6 x C, *m*-C₆F₅), 136.9 (m, 2 x CH _{PC}), 136.2 (m, 2 x CH _{PC}), 135.3 (m, 2 x CH _{PC}), 135.0 (t, J = 8.2 Hz, 4 x CH _{Ph}), 135.5 $(dm, J_{CF} = 252 Hz, 3 \times C, p-C_6F_5)$, 133.0 $(m, 2 \times CH_{Ph})$, 132.9 $(t, J = 8.2 Hz, 4 \times CH_{Ph})$ _{Ph}), 132.7 (m, 2 x CH _{Ph}), 130.0 (t, J = 6.0 Hz, 4 x CH _{Ph}), 129.8 (t, J = 5.0 Hz, 4 x CH _{Ph}), 34.8–34.7 (m, 4 x CH₂) ppm [C(*i*-PC) and C(*i*-Ph) were not observed]; ${}^{31}P$ {¹H} NMR (162 Mhz, d_8 -toluene, 298 K): δ = -2.01 ppm;]; ³¹P NMR (202 Mhz, d_8 -toluene, 298 K): δ = -2.01 (d, J_{PH} = 253 Hz) ppm;]; ³¹P {¹H} NMR (162 Mhz, d₈-toluene, 213 K): δ = -0.42 (d, J_{PP} = 86 Hz), -4.80 (d, J_{PP} = 86 Hz) ppm; ³¹P NMR (162 Mhz, d_8 -toluene, 213 K): δ = -0.42 (dd, J_{PH} = 515 Hz, J_{PP} = 86 Hz), -4.80 (d, J_{PP} = 86 Hz) ppm; ¹⁹F NMR (377 Mhz, d_8 -toluene, 298 K): δ = -132.2 (m, o-C₆F₅), -163.8 (m, p- C_6F_5), -166.5 (m, *m*- C_6F_5) ppm; ¹¹B {¹H} NMR (128 Mhz, *d*₈-toluene, 298 K): $\delta =$ -24.5 ppm; ¹¹B NMR (128 Mhz, d_8 -toluene, 298 K): δ = -24.5 (d, J_{BH} = 92 Hz) ppm.

4-diphenylphosphino-13-dicyclohexylphosphino-[2.2]paracyclophane (2b) + $B(C_6F_5)_3$ (3)

0.020 mmol (12 mg, 1.0 equiv.) 4-diphenylphosphino-13-dicyclohexylphosphino-[2.2]paracyclophane (**2b**) and 0.020 mmol (10 mg, 1.0 equiv.) B(C₆F₅)₃ (**3**) were dissolved in d_8 -toluene (0.5 ml). ¹H NMR (400 MHz, d_8 -toluene, 298 K): δ = 7.65– 7.58 (m, 2H, H_{Ar}), 7.57–7.50 (m, 2H, H_{Ar}), 7.07–6.95 (m, 6H, H_{Ar}), 6.61–6.55 (m, 1H, H_{PC}), 6.47–6.38 (m, 3H, H_{PC}), 6.37–6.32 (m, 1H, H_{PC}), 6.27–6.21 (m, 1H, H_{PC}), 4.36– 4.23 (m, 1H, CH₂), 3.36 (ddd, J = 13.4 Hz, 9.2 Hz, 3.5 Hz, 1H, CH₂), 2.88–2.66 (m, 3H, CH₂), 2.62–2.43 (m, 3H, CH₂), 2.32–2.16 (m, 1H, Cy), 2.08–1.79 (m, 5H, Cy), 1.76–1.14 (m, 12H, Cy), 1.08–0.69 (m, 3H, Cy), 0.49–0.31 (m, 1H, Cy) ppm; ³¹P {¹H} NMR (162 Mhz, d_8 -toluene, 298 K): δ = -6.06 (m_c) ppm; ¹⁹F NMR (377 Mhz, d_8 -toluene, 298 K): δ = -128.9 (br s, o-C₆F₅), -142.3 (br s, p-C₆F₅), -160.3 (br s, m-C₆F₅) ppm; ¹¹B {¹H} NMR (128 Mhz, d_8 -toluene, 298 K): δ = 56.1 ppm.

$\label{eq:2.2} [H-4-diphenylphosphino-13-dicyclohexylphosphino \end{tabular} [2.2] paracyclophane]^{+} [HB(C_6F_5)_3]^{-}$

A solution of 0.085 mmol (50 mg, 1.0 equiv.) 4-diphenylphosphino-13dicyclohexylphosphino-[2.2]paracyclophane (2b) and 0.085 mmol (43 mg, 1.0 equiv.) $B(C_6F_5)_3$ (3) in toluene (3 ml) was transferred in a glovebox to a sealable flask equipped with teflon tap and magnetic stirbar. The solution was freeze-pump thawed for 2 cycles, charged with H₂ at 77 K and stirred for 24 h. To the colorless reaction mixture pentane (7 ml) was added, resulting in the formation of a white precipitate. After decantation of the the solvents, rinsing with pentane (7 ml) and drying in vacuum, the salt was collected as white solid (80 mg, 85%). ¹H NMR (400 MHz, d_{8} toluene, 298 K): δ = 7.14 (d, J_{HP} = 472 Hz, 1H), 7.48–7.41 (m, 2H, H_{Ar}), 7.41–7.35 (m, 2H, H_{Ar}), 7.09–6.95 (m, 6H, H_{Ar}), 6.60–6.42 (m, 2H, H_{PC}), 6.40–6.32 (m, 2H, H_{PC}), 6.32–6.26 (m, 1H, H_{PC}), 6.08–6.00 (dd, J = 9.6 Hz, 1.8Hz, 1H, H_{PC}), 4.84–3.98 (br m, 1H, BH), 3.16–2.98 (m, 1H, CH₂), 2.94–2.72 (m, 3H, CH₂), 2.67–2.58 (m, 1H, CH₂), 2.57–2.42 (m, 3H, CH₂), 2.40–2.28 (m, 1H, Cy), 1.98–0.64 (m, 20H, Cy), 0.37–0.21 (m, 1H, Cy) ppm; ¹³C-NMR (100 MHz, d_8 -toluene, 298 K); δ = 149.2 (dm, J_{CF} = 236 Hz, 6 x C, o-C₆F₅), 144.5 (d, J = 5.9 Hz, C _{quart. PC}), 142.1 (d, J = 11.7 Hz, C _{quart. PC}), 141.3 (dd, J = 11.7 Hz, C _{quart. PC}), 139.7–139.5 (m, 3 x C _{quart. PC}), 137.2 (dm, J_{CF} = 250 Hz, 6 x C, m-C₆F₅), 137.0 (d, J = 8.1 Hz, C _{guart Ph}), 136.7 (d, J = 5.9 Hz, C _{quart Ph}), 136.0 (dm, J_{CF} = 251 Hz, 3 x C, p-C₆F₅), 135.0 (d, J = 2.2 Hz, CH), 134.9 (d, J = 6.6 Hz, CH), 134.8 (CH), 134.6 (CH), 133.2 (CH), 133.0 (CH), 132.6 (d, *J* = 8.8 Hz, CH), 132.5 (CH), 130.4 (CH), 130.1 (CH), 129.3 (CH), 129.4 (CH), 129.4 (CH), 128.3 (CH), 36.4 (d, *J* = 4.4 Hz, CH₂), 34.8 (CH₂), 34.6 (CH₂), 32.9 (CH), 32.1 (dd, *J* = 43.3 Hz, 3.6 Hz, CH₂), 30.1 (CH), 29.3 (dd, *J* = 44.7 Hz, 4.4 Hz, CH₂), 28.5 (d, *J* = 3.7 Hz, CH₂), 27.6 (d, *J* = 3.7 Hz, CH₂), 26.6 (d, *J* = 13.2 Hz, CH₂), 26.2 (d, *J* = 5.1 Hz, CH₂), 26.1 (d, *J* = 5.9 Hz, CH₂), 25.8 (d, *J* = 2.9 Hz, CH₂), 25.6 (d, *J* = 14.7 Hz, CH₂), 25.2 (CH₂), 25.0 (CH₂) ppm [2 x CH_{Ar} not observed due to solvent signals]; ³¹P {¹H} NMR (162 Mhz, *d*₈-toluene, 298 K): δ = 14.3 (dd, *J*_{PP} = 47 Hz), -2.79 (d, *J*_{PP} = 47 Hz) ppm; ³¹P NMR (162 Mhz, *d*₈-toluene, 298 K): δ = 14.3 (dd, *J*_{PH} = 473 Hz, *J*_{PP} = 47 Hz), -2.79 (d, *J*_{PP} = 47 Hz) ppm; ¹⁹F NMR (377 Mhz, *d*₈-toluene, 298 K): δ = -133.2 (m, *o*-C₆F₅), -164.6 (m, *p*-C₆F₅), -167.4 (m, *m*-C₆F₅) ppm; ¹¹B {¹H} NMR (128 Mhz, *d*₈-toluene, 298 K): δ = -24.7 (d, *J*_{BH} = 83 Hz) ppm.

4,12-bis-(diphenylphosphino)-[2.2]paracyclophane (1) + $B(C_6F_5)_3$ (3)

0.020 mmol (12 mg, 1.0 equiv.) 4,12-bis-(diphenylphosphino)-[2.2]paracyclophane (1) and 0.020 mmol (10 mg, 1.0 equiv.) B(C₆F₅)₃ (**3**) were dissolved in *d*₈-toluene (0.5 ml). ¹H NMR (400 MHz, *d*₈-toluene, 298 K): δ = 7.73–7.67 (m, 4H, H_{Ar}), 7.53–7.44 (m, 4H, H_{Ar}), 7.25–7.17 (m, 4H, H_{Ar}), 7.16–7.09 (m, 2H, H_{Ar}), 7.09–6.94 (m, 6H, H_{Ar}), 6.94–6.89 (m, 2H, H_{PC}), 6.41–6.35 (m, 4H, H_{PC}), 3.17–3.05 (m, 4H, CH₂), 2.80–2.70 (m, 2H, CH₂), 2.49–2.38 (m, 2H, CH₂) ppm; ³¹P {¹H} NMR (162 Mhz, *d*₈-toluene, 298 K): δ = -0.53 ppm; ¹⁹F NMR (377 Mhz, *d*₈-toluene, 298 K): δ = -128.7 (br s, *o*-C₆F₅), -142.5 (br s, *p*-C₆F₅), -160.3 (br s, *m*-C₆F₅) ppm; ¹¹B {¹H} NMR (128 Mhz, *d*₈-toluene, 298 K): δ = 57.5 ppm.

-> Spectra of the intermediate Phosphonium Borate/P-B adduct after reaction with hydrogen *vide infra*.

Hydrogenation of Trimethyl(1-phenylvinyloxy)silane (6)

In a glove box, a solution of the bisphosphine 1/2ab (10 mol%), B(C₆F₅)₃ **3** (10 mol%) and Trimethyl(1-phenylvinyloxy)silane (**6**) (20 mg) in d_8 -toluene (0.5 ml) was

transferred to a sealable NMR tube equipped with a Teflon tap. The solution was freeze-pump thawed for 2 cycles, charged with H_2 at 77 K and stand for the corresponding time. The NMR data agrees with the literature.^[2]

General procedure for the reduction of enones

In a glovebox, $B(C_6F_5)_3$ (3) (10-20 mol%), Ph_2MeSiH (5) (1.0 eq.) and the enone 8 (25 mg, 1.0 eq.) were dissolved in toluene (2 ml) followed by immediate addition of PhanePhos 1 (10-20 mol%) (in case of 9e GemPhos 2a). The solution was transferred to a sealable flask equipped with a Teflon tap and magnetic stirbar. The solution was freeze-pump thawed for 2 cycles, charged with H₂ at 77 K and stirred for 24-48 h at 50°C. The reaction mixture was directly subjected to column chromatography (cyclohexane/EtOAc 99:1) yielding the corresponding silylether 9a-e as colorless oil.

4,4-Dimethylcyclohexyloxy(methyl)diphenylsilane (9b): 24 h, 48 mg, yield 74%, Rf =

Cyclopentyloxy(methyl)diphenylsilane (**9a**): 24 h, 50 mg, yield 58% (10% silane Ph_2MeSi impurity), R_f = 0.20. ¹H NMR (300 Mhz, CDCl₃): δ = 7.63–7.56 (m, 4H, H_{Ar}), 7.42–7.32 (m, 6H, H_{Ar}), 4.40–4.30 (m, 1H, C*H*), 1.86–1.46 (m, 8H, CH₂), 0.64 (s, 3H, CH₃) ppm. ¹³C-NMR (75 MHz, CDCl₃): δ = 137.1 (2xC quart Ph), 134.5 (4xCH Ph), 129.7 (2xCH Ph), 127.9 (4xCH Ph), 75.3 (CH), 35.7, 23.3, -2.2 ppm. The NMR data agrees with the

literature.^[3]

cis-2-Methylcyclopentyloxy(methyl)diphenysilane (9d): 24 h, 69 mg, yield 90%, Rf =

Ph₂MeSi 0.10. ¹H NMR (300 Mhz, CDCl₃): δ = 7.66–7.56 (m, 4H, H_{Ar}), 7.45– 7.32 (m, 6H, H_{Ar}), 4.16 (q, J = 4.6 Hz, 1H, CH), 1.88–1.61 (m, 5H), 1.59–1.38 (m, 2H), 1.00 (d, J = 7.0 Hz, 3H, CH₃), 0.66 (s, 3H, CH₃) ppm. ¹³C-NMR (75 MHz, CDCl3): δ = 137.3 (2xC _{quart Ph}), 134.5

 $(4xCH_{Ph})$, 129.7 (2xCH _{Ph}), 127.8 (4xCH _{Ph}), 40.0, 34.8, 31.0, 21.9, 14.6, -2.3 ppm [CH(O) was not observed]. The NMR data agrees with the literature.^[3]

1,3-Diphenylpropoxy(methyl)diphenylsilane (**9***c*): 48 h, 38 mg, yield 78%, $R_f = 0.1$. ¹H

NMR (300 Mhz, CDCl₃): δ = 7.51–6.92 (m, 20H, H_{Ar}), 4.68 (dd, J = 6.7 Hz, 5.6 Hz, 1H, C*H*), 2.68–2.39 (m, 2H, CH₂), 2.15–1.83 (m, 2H, CH₂), 0.36 (s, 3H, CH₃) ppm. ¹³C-NMR (75 MHz, CDCl3): δ = 144.6, 142.2, 134.7, 134.5, 129.9, 128.8, 128.5, 128.4, 128.3, 127.9,

127.9, 127.3, 126.4, 125.8, 75.3, 42.0, 31.8, -2.3 ppm.

(1S,2R,5S)-2-methyl-5-(prop-1-en-2-yl)cyclohexyloxy(methyl)diphenylsilane and(1R,2S,5S)-2-methyl-5-(prop-1-en-2-yl)cyclohexyloxy(methyl)diphenylsilane (9e):48 h, 100 °C, 29 mg, yield 50 %, R_f = 0.6; d:r = 2:1;

Diastereomer 1: ¹H NMR (300 Mhz, CDCl₃): δ = 7.66–7.55 (m, 4H, H_{Ar}), 7.44–7.32 (m, 6H, H_{Ar}), 5.09 (s, 1H), 4.89 (s, 1H), 3.94 (m_c, 1H), 2.75–2.62 (m, 1H), 1.83–1.68 (m, 2H), 1.57 (s, 3H, CH₃), 1.33–1.11 (m, 5H), 0.91 (d, J = 6.6 Hz, 3H, CH₃), 0.66 (s, 3H, CH₃) ppm.

Diastereomer 2: ¹H NMR (300 Mhz, CDCl₃): δ = 7.68–7.54 (m, 4H, H_{Ar}), 7.45–7.30 (m, 6H, H_{Ar}), 4.62 (br s, 2H), 3.95 (br s, 1H), 2.49–2.36 (m, 1H), 1.80–1.66 (m, 2H), 1.62 (s, 3H, CH₃), 1.31–1.13 (m, 5H), 0.89 (d, J = 6.4 Hz, 3H, CH₃), 0.65 (s, 3H, CH₃) ppm. Assignment of diastereomers based on spectra for

unprotected alcohols.^[4]

Quantum chemical calculations

The structures were optimised at DFT (density functional theory) level employing the gradient corrected Becke-Perdew functional BP86^[5] in connection with a double-ζ def2-SVP basis set.^[6] Recently Grimme^[7] showed that dispersion interactions play a crucial role in structure stabilisation of the FLPs. Therefore, we decided to augment the DFT approach with the D3 empirical corrections.^[8] To speed up the calculations we took advantage of the Resolution of Identity (RI) approximation.^[9] Obtained geometries were confirmed to be energy minima on the potential energy surfaces by frequency calculations and possessed no imaginary frequencies. As multiple energy minima were obtained we recalculated the energies of each with the more sophisticated def2-TZVP basis set.^[6] However, this did not alternate the energetic order of different isomers obtained with the smaller basis set. All calculations were performed with Turbomole 6.3 program. (TURBOMOLE V6.3 2011, a development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989-2007, TURBOMOLE GmbH, since 2007; available from http://www.turbomole.com)

For atomic coordinates vide infra.

X-ray Crystallographic Studies of [2aH]⁺[BF₄]⁻ and [2bH]⁺[BF₄]⁻

A suitable crystal of each of the compound was covered in mineral oil (Aldrich) and mounted onto a glass fiber. Data were collected on diffractometer equipped with a STOE imagine plate detector system plate detector system IPDS2T using Mo_{Kα} radiation with graphite monochromatization ($\lambda = 0.71073$) at 200 K. Structure solution was performed by direct methods; full-matrix-least squares refinement against F^2 using SHELXL-97 software^[10] and OLEX2.^[11]

Crystal structure determination of [2aH]⁺[BF₄]⁻

Crystal Data. $C_{40}H_{35}BF_4P_2$, *M* =664.49, monoclinic, *a* = 9.6069(19) Å, *b* = 17.796(4) Å, *c* = 10.210(2) Å, β = 107.14(3)°, *V* = 1668.0(7) Å³, *T* = 200, space group P2₁ (no. 4), *Z* = 2, μ (MoK α) = 0.182, 15812 reflections measured, 8685 unique (*R*_{int} = 0.0379) which were used in all calculations. The final *wR*₂ was 0.099 (all data) and *R*₁ was 0.0411 (I>=2u(I)).

Crystal structure determination of [2bH]⁺[BF₄]⁻

Crystal Data. $C_{40}H_{47}BF_4P_2$, *M* =676.53, monoclinic, *a* = 9.4616(19) Å, *b* = 18.149(4) Å, *c* = 10.749(2) Å, β = 109.34(3)°, *V* = 1741.7(6) Å³, *T* = 200.15, space group P2₁ (no. 4), *Z* = 2, μ (MoK α) = 0.175, 14298 reflections measured, 7282 unique (R_{int} = 0.1477) which were used in all calculations. The final *wR*₂ was 0.2270 (all data) and *R*₁ was 0.0836 (>2sigma(I)).

CCDC 867393 (**[2aH]⁺[BF**₄]⁻), 867456 (**[2aH]⁺[BF**₄]⁻) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Literature:

- [1] F. C. Falk, R. Frohlich, J. Paradies, *Chem Commun (Camb)* **2011**, *47*, 11095-11097.
- [2] H. Wang, R. Frohlich, G. Kehr, G. Erker, *Chem. Commun.* **2008**, 5966-5968.
- [3] S.-Y. Chang, W.-T. Jiaang, C.-D. Cherng, K.-H. Tang, C.-H. Huang, Y.-M. Tsai, *J. Org. Chem.* **1997**, *62*, 9089-9098.
- [4] D. C. Harrowven, D. D. Pascoe, D. Demurtas, H. O. Bourne, *Angew. Chem.* **2005**, *117*, 1247-1248.
- [5] aP. A. M. Dirac, *Proc. Royal Soc.* 1929, *A123*, 714; bJ. C. Slater, *Phys. Rev.* 1951, *81*, 385; cS. H. Vosko, L. Wilk, M. Nusair, *Can. J. Phys.* 1980, *58*, 1200; dA. D. Becke, *Phys. Rev.* 1988, *A38*.
- [6] aA. Hellweg, C. Hättig, S. Höfener, W. Klopper, *Theor. Chem. Acc.* 2007, 117, 587; bF. Weigend, M. Häser, H. Patzelt, R. Ahlrichs, *Chem. Phys. Lett.* 1998, 294, 143; cW. Weigend, R. Ahlrichs, *Phys. Chem. Chem. Phys* 2005, 7, 3297.
- [7] S. Grimme, H. Kruse, L. Goerigk, G. Erker, *Angew Chem Int Ed Engl* **2010**, *49*, 1402-1405.
- [8] S. Grimme, J. Antony, S. Ehrlich, H. Krieg, *J Chem Phys* **2010**, *132*, 154104.
- [9] aK. Eichkorn, O. Treutler, H. Ohm, M. Häser, R. Ahlrichs, *Chem. Phys. Lett.* 1995, 240, 283; bM. Sierka, A. Hogekamp, R. Ahlrichs, *J. Chem. Phys.* 2003, 118, 9136.
- [10] G. M. Sheldrick, Acta Crystallogr. Sect. A 2009, 64, 112.
- [11] (a) O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, OLEX2: a complete structure solution, refinement and analysis program. *J. Appl. Cryst.* **2009**, *42*, 339-341; (b) olex2.refine (L.J. Bourhis, O.V. Dolomanov, R.J. Gildea, J.A.K. Howard, H. Puschmann, in preparation, 2011)

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is The Royal Society of Chemistry 2012

Calculated atom coordinates for [1•H•3]⁺[H•3]⁻

С	С	-0.524304	11.7091	3.27057
С	С	0.694915	11.8489	2.57371
С	С	0.696371	11.8749	1.15761
С	С	-0.507187	11.712	0.457153
С	С	-1.71587	11.5401	1.1522
С	С	-1.72125	11.554	2.55543
С	С	2.08613	12.2697	5.2284
С	С	2.77547	13.3619	5.80669
С	С	2.73751	13.5524	7.19516
С	С	2.00446	12.6717	8.00802
С	С	1.30305	11.6	7.43123
С	С	1.34309	11.3892	6.0445
С	С	3.01496	9.8374	1.92162
С	С	3.4363	10.7402	2.90915
С	С	4.79151	10.717	3.35346
С	С	5.69677	10.0232	2.52842
С	С	5.26683	9.14275	1.52238
С	С	3.89409	8.90962	1.32914
С	С	5.21212	11.0895	4.75968

```
Electronic Supplementary Material (ESI) for Dalton Transactions This journal is \textcircled{C} The Royal Society of Chemistry 2012
```

С	С	4.68283	10.0291	5.83449
С	С	4.21427	8.7278	5.21219
С	С	2.84942	8.38817	5.10183
С	С	2.36733	7.44289	4.16625
С	С	3.29798	6.89429	3.21847
С	С	4.65932	7.00185	3.5659
С	С	5.12024	7.87671	4.55581
С	С	3.00774	6.48945	1.7833
С	С	3.35245	7.63897	0.71428
Р	Р	0.662695	6.76611	4.45159
С	С	-0.255216	8.01134	5.48171
С	С	-1.28566	8.79437	4.91371
С	С	-2.07849	9.62346	5.72276
С	С	-1.87353	9.67366	7.11042
С	С	-0.846982	8.90609	7.68217
С	С	-0.0367377	8.09016	6.87771
С	С	-0.277832	6.8473	2.8734
С	С	-1.38492	6.01474	2.60514
С	С	-2.10643	6.1779	1.41015
С	С	-1.75346	7.17985	0.490856
С	С	-0.678198	8.03991	0.775047

```
Electronic Supplementary Material (ESI) for Dalton Transactions This journal is \textcircled{} The Royal Society of Chemistry 2012
```

С	С	0.0493531	7.87075	1.96015
н	н	4.08085	7.23371	-0.0155318
Н	н	2.42289	7.85798	0.150251
Н	н	1.95758	6.20136	1.63687
н	н	3.61032	5.5945	1.53343
н	н	2.13888	8.90359	5.75965
н	н	6.20246	7.99298	4.71693
Н	Н	5.39792	6.4869	2.93189
Н	Н	5.50503	9.83609	6.55305
Н	Н	3.85496	10.486	6.4095
Н	Н	4.86726	12.0966	5.06253
Н	Н	6.31856	11.1224	4.79548
Н	Н	6.00826	8.528	0.988589
Н	Н	6.76831	10.0599	2.7806
Н	Н	-1.69673	5.2513	3.32598
Н	Н	-2.95897	5.51382	1.20344
Н	Н	-2.32549	7.29882	-0.441659
Н	Н	-0.408701	8.85266	0.0845524
Н	Н	0.876651	8.5478	2.20218
Н	Н	-1.48593	8.75844	3.83492
Н	Н	-2.87914	10.2209	5.2616

```
Electronic Supplementary Material (ESI) for Dalton Transactions This journal is \textcircled{} The Royal Society of Chemistry 2012
```

Н	Н	-2.51499	10.3046	7.7435
н	н	-0.681225	8.9211	8.77008
н	н	0.744813	7.48736	7.34935
н	н	3.34836	14.0637	5.18271
Н	н	3.28158	14.4002	7.63699
Н	н	1.97546	12.8228	9.09778
Н	н	0.724305	10.9099	8.05881
Н	н	0.799953	10.5365	5.61399
н	н	1.63132	12.0484	0.607371
н	н	-0.500936	11.7628	-0.641177
н	Н	-2.65912	11.4301	0.598133
н	н	-2.6693	11.4612	3.10471
н	Н	-0.556454	11.7472	4.36671
Ρ	Ρ	2.28551	12.0594	3.43632
н	н	1.9585	9.81606	1.62956
F	F	5.23256	2.53097	4.49106
С	С	4.5577	3.50547	5.11426
С	С	3.15065	3.541	5.06298
С	С	5.25377	4.48209	5.84105
F	F	2.57937	2.51761	4.40141
С	С	2.37623	4.55496	5.66376

```
Electronic Supplementary Material (ESI) for Dalton Transactions This journal is \textcircled{} The Royal Society of Chemistry 2012
```

С	С	4.52685	5.47165	6.52004
F	F	6.58985	4.47037	5.8926
В	В	0.767157	4.72863	5.47688
С	С	3.13113	5.47203	6.42169
F	F	5.16892	6.40448	7.2374
С	С	0.0497611	3.71134	4.42777
С	С	-0.096839	4.96217	6.83181
F	F	2.50108	6.44937	7.1191
С	С	-1.0493	2.88044	4.72742
С	С	0.474779	3.64366	3.09087
С	С	-1.41002	5.46341	6.77122
С	С	0.371401	4.70046	8.13371
С	С	-1.72578	2.12242	3.75062
F	F	-1.52645	2.76267	5.98008
С	С	-0.152226	2.90476	2.08202
F	F	1.5479	4.37498	2.7196
С	С	-2.18571	5.79089	7.88845
F	F	-1.97487	5.70067	5.56169
С	С	-0.362531	5.02159	9.29115
F	F	1.56934	4.124	8.33952
С	С	-1.2791	2.13673	2.41895

```
Electronic Supplementary Material (ESI) for Dalton Transactions This journal is \textcircled{} The Royal Society of Chemistry 2012
```

F	F	-2.77835	1.36794	4.0878
F	F	0.295756	2.93616	0.820644
С	С	-1.64878	5.57282	9.16744
F	F	-3.40369	6.32903	7.75098
F	F	0.143808	4.78432	10.5077
F	F	-1.9149	1.42415	1.4847
F	F	-2.35541	5.8897	10.257
Н	н	2.95483	13.2993	3.01556
F	F	-0.718913	14.6867	-0.928738
С	С	-0.175414	14.8733	0.285217
С	С	1.21043	15.064	0.434469
С	С	-0.996554	14.8119	1.42179
F	F	1.93196	15.0822	-0.703432
С	С	1.83377	15.1957	1.68571
С	С	-0.423363	14.9522	2.69386
F	F	-2.30908	14.5659	1.29278
В	В	3.44236	15.324	1.95775
С	С	0.96267	15.1528	2.78861
F	F	-1.18849	14.8413	3.79266
С	С	4.38768	14.9936	0.671807
С	С	3.78038	16.6916	2.76415

```
Electronic Supplementary Material (ESI) for Dalton Transactions This journal is \textcircled{} The Royal Society of Chemistry 2012
```

F	F	1.46785	15.2581	4.0436
С	С	5.16231	15.9204	-0.0462084
С	С	4.47062	13.6765	0.198806
С	С	4.52686	16.6972	3.94919
С	С	3.29516	17.9396	2.34332
С	С	5.96157	15.5658	-1.15101
F	F	5.17402	17.2238	0.291069
С	С	5.24338	13.2645	-0.894466
F	F	3.74053	12.6935	0.809114
С	С	4.80656	17.864	4.68146
F	F	5.01448	15.5335	4.46012
С	С	3.54959	19.136	3.0339
F	F	2.56389	18.0228	1.21338
С	С	6.00119	14.2291	-1.57992
F	F	6.67819	16.493	-1.80253
F	F	5.26471	11.9792	-1.28703
С	С	4.31343	19.0937	4.21421
F	F	5.52957	17.8194	5.81343
F	F	3.07962	20.3099	2.5873
F	F	6.75352	13.8764	-2.63094
F	F	4.57195	20.2217	4.89053

Н	н	3.72333	14.4064	2.77005

Calculated atom coordinates for $[2a \cdot H \cdot 3]^{+}[H \cdot 3]^{-}$

С	С	-1.56734	-4.03468	2.42344
С	С	-0.610897	-3.19698	3.04345
С	С	0.698664	-3.14993	2.52543
С	С	1.04225	-3.91588	1.39861
С	С	0.0853471	-4.73574	0.779757
С	С	-1.22383	-4.78867	1.29176
С	С	-2.18716	-0.881661	3.71337
С	С	-2.30421	-0.753961	2.31422
С	С	-3.14089	0.222435	1.74971
С	С	-3.85873	1.10362	2.57294
С	С	-3.73708	0.999688	3.96955
С	С	-2.91914	0.0097607	4.53433
С	С	0.395369	-1.28673	4.97213

```
Electronic Supplementary Material (ESI) for Dalton Transactions This journal is \textcircled{} The Royal Society of Chemistry 2012
```

С	С	0.584828	0.0537363	4.57801
С	С	1.72338	0.782199	4.97641
С	С	2.80567	0.0404735	5.48987
С	С	2.63415	-1.29376	5.87766
С	С	1.37567	-1.92204	5.79341
С	С	1.68457	2.28871	5.13004
С	С	0.849619	2.73	6.41855
С	С	0.716592	1.61406	7.43356
С	С	-0.450998	0.834801	7.50558
С	С	-0.427982	-0.475412	8.04473
С	С	0.807097	-1.06048	8.4353
С	С	1.8684	-0.156557	8.65093
С	С	1.82746	1.15897	8.1749
С	С	1.12151	-2.53891	8.29555
С	С	1.04878	-3.0301	6.78301
Р	Ρ	-1.96644	-1.42482	7.95608
С	С	-3.43509	-0.422793	8.30391
С	С	-3.36761	0.835882	8.92723
С	С	-4.556	1.52678	9.21069
С	С	-5.79934	0.951611	8.90662
С	С	-5.86206	-0.308773	8.28264

```
Electronic Supplementary Material (ESI) for Dalton Transactions This journal is \textcircled{} The Royal Society of Chemistry 2012
```

С	С	-4.68355	-0.998362	7.97052
С	С	-2.0327	-2.98552	8.86798
С	С	-2.10076	-4.193	8.13503
С	С	-2.16089	-5.41004	8.82997
С	С	-2.1667	-5.41915	10.237
С	С	-2.12563	-4.21162	10.9557
С	С	-2.06001	-2.98846	10.2748
Н	Н	1.73855	-3.89278	6.67535
Н	Н	0.0339278	-3.42512	6.57331
Н	Н	0.465551	-3.18334	8.9114
Н	н	2.14695	-2.70101	8.68142
Н	Н	-1.36853	1.21915	7.03372
Н	н	2.72721	1.78872	8.2472
Н	н	2.80855	-0.543912	9.07214
Н	Н	1.33645	3.61357	6.87643
Н	н	-0.161036	3.0498	6.09428
Н	Н	1.23471	2.77606	4.2431
Н	Н	2.72027	2.67577	5.21803
Н	н	-0.228405	0.577364	4.05839
Н	Н	3.44933	-1.80111	6.41779
Н	н	3.75671	0.547131	5.71532

```
Electronic Supplementary Material (ESI) for Dalton Transactions This journal is \textcircled{} The Royal Society of Chemistry 2012
```

Н	Н	-2.10461	-4.18274	7.03302
н	н	-2.20537	-6.35564	8.26872
н	н	-2.2132	-6.37695	10.7772
н	Н	-2.14207	-4.20913	12.0552
н	Н	-2.03401	-2.03864	10.8217
Н	Н	-2.40743	1.26406	9.23443
Н	н	-4.49672	2.50265	9.71442
Н	Н	-6.72702	1.47987	9.171
Н	Н	-6.83701	-0.760798	8.04635
Н	Н	-4.73407	-1.98663	7.4867
Н	Н	-1.74448	-1.42713	1.65316
Н	Н	-3.208	0.300698	0.654469
Н	Н	-4.49968	1.87992	2.12892
Н	Н	-4.28999	1.68594	4.62859
Н	Н	-2.86255	-0.0544741	5.63018
Н	Н	1.45159	-2.50157	2.9927
Н	Н	2.06391	-3.85189	0.994981
Н	Н	0.351175	-5.32234	-0.112644
Н	Н	-1.98132	-5.42031	0.804129
Н	Н	-2.59527	-4.07893	2.81851
Ρ	Р	-1.15291	-2.20387	4.5049

```
Electronic Supplementary Material (ESI) for Dalton Transactions This journal is \textcircled{C} The Royal Society of Chemistry 2012
```

Н	Н	-2.09491	-1.89357	6.59743
F	F	-2.65236	2.87328	-2.38542
С	С	-2.02001	2.6682	-1.22704
С	С	-0.891512	1.83602	-1.15719
С	С	-2.48448	3.29079	-0.0529027
F	F	-0.481386	1.27492	-2.30633
С	С	-0.185574	1.59334	0.0427873
С	С	-1.80314	3.0983	1.16036
F	F	-3.57516	4.05502	-0.0854969
В	В	1.04683	0.612825	0.0990481
С	С	-0.68383	2.25896	1.18272
F	F	-2.25666	3.66897	2.27989
С	С	1.01802	-0.710703	-0.752269
С	С	2.25468	0.927057	1.05755
F	F	-0.105161	2.07709	2.38361
С	С	2.19005	-1.29415	-1.28666
С	С	-0.174557	-1.43424	-0.980024
С	С	3.02209	-0.0847117	1.68296
С	С	2.60383	2.25147	1.41967
С	С	2.19914	-2.53442	-1.94153
F	F	3.36821	-0.661192	-1.17565

```
Electronic Supplementary Material (ESI) for Dalton Transactions This journal is \textcircled{} The Royal Society of Chemistry 2012
```

С	С	-0.208797	-2.68349	-1.61216
F	F	-1.3588	-0.967525	-0.543711
С	С	4.02475	0.175887	2.62412
F	F	2.78728	-1.38307	1.4294
С	С	3.59887	2.55558	2.3593
F	F	1.97735	3.29829	0.859644
С	С	0.989103	-3.23602	-2.09352
F	F	3.33514	-3.05356	-2.41463
F	F	-1.3545	-3.35794	-1.73729
С	С	4.30283	1.50663	2.97389
F	F	4.67543	-0.822025	3.22573
F	F	3.85577	3.82007	2.70463
F	F	0.981612	-4.4407	-2.66475
F	F	5.20352	1.77314	3.92011
F	F	3.71234	1.73436	12.3738
С	С	2.5074	1.94932	11.821
С	С	1.39346	1.16993	12.1928
С	С	2.35246	2.96404	10.8668
F	F	1.63127	0.249117	13.15
С	С	0.114402	1.31665	11.6254
С	С	1.08332	3.1878	10.313

```
Electronic Supplementary Material (ESI) for Dalton Transactions This journal is \textcircled{} The Royal Society of Chemistry 2012
```

F	F	3.40585	3.69535	10.4654
В	В	-1.15633	0.308912	11.8591
С	С	0.0166274	2.36741	10.6995
F	F	0.922181	4.13759	9.3706
С	С	-0.823959	-0.987205	12.7999
С	С	-2.56234	1.0426	12.2521
F	F	-1.16881	2.63171	10.0877
С	С	-1.40433	-1.26703	14.0473
С	С	0.0716493	-1.96594	12.3393
С	С	-3.77936	0.383024	12.0187
С	С	-2.68927	2.33255	12.7934
С	С	-1.13152	-2.4391	14.7822
F	F	-2.26481	-0.400471	14.6204
С	С	0.38414	-3.145	13.0272
F	F	0.687498	-1.79232	11.1425
С	С	-5.0411	0.948964	12.2525
F	F	-3.78332	-0.871826	11.5032
С	С	-3.92996	2.95317	13.0376
F	F	-1.59364	3.05195	13.1132
С	С	-0.228512	-3.38453	14.2689
F	F	-1.71431	-2.65447	15.972

```
Electronic Supplementary Material (ESI) for Dalton Transactions This journal is \textcircled{} The Royal Society of Chemistry 2012
```

F	F	1.23946	-4.04509	12.5106
С	С	-5.11751	2.25586	12.7586
F	F	-6.16792	0.281349	11.9425
F	F	-3.99391	4.19398	13.547
F	F	0.0504248	-4.50284	14.9563
F	F	-6.31159	2.83338	12.9651
Н	Н	-1.34905	-0.167888	10.7189