Supporting Information

Substituent Effects on Ni–S Bond Dissociation Energies and Kinetic Stability of Nickel Arylthiolate Complexes Supported by a Bis(phosphinite)-Based Pincer Ligand

Jie Zhang, Anubendu Adhikary, Krista M. King, Jeanette A. Krause and Hairong Guan*

Department of Chemistry, University of Cincinnati, P. O. Box 21072, Cincinnati, Ohio 45221-0172, United States

ORTEP drawings of nickel thiolate complexes 1b, 1d, 1e, and 2a-e	S2-S7
Summary of crystallographic data for the nickel thiolate complexes	S8
Selected bond lengths and angles for the nickel thiolate complexes	S9
Kinetics data for the reaction between complexes 1a-e and benzyl bromide	S10-S13
Hammett plot for the reaction between complexes 1a-e and benzyl bromide	S14
Kinetics data for the reaction between 2a (and 2c) and benzyl bromide	S14-S15

Fig. S1 ORTEP drawing of $[2,6-(Ph_2PO)_2C_6H_3]NiSC_6H_4CH_3$ (**1b**) at the 50% probability level. Hydrogen atoms are omitted for clarity.

Fig. S2 ORTEP drawing of $[2,6-(Ph_2PO)_2C_6H_3]NiSC_6H_4Cl$ (**1d**) at the 50% probability level. Hydrogen atoms are omitted for clarity.

Fig. S3 ORTEP drawing of $[2,6-(Ph_2PO)_2C_6H_3]NiSC_6H_4CF_3$ (**1e**) at the 50% probability level. Hydrogen atoms are omitted for clarity. The F-atoms of the CF₃ group are disordered; a twocomponent model is given (70 : 30 occupancy).

Fig. S4 ORTEP drawing of $\{2,6-[(i-Pr)_2PO]_2C_6H_3\}$ NiSC₆H₄OCH₃ (**2a**) at the 50% probability level. Hydrogen atoms are omitted for clarity.

Fig. S5 ORTEP drawing of $\{2,6-[(i-Pr)_2PO]_2C_6H_3\}$ NiSC₆H₄CH₃ (**2b**) at the 50% probability level. Hydrogen atoms are omitted for clarity.

Fig. S6 ORTEP drawing of $\{2,6-[(i-Pr)_2PO]_2C_6H_3\}$ NiSPh (**2c**) at the 50% probability level. Hydrogen atoms are omitted for clarity.

Fig. S7 ORTEP drawing of $\{2,6-[(i-Pr)_2PO]_2C_6H_3\}$ NiSC₆H₄Cl (**2d**) at the 50% probability level. Hydrogen atoms are omitted for clarity.

Fig. S8 ORTEP drawing of $\{2,6-[(i-Pr)_2PO]_2C_6H_3\}$ NiSC₆H₄CF₃ (**2e**) at the 50% probability level. Hydrogen atoms are omitted for clarity.

	1b	1d	1e	2a	26	2c	2d	2e
empirical formula	$C_{37}H_{30}O_2P_2SNi$	C ₃₆ H ₂₇ ClO ₂ P ₂ SNi	$C_{37}H_{27}F_3O_2P_2SNi$	$C_{25}H_{38}O_3P_2SNi$	C ₂₅ H ₃₈ O ₂ P ₂ SNi	$C_{24}H_{36}O_2P_2SNi$	C ₂₄ H ₃₅ O ₂ P ₂ SCINi	$C_{25}H_{35}F_3O_2P_2SNi$
formula weight	659.32	679.74	713.30	539.26	523.26	509.24	543.68	577.24
temp, K	150(2)	150(2)	150(2)	150(2)	150(2)	150(2)	150(2)	150(2)
crystal system	monoclinic	monoclinic	monoclinic	monoclinic	triclinic	monoclinic	triclinic	triclinic
space group	P2 ₁ /n	P2 ₁ /n	P2 ₁ /n	C2/c	P-1	P2 ₁ /c	P-1	P-1
a, Å	14.8305(4)	14.7575(3)	15.0497(4)	36.0524(10)	10.2691(2)	7.8432(1)	8.5017(2)	8.6345(1)
b, Å	9.1267(2)	9.1218(2)	9.1562(2)	7.6168(2)	11.3934(2)	31.3580(5)	9.6113(2)	9.6238(2)
c, Å	24.2462(6)	24.1885(5)	24.2103(6)	25.0220(8)	13.1019(2)	10.3910(2)	16.6023(4)	16.8946(3)
α , deg	90	90	90	90	88.437(1)	06	85.405(1)	84.721(1)
β, deg	105.642(1)	105.398(1)	104.941(1)	129.255(3)	67.681(1)	94.459(1)	78.043(1)	79.927(1)
γ, deg	90	90	90	90	66.738(1)	90	88.327(1)	88.646(1)
Volume, Å ³	3160.27(13)	3139.25(11)	3223.34(14)	5320.6(3)	1289.15(4)	2547.90(7)	1322.80(5)	1376.34(4)
Ζ	4	4	4	8	2	4	2	2
d _{cale} , g/cm ³	1.386	1.438	1.470	1.346	1.348	1.328	1.365	1.393
λ, Å	1.54178	1.54178	1.54178	1.54178	1.54178	1.54178	1.54178	1.54178
μ, mm ⁻¹	2.714	3.516	2.846	3.109	3.160	3.184	4.009	3.177
no. of data collected	26302	26034	26573	21489	11035	21765	11430	11813
no. of unique data	5650	5630	5601	4603	4444	4588	4586	4754
R _{int}	0.0622	0.0335	0.0731	0.0356	0.0288	0.0347	0.0225	0.0298
Goodness-of-fit on F^2	1.024	1.043	1.024	1.033	1.032	1.033	1.050	1.019
R1, wR2 (I > $2\sigma(I)$)	0.0390, 0.0987	0.0322, 0.0851	0.0493, 0.1165	0.0321, 0.0838	0.0377, 0.0957	0.0344, 0.0867	0.0341, 0.0878	0.0407, 0.1020
R1, wR2 (all data)	0.0519, 0.1069	0.0374, 0.0888	0.0746, 0.1306	0.0379, 0.0876	0.0477, 0.1019	0.0414, 0.0916	0.0402, 0.0922	0.0526, 0.1092

Table S1 Summary of crystallographic data

	1b	1d	1e	2a	2b	2c	2d	2e
Ni-S1	2.1947(7)	2.1961(5)	2.2030(10)	2.2191(6)	2.1908(7)	2.1734(6)	2.2083(6)	2.2075(8)
Ni-C1	1.907(2)	1.9088(17)	1.910(3)	1.8988(19)	1.907(2)	1.8987(19)	1.900(2)	1.899(3)
Ni-P1	2.1555(7)	2.1569(5)	2.1595(10)	2.1769(6)	2.1566(7)	2.1507(6)	2.1736(6)	2.1476(8)
Ni-P2	2.1452(7)	2.1472(5)	2.1504(10)	2.1377(6)	2.1538(7)	2.1625(6)	2.1472(6)	2.1740(8)
S1-C31	1.784(3)	1.7800(19)	1.781(4)	1.766(2)	1.789(3)	1.775(2)	1.767(2)	1.768(3)
P1-01	1.6592(17)	1.6593(13)	1.661(2)	1.6612(14)	1.6572(17)	1.6627(14)	1.6614(15)	1.6568(18)
P2-02	1.6446(16)	1.6470(13)	1.641(2)	1.6592(13)	1.6599(17)	1.6571(14)	1.6572(14)	1.6590(19)
01-C2	1.390(3)	1.388(2)	1.386(4)	1.391(2)	1.391(3)	1.390(2)	1.387(3)	1.391(3)
O2-C6	1.399(3)	1.399(2)	1.403(4)	1.396(2)	1.388(3)	1.388(2)	1.390(3)	1.392(3)
P1-Ni-P2	163.10(3)	162.88(2)	162.95(4)	164.38(2)	163.27(3)	161.58(2)	163.83(3)	163.88(3)
P1-Ni-S1	103.11(3)	103.31(2)	103.03(4)	105.52(2)	104.37(3)	107.50(2)	105.03(2)	91.03(3)
P2-Ni-S1	93.79(3)	93.77(2)	94.02(4)	89.95(2)	92.24(3)	90.02(2)	91.11(2)	105.05(3)
C1-Ni-P1	81.93(7)	81.71(6)	81.77(11)	81.98(6)	81.45(7)	81.50(6)	82.06(7)	81.88(8)
C1-Ni-P2	81.17(7)	81.17(6)	81.19(11)	82.40(6)	82.00(7)	82.03(6)	81.92(7)	82.14(8)
C1-Ni-S1	174.45(7)	174.65(6)	175.00(11)	168.19(6)	173.99(8)	167.87(6)	166.69(7)	166.31(8)
C31-S1-Ni	110.85(8)	111.21(6)	110.95(12)	111.85(7)	114.07(8)	119.93(7)	114.95(7)	115.81(9)

Table S2 Selected bond lengths (Å) and angles (deg)

Fig. S9 Sample plots of two-parameter fit in KaleidaGraph: k_{obs} for the reaction between [2,6-(Ph₂PO)₂C₆H₃]NiSPh (1c) and benzyl bromide ([1c]₀ = 0.018 M, [PhCH₂Br]₀ = 0.18 M) in toluene- d_8 at various temperatures (*: 50°C; \blacksquare : 60°C; \Box : 70°C; \bullet : 80°C).

Temperature	$[1c]_0(M)$	$[PhCH_2Br]_0(M)$	$k_{\rm obs}~({\rm s}^{-1})$
50 °C	0.018	0.18	$1.3(1) \times 10^{-5}$
50 °C	0.018	0.23	$1.7(1) \times 10^{-5}$
50 °C	0.018	0.28	$2.0(1) \times 10^{-5}$
50 °C	0.018	0.33	$2.4(1) \times 10^{-5}$
60 °C	0.018	0.18	$2.2(1) \times 10^{-5}$
60 °C	0.018	0.23	$3.0(1) \times 10^{-5}$
60 °C	0.018	0.28	$3.8(1) \times 10^{-5}$
60 °C	0.018	0.33	$4.3(1) \times 10^{-5}$
70 °C	0.018	0.18	$4.0(2) \times 10^{-5}$
70 °C	0.018	0.23	$5.5(1) \times 10^{-5}$
70 °C	0.018	0.28	$7.0(3) \times 10^{-5}$
70 °C	0.018	0.33	$8.5(2) \times 10^{-5}$
80°C	0.018	0.18	$8.3(4) \times 10^{-5}$
80°C	0.018	0.23	$1.1(1) \times 10^{-4}$
80°C	0.018	0.30	$1.5(1) \times 10^{-4}$
80°C	0.018	0.33	$1.7(1) \times 10^{-4}$

Table S3 k_{obs} for the reaction between [2,6-(Ph₂PO)₂C₆H₃]NiSPh (1c) and benzyl bromide in toluene- d_8 at various temperatures.

Fig. S10 Sample plots of two-parameter fit in KaleidaGraph: k_{obs} for the reaction between [2,6-(Ph₂PO)₂C₆H₃]NiSC₆H₄Z (**1a**, **1b**, **1d**, **1e**) and benzyl bromide ([**1**]₀ = 0.020 M, [PhCH₂Br]₀ = 0.20 M) in toluene- d_8 at 60 °C (*: **1e**; \blacksquare : **1d**; \square : **1b**; \bullet : **1a**).

complex	[Ni] ₀ (M)	$[PhCH_2Br]_0(M)$	$k_{\rm obs}({\rm s}^{-1})$
1a	0.015	0.15	$4.4(1) \times 10^{-5}$
1a	0.015	0.20	$5.4(1) \times 10^{-5}$
1a	0.015	0.25	$6.3(4) \times 10^{-5}$
1a	0.015	0.33	$8.9(2) \times 10^{-5}$
1b	0.020	0.20	$3.7(2) \times 10^{-5}$
1b	0.019	0.25	$4.1(1) \times 10^{-5}$
1b	0.015	0.30	$5.4(3) \times 10^{-5}$
1b	0.015	0.35	$5.9(1) \times 10^{-5}$
1d	0.020	0.20	$1.0(1) \times 10^{-5}$
1d	0.020	0.25	$1.2(1) \times 10^{-5}$
1d	0.020	0.30	$1.4(1) \times 10^{-5}$
1d	0.020	0.35	$1.7(1) \times 10^{-5}$
1e	0.020	0.20	$3.3(1) \times 10^{-6}$
1e	0.020	0.25	$4.0(1) \times 10^{-6}$
1e	0.020	0.30	$4.8(1) \times 10^{-6}$
1e	0.020	0.35	$5.9(1) \times 10^{-6}$

Table S4 k_{obs} for the reactions between [2,6-(Ph₂PO)₂C₆H₃]NiSC₆H₄R (1a, 1b, 1d, 1e) and benzyl bromide in toluene- d_8 at 60°C.

Fig. S11 Plots of k_{obs} versus concentration of benzyl bromide for the reaction of [2,6-(Ph₂PO)₂C₆H₃]NiSPh (**1c**) with benzyl bromide in toluene- d_8 at various temperatures (\blacksquare : 80°C; \bullet : 70°C; \Box : 60°C; *: 50°C)

Table S5 Summary of the second-order rate constants k for the reaction of $[2,6-(Ph_2PO)_2C_6H_3]$ NiSPh (1c) with benzyl bromide in toluene- d_8 at various temperatures.

T (K)	1/T (K ⁻¹)	$k (s^{-1}M^{-1})$	$\ln(k/T)$
323	0.00310	$7.1(3) \times 10^{-5}$	-15.33
333	0.00300	$1.4(1) \times 10^{-4}$	-14.68
343	0.00292	$2.8(1) \times 10^{-4}$	-14.02
353	0.00283	$5.4(2) \times 10^{-4}$	-13.39

Fig. S12 An Eyring plot for the reaction of $[2,6-(Ph_2PO)_2C_6H_3]$ NiSPh (1c) with benzyl bromide in toluene- d_8 between 50 °C and 80 °C.

 $\Rightarrow \Delta H^{\ddagger} = 61.5 \pm 0.8 \text{ kJ mol}^{-1} \text{ and } \Delta S^{\ddagger} = -135.1 \pm 2.9 \text{ J K}^{-1} \text{ mol}^{-1}$

Fig. S13 Plots of k_{obs} versus concentration of benzyl bromide for the reaction of [2,6-(Ph₂PO)₂C₆H₃]NiSC₆H₄Z (**1a-e**) with benzyl bromide in toluene- d_8 at 60 °C (\blacksquare : **1a**; \square : **1b**; *: **1c**; O: **1d**; ×: **1e**).

Table S6 Summary of second-order rate constants k for the reactions of $[2,6-(Ph_2PO)_2C_6H_3]NiSC_6H_4Z$ (1a-e) with benzyl bromide in toluene- d_8 at 60 °C.

Fig. S14 Hammett plot for the second-order rate constants k of the reaction of [2,6-(Ph₂PO)₂C₆H₃]NiSC₆H₄Z (**1a-e**) with benzyl bromide at in toluene- d_8 60 °C.

$$\Rightarrow \rho = -1.5 \pm 0.3$$

Table S7 k_{obs} for the reactions between {2,6-[(*i*-Pr)₂PO]₂C₆H₃}NiSC₆H₄Z (**2a** and **2c**) and benzyl bromide in toluene- d_8 at 60°C.

complex	[Ni] ₀ (M)	$[PhCH_2Br]_0(M)$	$k_{\rm obs}({\rm s}^{-1})$
2a	0.014	0.14	$6.0(4) \times 10^{-5}$
2a	0.014	0.18	$8.1(2) \times 10^{-5}$
2a	0.014	0.21	$9.9(4) \times 10^{-5}$
2a	0.014	0.25	$1.1(1) \times 10^{-4}$
2c	0.014	0.14	$2.5(2) \times 10^{-5}$
2c	0.014	0.18	$3.1(4) \times 10^{-5}$
2c	0.014	0.21	$3.6(2) \times 10^{-5}$
2c	0.014	0.25	$4.4(2) \times 10^{-5}$

Fig. S15 Plot of k_{obs} versus concentration of benzyl bromide for the reaction of $\{2,6-[(i-Pr)_2PO]_2C_6H_3\}$ NiSC₆H₄OCH₃ (**2a**) with benzyl bromide in toluene- d_8 at 60 °C.

$$k = 4.5(5) \times 10^{-4} \,\mathrm{M}^{-1} \mathrm{s}^{-1}$$

Fig. S16 Plot of k_{obs} versus concentration of benzyl bromide for the reaction of $\{2,6-[(i-Pr)_2PO]_2C_6H_3\}$ NiSC₆H₅ (**2c**) with benzyl bromide in toluene- d_8 at 60 °C.

 $k = 1.7(1) \times 10^{-4} \text{ M}^{-1} \text{s}^{-1}$